Professional

Linux® Kernel Architecture

Wolfgang Mauerer

WILEY
Wiley Publishing, Inc.

Appendix F: The Kernel Development Process

(d) While I have reviewed the patch and believe it to be sound, I
do not {unless explicitly stated elsewhere) make any
warranties or guarantees that it will achieve its stated
purpcese or function properly in any given situation.

Another new tag introduced in this context is Tested-by, which — you guessed it — states that the patch
has been tested by the signer, and that the test has left enough of the machine to add a Tested-by tag to
the patch.

F.4 Linux and Academia

Writing an operating system is not an easy task — as I'm sure you'll agree, it is one of the most involved
challenges for software engineers. Many of the developers participating in the creation of the Linux kernel
are among the most knowledgeable in their field, given that Linux is one of the best operating systems
available. Academic degrees are not uncommon among developers, and computer science degrees are
surely not underrepresented degrees.”

Operating systems are also the subject of active academic research. As with every other research field,
there’s a certain amount of theory that goes along with OS research, and this is just natural — you can-
not tackle all problems in a practical way. In contrast to many other research areas that are concerned
with fundamental problems, however, OS research works on inherently practical problems, and should
therefore have an impact on practical things. What is OS research good for if it does not help to improve
operating systems? And because an operating system is an inherently practical product (who, after all,
would need a theoretical operating system? Hypothetical computers certainly have no use for an operat-
ing system, and even less do real computers require a theoretical OS), the outcome of OS research has to
influence practice. People working on loop quantum gravity might be exempted from having to consider
the practical impact of their work, but this is certainly not the case for OS research.

With this in mind, one could expect that Linux and the academic community are closely associated, but
unfortunately, this is not the case. Quoting academic work in the kernel sources is a rare occurrence, and
seeing the kernel being quoted in research papers is also not something that happens every day.

This is especially astonishing because the academic world used to have a close affiliation with Unix,
particularly with the Berkeley System Distribution (BSD) family. It's fair to say that BSD is the product of
academic research, and for a long time, academia was the driving force behind this project.

A study published by the Linux Foundation [KHCM] has shown that contributions from academia
account for 0.8 percent of all changes in recent kernel versions. Considering that a large number of ideas
circulate in the academic community, this ratio is astonishingly low, and it would be worthwhile to
improve the situation — for the benefit of both the kernel and academia. Open source is all about sharing
things, and sharing good ideas is also a worthy goal.

Linux had a slightly bumpy start in its relations with academia. One of Linus Torvalds’s initial moti-
vations to write Linux was his dissatisfaction with Minix, a simple teaching operating system designed
to educate students. This led to a famous debate between Torvalds and Andrew Tanenbaum, the cre-
ator of Minix. Tanenbaum suggested that Linux was obsolete because its design would not comply with

SNotice that 1 did not perform any quantitative analysis on this, but the curricula vitae of many developers are readily available on
the Internet that support this suspicion (as does common sense.)

1281

Appendix F: The Kernel Development Process

what the academic world envisioned to be suitable for future operating systems, and his arguments were
collected in a Usenet newsgroup posting titled “Linux is obsolete.”” This, naturally, caused Linus Torvalds
to reply, and one of his statements was the following:

Re 2: your job is being a professor and researcher: That's one hell of a
good excuse for some of the brain-damages of minix.

Although it was soon admitted that the message was a little rash, it reflects the attitude that is sometimes
displayed by the kernel community toward academic research. Real-world operating systems and OS
research are perceived as things that don’t quite fit together.

This may indeed be true sometimes: Much academic research is not sipposed to be integrated into real-
world products, especially when it is concerned with fundamental issues. But as mentioned previously,
there are also practical components of research, and these could often help to improve the kernel. Unfor-
tunately, OS researchers and OS implementors have somewhat lost connection with each other, and Rob
Pike, a member of the former Unix team at Bell Labs, has gone so far as to make the pessimistic claim
that systems software research is irrelevant.®

Contributing code to the kernel is hard for researchers for many reasons, one of which is that they have
to take many different operating systems into account. It is already hard to keep up with the pace of
Linux kernel development, but it is virtually impossible to chase all important operating systems in use
today. Therefore, researchers usually cannot provide more than proof-of-concept implementations of
their ideas. Integrating these into the kernel requires some effort from both communities. Consider, for
instance, the integration of the swap token mechanism into the kernel. This was proposed in research as
discussed in the next section, but has been implemented for the kernel by Rik van Riel, a kernel developer

working in the area of memory management. The approach has proved to be quite successful, and could
well serve as a role model for further collaboration.

Interaction between both communities is complicated by the following two aspects of kernel
development:

U Many developers do not consider proposals without concrete code, and refuse to discuss the
issue any further,

U Even if code is submitted to the mailing lists, a good part of the work will start only after the
initial submission. Adaption of proposed code to a specific system is not highly credited in
academia, so researchers have a natural tendency to avoid this step.

Ultimately, this leads to the conclusion that the interface between kernel development and academic
research ideally requires one individual from each side collaborating with each other. If this is not possi-
ble, then it is a definitive advantage and surely worth the effort if researchers try to adapt to the culture
of kernel development as much as possible.

F.4.1 Some Examples

This section presents some examples of when research results have been turned into kernel code and
could help to improve particular aspects of Linux. Note that the presented selection is na turally not

fSee www.cs.bell-labs.com/who/rob/utah2000 -pdf. Since Pike also claims that the only progress in the operating sys-

tem area comes from Microsoft, | certainly don’t believe all his claims, but the talk nevertheless contains many noteworthy and valid
ideas.

1282

Appendix F: The Kernel Development Process

comprehensive, and the impact of academic research would be really negligible if it ever could be. It is
primarily used to highlight that both worlds can benefit from each other.

a

The swap token as discussed in Chapter 18 was first described in the paper “Token-Ordered
LRU: An Effective Replacement Policy and its Implementation in Linux Systems”” by S. Jiang and
X. Zhang (Performance Evaluation, Vol. 60, Issue 1-4, 2005). Subsequently, it was implemented
in kernel 2.6.9 by Rik van Riel. Interestingly, the paper extended kernel 2.2.14 to demonstrate
the usefulness of the approach, but the corresponding code was never included in the mainline
kernel.

The slab allocator as discussed in Chapter 3 is directly based on a paper that describes the imple-
mentation of the slab system in Solaris: “The Slab Allocator: An Object-Caching Kernel Memory
Allocator,” Proceedings of the Summer 1994 USENIX Con ference.

The techniques of the anticipatory 1/0 scheduler (which was mentioned in Chapter 6, but not
discussed in detail) were first presented in “Anticipatory Scheduling: A Disk Scheduling Frame-
work to Overcome Deceptive Idleness in Synchronous 1/0,” 18th ACM Symposium on Operat-
ing Systems Principles, 2001.

As discussed in Chapter 18, Linux employs a variant of the least-recently used technique to
identify active pages and distinguish them from inactive pages. The paper “CLOCK-Pro:

An Effective Improvement of the CLOCK Replacement”’ by S. Jiang, F. Chen, and X. Zhang
(Proceedings of 2005 USENIX Annual Technical Conference) describes a page-replacement
algorithm that not only prioritizes pages based on the time of their last access, but also
incorporates the frequency with which pages are accessed. Patches have been designed by
Rik van Riel and Peter Zijlstra, and the method has also been considered as a possible merge
candidate (see www. lwn.net/Articles/147879/). The reason why you have read nothing
about this technique in the preceeding chapters is simple: The patches have not yet made it into
mainline. They are, however, examples of how Linux developers do sometimes actively try to
integrate research results into the kernel.

The ideas presented in these papers have been directly integrated into the Linux kernel as direct exten-
sions of existing code. Some examples of older papers that have had an indirect influence on the kernel
include the following:

Q

The generic structure of the block layer that acts as a level of indirection between filesystems
and disks is described in “The Logical Disk: A New Approach to Improving File Systems,” by
W. de Jonge, M. F. Kaashoeck, and W. C. Hsieh. Essentially, it describes techniques to decouple
blocks on physical disks from logical disks as observed by the operating system, and this builds
the fundament for the logical volume manager and the device mapper.

Many key concepts of the extended filesystem family originate from other filesystems, and one
particular example is the paper “A Fast File System for UNIX"’ by M. K. McKusick, W. N. Joy,
S.]. Leffler, and R. S. Fabry (ACM Transactions on Computer Systems, 1984). It describes the
use of multiple possible block sizes on disk, and introduces the idea of mapping a logical
sequence of data to a sequential series of blocks on disk.

Tracking the indirect influence of older papers is na turally much harder than seeing ideas from research
being directly integrated. The more generic an idea is, the more ubiquitous it will become if it prevails,

and the harder it becomes to recognize the idea as such. At some point, it will have been absorbed into

the field, and be indistinguishable from common knowledge. Or would you deem it necessary to quote

any paper on the fact that computers tend to work with binary digits?

1283

Appendix F: The Kernel Development Process

Essentially, most core ideas of the UNix operating system are also present in Linux. Many of these ideas
are today ubiquitous, but were new at the time UNIx was invented. This includes, for instance, the idea
that nearly everything can be represented by a file as discussed in Chapter 8. Namespaces are another
example for a technology that does indirectly stem from academic research: They were introduced as an
integral part of Plan 9 — the successor to Unix co-developed by some of the inventors of UNix — many
years before they were adopted into the mainline kernel.” The /proc filesystem is also modeled by the
example of Plan 9,

Many other fundamental ideas of Unix appear as integral parts of Linux without being recognized

as research results, but this is not the direct concern of this section. However, it is interesting to observe
where many concepts of Linux have their roots, such as in Vahalia’s hi ghly recommended technical
discussion of Unix internals for many flavors of the system [Vah96]. The account by Salus [Sal94] illu-
minates the history of Unix, and allows for understanding why many things are designed the way
they are.

F.4.2 Adopting Research

The preceding examples demonstrate that it is possible to integrate research results with the Linux kernel.
But considering the magnitude of OS research, and the number of results integrated into the kernel, there
seem to be some obstacles to transferring results from one world into another. One essential factor is
that each community functions quite differently from each other. To my knowledge this point has not
received the consideration it deserves (at least not in writing); therefore, this section highlights some of
the essential differences.

Notice that the kernel sources contain some interesting information on how the kernel developers deal
with project management issues in Documentation/ManagementStyle. The document also addresses
some of the questions discussed here.

Different Communities

Software development and OS research seem to be dry and purely technical to many people, but both
have an enormous social component: The acceptance of any work is based on its acceptance in the com-
munity, which is nothing else than acceptance by individual developers and researchers. This requires
that individuals judge the contributions of other individuals, and as most readers will agree, this is
always a difficult thing in a world of colorful, different, and sometimes complicated characters. In an
ideal world, judgment would be solely based on objective criteria, but this is not the case in reality:
People are only human, and sympathy, personal tastes, acquaintances, dislikes, bias, and the ability to
communicate with each other play a crucial role.

One approach to this problem is to simply ignore it — pretend that we live in an ideal world where
judgment is done on a purely technical and objective level, and all problems automatically disappear,
This solution is adopted astonishingly often, especially in ““official” statements.

"Notice that Plan 9 was not developed at a “classical”” academic institution, but at the research division of Bell Labs, which is nowa-
days affiliated with Lucent Technologies. However, the methodology used is very similar to that of academic institutions: Papers are
published about Plan 9, talks are held, and conferences are organized. Therefore, this appendix subsumes it under the same category
as academia. The web site cm.bell-labs. com/pland contains more information about Plan 9.

1284

Appendix F: The Kernel Development Process

But even if the problem is acknowledged, it is not easy to solve. Consider how decisions are often made
in the research community to decide if a work is worthwhile (and should be credited by being admitted
to a conference, or published in a paper) or not:

1. After research results have (hopefully) been obtained, they are written up in a paper and
submitted to a journal (or conference, or similar, but this discussion will focus on publication
for simplicity’s sake).

2. “The paper is submitted to one or more referees who have to evaluate the work. They have to
judge correctness, validity, and scientific importance, and can point to weaknesses or things
that should be improved. Usually reviewers are anonymous, and should not be directly
related with the author personally or professionally.

3. Depending on the referee’s appraisal, the editor can decide to reject or accept the paper. In
the latter case, the editor may require the author to incorporate improvements suggested
by the referees. Another round of peer review may take place after the improvements have
been made.

Usually, the identity of authors is known to the referee, but not vice versa.

Work is considered worthwhile in the kernel community if it is included into some official tree. The way
to achieve such an inclusion goes essentially along these lines:

Q
a

Code is submitted to an appropriate mailing list.

Everyone on the mailing list can request changes to the code, and desired improvements are
discussed in public.

The code is adapted to the desires of the community. This can be tricky because there are often
orthogonal opinions as to what constitutes an improvement and what will deteriorate the code.

The code is re-submitted, and discussion starts anew.

Once the code has achieved the desired form and a consensus is reached, it is integrated into
official trees.

Notice that it is possible for people with high and long-standing reputations in their fields (which is,
again, a social factor) to shortcut the process in both areas, but these cases are not of interest here.

There are similarities between the academic and kernel development communities, and both have their
strengths and weaknesses. For example, there are some important differences between the review process
in each community:

Q

Reviewing code for the kernel is not a formalized process, and there is no central authority to
initiate code review. Review is performed completely voluntarily and uncoordinated — if no
one is interested in the submitted code, the mailing lists can remain silent.

Although review in the academic world is usually also performed voluntarily and without pay-
ment, it is impossible for submissions to be completely ignored. Papers are guaranteed to get
some feedback, although it can be very superficial.

The identities of the submitter and reviewer are known to each other in the kernel world, and
both can interact directly. In the academic world, this is usually not the case, and conversation

1285

Appendix F: The Kernel Development Process

between the author and reviewer is mediated by the editor. Additionally, only a few rounds of
exchanging arguments between the author and reviewers are possible before the editor decides
to either accept or reject a submission.

U The result of a review is only known to the submitter, referees, and editor in the academic world.
Usually the whole review process is public in the kernel world, and can be read by everyone.

In both worlds, reviewers can pass harsh criticism to the submitter. In the academic world, formulations

in the inverse direction are usually chosen with much more care, while this depends on the identity of
the submitter and reviewer in the kernel world.

Critique is certainly valuable and essential to improve the quality of any work, but receiving critique is

a complicated matter. How this is handled is another important difference between kernel development
and the academic world.

Harassing people verbally in various creative, and often insulting, ways has become a trademark of some
kernel developers — and the corresponding statements are publically available on the Internet. This
poses a serious problem, because nobody likes to be insulted in public, and developers can be driven
away by this fairly quickly. This concern is shared by several leading Linux developers, but because all
people on the mailing lists are grown-ups, it is not possible to solve this problem in any other form than
appealing for more fairness, which is not always accepted.

Receiving a harsh critique by an anonymous referee in the academic world is certainly not particularly
enjoyable, but it is much easier to be accused of having failed in private than in public.

As you can see from the following documentation excerpt, kernel developers do not strive for complete
political correctness as a means of solving this problem:

Documentation/ManagementStyle

The option of being unfailingly polite really doesn't exist. Nobody will
trust somebody who is so clearly hiding his true character.

Pulling each other’s legs can be a good thing, and is something of an intellectual challenge when properly
employed. But it’s also very easy to overdo it and end up with insulting accusations, which nobody likes
to receive but unfortunately, everyone should be prepared for in the kernel world.

While the review process of the kernel world can be considerably more challenging socially than the
academic counterpart, it also tends to be much more effective, taken that people are not driven away
by the approach: Patches on the kernel mailing list usually go through many iterations before they are
deemed to be acceptable, and in each iteration step remaining problems are identified by reviewers and
can be changed by the authors. Because the goal of the kernel is to be the best in the world, it is important
that only really good code is integrated. Such code is usually not created from the very beginning, but
only after a period of improvement and refinement. The whole point of the review process is to generate
the best possible code, and this often succeeds in practice.

The effect of review on academic papers is usually different. If a submission is rejected by one journal,
it will certainly be revised by the authors to address the shortcomings. However, readers are invited to
judge on their own how big the probability is that really substantial revisions are made considering that
on the one hand, there is considerable pressure to publish as many papers as possible for gaining sci-
entific reputation, and on the other hand, there are a large number of different (possibly less-renowned)
journals to which the work can alternatively be submitted — and that these journals rely as their economic

1286

Appendix F: The Kernel Development Process

foundation on submissions by authors who pay(!) for being published. This is different with kernel code:
Either you get code into the kernel, or a considerable amount of effort has been wasted.® This naturally
provides a large incentive to put effort into improving the code.

Although the approaches employed by the academic and kernel communities to assess and ensure the
quality of submissions are similar at first glance, there are numerous differences between them. Different
cultures can be a considerable barrier for the exchange of ideas and code between both worlds, and
should be taken into account when it comes to a collaboration between kernel and academia.

F.5 Summary

As one of the largest open source efforts in the world, the Linux kernel is not just interesting from a
technological perspective, but also because a novel and unique way of distributed development across the
whole world and between otherwise competing companies is employed. This appendix described how
the process is organized, and what the requirements for contribution are. It also analyzed the connection
between kernel development and academic research. In this appendix, you learned how the two worlds
interact, how differences can arise from different ““cultures,” and how these are best bridged.

Blt is surely possible to maintain code out-of-tree, and this has proven useful in many cases, but the final and most rewarding goal
for developers (and their employers!) is nevertheless to get work into the mainline kernel.

1287

	Picture.pdf
	Picture 000.pdf
	Picture 001.pdf
	Picture 002.pdf
	Picture 003.pdf
	Picture 004.pdf
	Picture 005.pdf
	Picture 006.pdf

