
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING46, 125–135 (1997)
ARTICLE NO. PC971378

Coordinating Parallel Processes on Networks of Workstations1

Xing Du and Xiaodong Zhang
Department of Computer Science, College of William and Mary, Williamsburg, Virginia 23187

The network of workstations (NOW) we consider for schedul-
ing is heterogeneous and nondedicated, where computing power
varies among the workstations and local and parallel jobs may
interact with each other in execution. An effective NOW schedul-
ing scheme needs sufficient information about system heterogene-
ity and job interactions. We use the measured power weight of
each workstation to quantify the differences of computing capa-
bility in the system. Without a processing power usage agreement
between parallel jobs and local user jobs in a workstation, job
interactions are unpredictable, and performance of either type
of jobs may not be guaranteed. Using the quantified and de-
terministic system information, we design a scheduling scheme
called self-coordinated local schedulingon a heterogeneous NOW.
Based on a power usage agreement between local and parallel
jobs, this scheme coordinates parallel processes independently in
each workstation based on the coscheduling principle. We discuss
its implementation on Unix System V Release 4 (SVR4). Our sim-
ulation results on a heterogeneous NOW show the effectiveness of
the self-coordinated local scheduling scheme.© 1997 Academic Press

1. INTRODUCTION

Networks of workstations (NOWs) have become impor-
tant and cost-effective parallel platforms for scientific com-
putations. In practice, a NOW system is heterogeneous and
nondedicated. These two unique factors make scheduling poli-
cies on multiprocessor/multicomputer systems not suitable for
NOWs. Since the nature of parallel processing on NOWs does
not change, the coscheduling [13] principle is still an impor-
tant basis for parallel process scheduling on NOWs. Thus, het-
erogeneity, job interactions, and coscheduling are three major
concerns in our design.

Many research groups currently are using homogeneous
NOWs as experimental platforms. In practice, more and more
heterogeneous NOW systems are being used for parallel
computing. The most common heterogeneous NOW would be
a network of the same type of workstations but with differential
computational capabilities.

1This work is supported in part by the National Science Foundation under
Grants CCR-9102854 and CCR-9400719, by the Air Force Office of Scientific
Research under Grant AFOSR-95-1-0215, and by the Office of Naval Research
under Grant ONR-95-1-1239.

Regarding the issue of job interactions, there are two basic
approaches: avoid interactions by migrating one type of job
to a dedicated environment, or go along with interactions
but try to effectively schedule jobs. The studies in [5 and
12] indicate that more than 50% of workstations are idle
at any time. However, in practice, it may be difficult to
immediately find a set of suitable workstations to migrate the
target processes to where they can stay for awhile and need not
be migrated to other workstations frequently. A main reason
for this is because local users’ behaviors are unpredictable.
Context switching and migration overheads are other factors
that may offset the performance gain from process migration.
In addition, the NOW utilization could be low without an
interaction of multiple jobs. We focus our research on the
approach to keeping both local and parallel jobs together and
effectively scheduling them.

Coscheduling is another available technique for parallel
process scheduling. It generally results in good parallel pro-
gram performance and is widely used to schedule parallel pro-
cesses involving frequent communication and synchronization
[4, 8, 10]. This method is particularly effective for parallel
applications partitioned into multiple processes of equal size,
running on a homogeneous multiprocessor/multicomputer sys-
tem. Coscheduling will ensure that no process will wait for a
nonscheduled process for synchronization/communication and
will minimize the waiting time at the synchronization points.
However, the nondedicated feature of workstations and the low
communication bandwidth make the implementation of com-
plete coscheduling on NOWs expensive and not realistic [7].

Using quantified and deterministic system information such
as a power weight, and the power preservation in each
workstation, we address the three NOW scheduling issues
by designing a scheduling scheme calledself-coordinated
local scheduling. This scheme coordinates parallel processes
independently in each workstation based on the coscheduling
principle.

Our scheduling design has the following features. First,
each local scheduler adjusts its execution pace of a parallel
process. The coordination of parallel processes is performed
independently at each workstation and is able to obtain
coscheduling performance results without a global scheduler.
Second, applying power preservation at each workstation
would be fair to both local user jobs and parallel jobs.

125

0743-7315/97 $25.00
Copyright © 1997 by Academic Press

All rights of reproduction in any form reserved.

126 DU AND ZHANG

The job response times of both types would be acceptable
and predictable. Third, the NOW utilization is increased by
executing both local user and parallel jobs together without
process migrations. Finally, it is easy to use facilities of
standard Unix operating systems such as SVR4 to implement
this scheduling scheme.

2. MODELS OF NOW AND PARALLEL PROGRAMS

In comparison with multiprocessor/multicomputer systems,
a NOW has two unique features: heterogeneity and nonded-
ication. In this section, we quantify the processing capability
of a workstation and discuss a representative parallel program-
ming model.

2.1. Workstation Power Weight

A NOW can be abstracted as a connected graphHN(M, Net),
where

• M = {M1, M2, . . . , Mm} is a set of workstations (m is
the number of workstations).

• Net is a standard interconnection network, such as an
Ethernet or an ATM network.

If a NOW consists of a set of identical workstations, the
system is homogeneous. Otherwise, a heterogeneous NOW
is formed. Different workstations may have different architec-
tures (architectural heterogeneity) and/or different computing
capability. Here we only consider the computing capability
differences among workstations.

We use the power weight to refer to a workstation’s
computing capability relative to the fastest workstation in a
NOW. The value of the power weight is less than or equal
to 1. Since the power weight is a relative ratio, it can also
be represented by measured execution time. IfT(App, Mi)

gives the execution time for completing application program,
App, on a dedicated workstationMi , the power weight of
workstationi can be calculated as

Wi (App) = minm
i=1{T(App, Mi)}
T(App, Mi)

. (2.1)

Equation (2.1) indicates that the power weight of a work-
station is application program dependent. However, our exper-
iments [15] show that this is mainly related to the problem
size. If the memory size is large enough to hold a process and
its data, the differences among measured power weights using
different application programs on a workstation are insignifi-
cant. The power weight of a workstation is determined in this
paper by averaging a group of power weights from different
application programs which have reasonable memory alloca-
tions.

2.2. Bulk Synchronous Parallel Model

A typical message-passing NOW parallel program is coarse
or medium grained and consists of one process per workstation

on a fixed number of workstations throughout execution. The
size of each process is generally similar. The process completes
after a number of iterations. In each iteration, phases of
local computation alternates with phases of communications
and synchronizations. This programming model is called Bulk
Synchronous Parallel model (BSP). The basic structure of the
model is as follows:

Loop

simultaneous tasks for local computation;
communications for data exchange or

synchronization for critical sections;
barrier;

end Loop

We study the scheduling of this type of applications, and
assume that no process migration occurs during the execution
of applications.

3. SELF-COORDINATED LOCAL SCHEDULING

3.1. Rationale of Power Preservation

In order to design an effective scheduling scheme for both
parallel and local jobs on NOWs, two issues must be well
addressed: how to coordinate the simultaneous execution of
processes of a parallel job, and how to manage the interaction
between parallel jobs and local user jobs. We address these two
issues together by explicitly dividing the computing power of
a workstation into two parts: one preserved for running local
jobs, and the other preserved for parallel ones. This voluntary
power division is reasonable based on two facts:

• A networked workstation is no longer a private resource
of its local user. Rather, it is often shared by other users and
jobs.

• The user of a parallel job may be the local user of a
workstation and needs distributed resources.

In addition, the explicit power preservation has two advan-
tages:

• The performance of both local and parallel jobs is
guaranteed. When they coexist, a certain amount of power
is guaranteed to each of them. Meanwhile, parallel jobs and
local jobs can use each other’s free cycles if they are available.

• On a heterogeneous NOW, proper power preservation
based on power weight in each workstation may ensure that
parallel processes across workstations proceed at a certain pace
without global coordination. If they are started simultaneously,
coscheduling can be achieved as if they ran on a virtual
“homogeneous” NOW.

We call this schemeself-coordinated local scheduling.

COORDINATING PARALLEL PROCESSES ON NOWS 127

3.2. Power Preservation for Parallel Jobs

A key issue of the scheme is to preserve a proper portion of
the power in each workstation for parallel jobs. In particular,
each workstation’s power is used to serve three types of
jobs: the operating system kernel processes, local jobs, and
parallel jobs. Since the power used for kernel processes is
small compared with that used for the other two types, for
simplicity of discussion, we only consider the power used for
local and parallel workloads and include the kernel in the local
workload.

We assume that initially each local user of a workstation
specifies a ratio at which the power is divided between local
and parallel workloads. AssumeRuser(i) is the percentage of
power used for local user jobs in thei th workstation, andWi

is the power weight of thei th workstation; thus, the available
power weight for parallel jobs in thei th workstation, denoted
by ρi , is

ρi = Wi (1− Ruser(i)). (3.2)

In practice, because the task size of a parallel process
on each workstation is normally similar, the bottleneck of
a parallel job execution is the relatively slowest workstation
which offers the smallest power weight in the NOW. Thus, the
preserved power weight for parallel jobs in each workstation
is determined by the minimum available power weight for
parallel jobs among all the workstations

ρ = minm
i=1 ρi , (3.3)

where m is the number of workstations in the system. The
self-coordinated local scheduling scheme on a heterogeneous
NOW can be outlined as follows:

1. Determineρ, the available power weight for parallel
jobs in a NOW.

2. Start the execution of parallel processes on workstations
simultaneously.

3. The local scheduler in workstationi allocatesρ/Wi of
its power to its parallel process.

Using this scheme, the same amount of processing power
would be used by each workstation for executing its parallel
process. The equivalent preserved power in each workstation
for a parallel job simulates the execution of that job in a
dedicated virtual homogeneous system. On the other hand,
because the processing power ini th workstation used for local
workloads isWi − ρ, which is equal to or greater than what
the local user expects (Wi ×Ruser(i)), the performance of local
jobs is guaranteed.

We show how a coordination is achieved as follows. Recall
the BSP model discussed in Section 2: if the local scheduler
can ensure that all computations finish within a reasonable
time, all possible communication and synchronization activi-
ties following the computation will be coordinated. Here we
temporarily use an application program dependent parameter

for the local scheduler, the size of computations, denoted by
Size, which is measured by the number of floating point op-
erations. For a given power of a workstation measured by the
number of floating point operations per second, the time to
finish a computation on the relatively slowest workstations is

ts = Size

Pow(s)× (1− Ruser(s))
, (3.4)

wherePow(s) is the power of the slowest workstation; and the
time to finish a computation on workstationi is

ti = Size

Pow(i)× (1− Ruser(i))
, (3.5)

wherePow(i) is the power of workstationi (i = 1, . . . , m,
and i 6= s). If a time slice based scheme is used in the lo-
cal scheduler of each workstation, the number of time slices
needed to finish the computation on the slowest workstation is

Nslice(s) = ts
δs
, (3.6)

whereδs is the length of a time slice in the slowest worksta-
tion; and the number of time slices used to finish a computa-
tion of the same size on workstationi is

Nslice(i) = ti
δi
, (3.7)

where δi is the length of a time slice in workstationi , and
i = 1, . . . , m. Since the slowest workstation is the bottleneck
of parallel jobs, if all the computations in other workstations
finish within the timets in each loop, the performance would
be optimal and equivalent to that in a dedicated NOW using
coscheduling. However, withints, there arets/δi time slices
available in workstationi , which is larger thanNslice(i). This
means that all workstations except the slowest one have extra
time slices, which may be used by local processes. Because
workstations is the bottleneck, it finishes the parallel process
at last by ts. It is not necessary for the process on work-
station i to be finished beforets. We may evenly distribute
theseNslice(i) time slices for the computation of its parallel
process overts/δi . Therefore, if one time slice is guaranteed
to be given to the parallel process in workstationi within
ts/(δi Nslice(i)) = ts/ti time slices periodically, it is ensured
that by the end ofts, the computation of its parallel process will
finish. Consequently, the computation of each parallel process
across the NOW is finished neither too fast nor too slow, just
beforets. Coordination is achieved.

By (3.4) and (3.5), we further obtain the execution pace in
each workstation for parallel processes:

ts
ti
= Pow(i)× (1− Ruser(i))

Pow(s)× (1− Ruser(s))
= ρi

ρ
. (3.8)

The execution pace in (3.8) can be self-determined, and is
workstation computing power dependent rather than applica-
tion program dependent.

128 DU AND ZHANG

TABLE I
Process Priority Distributions

Class Ranks Management

RT 100—159 fixed

SYS 60—99 fixed

TS 0—59 dynamic

4. POWER PRESERVATION ON SVR4

Unix System V Release 4 (SVR4) [9] is a powerful and
open operating system. We select SVR4 as the target operating
system to discuss how to preserve power and implement the
scheme in a commodity operating system.

The scheduling policy of SVR4 is time-sharing and priority-
based. The processes are classified into four classes: system
(SYS), real-time (RT), time-sharing (TS), and interactive (IA).
Under each class, a scheduling policy is defined. Because TS
and IA share the same policy, there are actually three policies/
classes in SVR4. Associated with each class is a contiguous
set of priority ranks of integer numbers, which is shown in
Table I.

The priority ranks of SYS and RT processes are fixed
during their lifetimes, while those of TS are changed
dynamically for the sake of fairness and efficiency. Another
table in SVR4, called thetime-sharing dispatcher parameter
table (ts_dptbl) describes TS priority changes. Table II
gives an example of it. There are five columns in ts_dptbl:
quantum, tqexp, slpret, maxwait , and lwait .
Column rank is the comment column and lists the priority
ranks. Each line describes how the priority of a process at this
rank changes with time and events.Quantum specifies the
length of the time slice allocated to processes at this rank. If
it is used up,tqexp usually gives a lower priority rank and
a larger time quantum to this process.Slpret is the priority
rank of a process after it returns from sleeping. Usually, a
process returned from “sleeping” is assigned a higher priority
rank than its original rank. If a process has waited for the
CPU awhile (longer thanmaxwait), a higher priority rank,
given in lwait , is assigned to this process to prevent it from
starvation.

Processes of RT and SYS types should be executed more
urgently than TS processes and parallel jobs, and they are
usually given higher fixed priorities. To preserve power in each
workstation using SVR4, we focus on how to allocate

TABLE II
Dispatcher Parameter Table

Quantum tqexp slpret maxwait lwait rank

200 0 50 0 50 0

· · · · · ·
20 49 59 32000 59 59

TABLE III
Priority Rank Redistribution

Class Ranks Management

RT 100 +N—159 + N fixed

SYS 60 +N—99 + N fixed

PJ1 60—59 +N dynamic

TS 0—59 dynamic

PJ0 −N— −1 dynamic

computing power among traditional TS processes and paral-
lel jobs.

We first extend the process classification of SVR4 by adding
a new class called parallel job (PJ). All processes of parallel
jobs are of this class. The priority ranks as numbers are
extended to±N, whereN is a given positive integer number
(N ≥ 1). The priority ranks of PJ have two separate sets of
contiguous numbers. The lower set, defined as PJ0, ranges
from −N to −1, and the higher set, defined as PJ1, ranges
from 60 to 59+ N. The new priority distribution is shown in
Table III. As listed in Table III, PJ has two types of processes:
those within PJ1 and those within PJ0. The priority ranks of
PJ1 processes are higher than that of any TS and PJ0 processes,
while the priority ranks of PJ0 processes are lower than that
of any TS and PJ1 processes.

The priority ranks of PJ processes could be changed dynam-
ically based on a revised ts_dptbl table, called thetime-sharing
and parallel job dispatcher parameter table(tspj_dptbl). This
table is a direct extension to the original SVR4’s ts_dptbl,
where new lines are added to represent new priority ranks in-
troduced by class PJ. Another difference between ts_dptbl and
tspj_dptbl is the time unit for columnmaxwait . In SVR4,
the unit is one second. In contrast, we use a smaller unit (ms)
as the unit of waiting time. Table IV gives an example of
tspj_dptbl withN = 1.

The changes of priority ranks for PJ processes deployed in
tspj_dptbl follow the two rules:

• If the priority rank of a process, defined as a quantitative
value,pri , is within class PJ0, and the process has waited CPU
for awhile (maxwait), its priority rank is increased to class
PJ1, by setting the priority topri + 61;

TABLE IV
New Dispatcher Parameter Table

Quantum tqexp slpret maxwait lwait rank

500 −1 −1 150 60 −1 (PJ0)

200 0 50 1000 50 0

· · · · · ·
20 49 59 1000 59 59

50 −1 60 200 60 60 (PJ1)

COORDINATING PARALLEL PROCESSES ON NOWS 129

• If the priority, pri , of a process is within class PJ1 and
has finished its time quantum (quantum), its priority rank is
decreased to class PJ0, by setting the priority topri − 61.

If workstationi preservesρ/Wi power weight for a parallel
process, whereρ is the preserved power in the system, andWi

is the power weight of workstationi , this preservation can be
done by setting up the following parameters in table tspj_dptbl.
We denote the minimum time quantum for processes of all
priority ranks asMin q. The power preservation for that
process can be achieved by assigning the process’s priority
rank initially to −1, and assigning rank 60’s (PJ1)quantum :

quantum= Min q; (4.9)

and assigning rank−1’s (PJ0)maxwait :

maxwait= (Wi /ρ − 1)×Min q. (4.10)

By loading the tspj_dptbl table (replacing the original
ts_dptbl) at boot time, we may implement the scheme easily
in SVR4.

5. SIMULATION AND PERFORMANCE EVALUATION

5.1. Simulator

To evaluate and analyze the performance of parallel and
local jobs under the self-coordinated scheduling scheme, we
designed and developed a simulator to perform event-driven
simulation, where NOW parameters, local job events, parallel
job events, and scheduling policies are input, and simulated
execution times and overhead times, such as context switch,
are output.

We selected 7 types of Sun SPARCstations with different
computing powers. The 7 types cover a large range of
processing capabilities of Sun workstations with a single
processor. We measured the power weight of each type
by running 4 NAS benchmark applications which will be
discussed later. All the measurements were repeated 10 times
in a dedicated environment. The power weight for one
workstation was finally calculated by averaging all the power
weights measured by the four applications. Table V gives the
average power weights of the 7 types of workstations, which
were used in the simulator to simulate the heterogeneity of
workstations. We give each type a letter such as A or B for
simple reference. A network was used to connect workstations.
The context switch cost was assumed as 200µs.

We selected four programs from the NAS parallel bench-
marks [3]: EP (Embarrassing Parallel), MG (Multigrid), IS
(Integer Sort), and LU (LU Decomposition) as the example
applications. All of them followed the BSP model. However,
the four applications were different in the computation size
at each iteration and the communication patterns. The parallel
job events were characterized by their computation patterns,
the sizes of each computation, communication patterns and
amount, the number of iterations, process arrival times, and
the number of processes. Our simulator was driven by the
events characterized from the four parallel applications.

In the experiments, two kinds of local workloads were
taken into account. The first type only consumed CPU cycles
for computations. This type of local job event was simply
characterized by starting times and execution lengths. The
second was a more realistic type where computations and
system calls were interleaved. The priority of a process may be
changed when it invokes system calls; thus, system calls affect
the performance of the whole system. For this type of local
job event, the distribution of the system calls in the execution
times of the process was an additional parameter that was
considered. We assumed the system calls were exponentially
distributed in the lifetime of each local process.

The scheduling policies in the simulator included the SVR4
local scheduling, coscheduling using the matrix scheme in
[13], and the self-coordinated local scheduling scheme based
on SVR4 which is discussed in Section 4.

5.2. Precision of Power Preservation

Using the simulator, we first studied the effects of the
quantum in PJ1 andmaxwait in PJ0 on the precision of
power preservation of a workstation.

We first give the definition of the precision of power
preservation. LetT be the execution time of a parallel process
on a dedicated workstation. Ifδ portion of the power of
a workstation is preserved for the process, and the process
finishes inT ′ time, then the power preservation precision is
defined by (

1−
∣∣∣∣1− δT ′T

∣∣∣∣)× 100%.

In these experiments, three local processes,L1, L2, L3,
and one parallel processP were executed in a workstation.
We preserved 1/3 power for processP. The size ofP was
set to 2000, 1000, and 200 ms, while the sizes of three
local processes were set long enough to be finished afterP
terminated.

TABLE V
The Average Power Weights of 7 Types of Sun Workstations

S20-HS21 S20-HS11 S5-85 S20-50 S5-70 S10-30 Classics

A = 1.0 B = 0.790 C = 0.562 D = 0.461 E = 0.436 F = 0.374 G = 0.239

130 DU AND ZHANG

The values in the default SVR4 ts_dptbl were used for
local processes in table tspj_dptbl. The initial priority of
P was assigned to PJ0. The ratio ofmaxwait in PJ0 to
quantum in PJ1 was 2 based on the power preservation
rules (4.9) and (4.10). We observed the precision of the power
preservation changed not only as the time quantum forP (the
quantum in PJ1) changed but also as the computation size of

FIG. 1. The power preservation precision changes at different time quan-
tums.

P changed. (The quantum ofmaxwait in PJ0 is dependent
on quantum in PJ1). Figure 1 reports from top to bottom the
precision variance as thequantum of PJ1 changed when the
computation size ofP is 2000, 1000, and 200 ms, respectively.
In each curve, generally, the precision decreases with the
increase ofquantum . In the top curve, whenquantum varies
from 5 to 400 ms, the power preservation precision remains
approximately at 95%, which is quite precise. However, in
the middle curve, whenquantum approaches 300 ms, the
precision decreases to nearly 88%. The worst case occurs in
the bottom curve where the computation size ofP becomes
200 ms. In this case, only those values ofquantum which
are less than 60 ms can provide the precision within 90%.
The precision reduces to 60% whenquantum equals 400 ms.
This can be explained as follows. For a given computation,
the size ofquantum determines the number of slices the
computation is divided into. The more slices a computation is
divided into, or the larger the ratio between the computation
time to quantum , the more precise the power preservation.

5.3. Power Preservation Effects on Local Processes

Preserving power for one process will affect the perfor-
mance of other processes. The more it is preserved, the greater
is the effect on other processes. We quantitatively evaluate this
effect in this section.

We executed four processesL1, L2, L3, and P, with
the same computation size (4000 ms) in a workstation. We
preserved power for the processP only and evaluated its effect
on the performance of three other processes. We setquantum
of PJ1 to 40 ms in order to preserve power varying from 1/
3, 1/2, 2/3, and 3/4 forP, respectively. Figure 2 shows the
slowdown factors of the four processes, which are relative to
the execution time of these processes scheduled by the SVR4
scheduler.

FIG. 2. The power preservation effects on local processes.

COORDINATING PARALLEL PROCESSES ON NOWS 131

When 1/3 power was preserved forP, L1 increased its
execution time by 10%,L2 and L3 had only about 2%
increase (L1 had twice more system calls thanL2 and L3).
The execution time ofP decreased by 18%. When more power
was preserved, the execution times ofL1, L2, andL3 increased
slightly, but P decreased quickly. For example, the 3/4 power
preservation makes the execution time ofP decrease by 51%,
and that ofL1, L2, and L3 increase by 20, 16, and 19%,
respectively.

These experiments show that the power preservation slightly
affects the performance of the other processes, but significantly
improves the performance of the process for which the power
is preserved. Thus, if we preserve some power for parallel
processes, the performance of local processes may decrease as
the local user expects (since the user allows the power to be
used by parallel processes), but not too much. Their response
time will not increase greatly.

In the experiments, we also evaluated the context switch
overhead. Because we fixedquantum to be 40 ms, and
increased the preserved power, the number of context switch
increased. Compared with the SVR4 scheduler, the context
switch cost increased by 47% to 88% when the preserved
power changed from 1/3 to 3/4. However, the actual context
switch times were only 50.8 and 65.2 ms for 1/3 and 3/4 power
preservation, respectively, which accounted for about 1.3 and
1.6% of the computation time (4000 ms).

5.4. Self-Coordinated Local Scheduling for Parallel Jobs

We next studied the performance of parallel jobs scheduled
by the self-coordinated scheme on NOWs. We evaluated three
factors affecting the performance of parallel jobs:

1. the number of local jobs,
2. different NOW systems, and
3. local jobs’ system calls.

We did extensive simulation to evaluate the above effects.
Because of space limit, we only report some major results in

the paper. We used 8 workstations of type A, B, C, D, E, F
and G to form two different NOW systems

NOW1: A+B+2C+2D+2E,

NOW2: A+B+C+2D+E+F+G.

We preservedρ = 0.2 power weight for both NOW1 and
NOW2 to run parallel jobs. Since the fastest workstations in
both systems were identical (both are A), the preserved powers
were also identical (this will be verified by the following
experiments on NOW1 and NOW2). Workstations A, B, C,
D, E, F and G preservedρ/Wi of its total power for parallel
jobs, that was, 20, 25, 36, 43, 46, 54, and 84%, respectively.
We set 40 ms toquantum of PJ1.

The four parallel program events were used. The compu-
tation sizes in the following discussions are represented by
the execution times on the fastest workstations. The execution
times on other workstations are determined correspondingly
based on their power weights. Two kinds of local processes
were considered: those with system calls and those without
system calls. The system calls were assumed to be exponen-
tially distributed and occurred at the rate of about 40 times in
4000 ms. In the experiments, we also changed the number of
local processes from 1 to 8 to see its effect on the performance
of parallel jobs.

Figures 3, 4, 5, and 6 report the simulated execution
times of EP, MG, IS, and LU on NOW1 (left) and NOW2
(right), respectively. The execution times are broken down into
computation, communication, synchronization, and context
switch, which are calculated by averaging their timing values
across all workstations. For a given number of local processes,
we also evaluated those with system calls (left bar) and those
without system calls (right bar).

The EP program was composed of one computation fol-
lowed by all-to-one communication. Figure 3 gives the exe-
cution times of an EP with its computation size of 4000 ms

FIG. 3. EP on NOW1 (left) and NOW2 (right).

132 DU AND ZHANG

FIG. 4. MG on NOW1 (left) and NOW2 (right).

and communication amount of 1000 bytes. We first examine
the effects of local processes with or without system calls on
NOW1. When there was only one local process, the computa-
tion time of EP was reduced by 15% when there were system
calls. This is because system calls may sometimes block the lo-
cal process, thus more CPU cycles than preserved may be used
by EP. However, when more than one local process existed, the
difference between these two kinds of local workloads (with
or without system calls) became insignificant. The overall per-
formance (execution time) was also affected by this factor, but
not much. Synchronization time is determined by the balance
of the execution times of the computation because the fast
processes have to wait for slow processes to go through. The
synchronization waiting time decreased from 2881 to 223 ms
when the number of local processes increased from 1 to 8.
The execution time remained the same (20250 ms). This is
because the earlier a process finishes, the more waiting times
it will spend for the barrier. Context switch overhead con-
tributed about 0.6% (121 ms) to the overall execution time.

Running EP on a different NOW (NOW2) resulted in very
similar performance.

All other three types of parallel programs performed well
under the self-coordinated scheduling scheme as well. Figure
4 presents the performance of MG which was characterized
by 9 computations separated by transpose communications.
The computation sizes were 4000, 2000, 1000, 500, 250, 500,
1000, 2000, and 4000 ms. A total amount of 17 Mbytes of
messages were sent from point to point. In the IS program,
there were mainly three computations of 1000, 4000, and 2000
ms, respectively. The communication pattern was all-to-all,
and the point-to-point communication was 10 Mbytes. Figure
5 presents the result of this application. The LU application
in Fig. 6 was characterized by six computations with lengths
of 8000, 4000, 2000, 1000, 500, and 250 ms, respectively,
and neighbor communications transmitting 700 Kbytes of
messages to its neighbor processes.

In summary, we find from the simulation that (1) the number
of local jobs do not affect the parallel jobs significantly. In

FIG. 5. IS on NOW1 (left) and NOW2 (right).

COORDINATING PARALLEL PROCESSES ON NOWS 133

FIG. 6. LU on NOW1 (left) and NOW2 (right).

other words, the performance of parallel jobs is guaranteed
no matter whether workstations are lightly or heavily loaded
by local jobs. (2) Different combinations of workstations do
not affect the execution performance of parallel jobs if the
preserved powers are the same, and the fastest workstations
are identical. (3) The behaviors of local jobs (with or without
system calls) affect very slightly the effectiveness of the
scheme.

Finally, we compared the performance of the four programs
using self-coordinated scheduling with that using coschedul-
ing. The execution times of the EP and IS programs using
self-coordinated local scheduling are very close to that using
coscheduling, differing by a factor of only 1.2%. The execu-
tion times of MG and LU using the self-coordinated scheme in-
creased about 1.7% in comparison with the times of coschedul-
ing. The slowdown comes from context switch overhead and
power preservation precision problem we discussed in the pre-
vious subsection.

6. RELATED WORK

Using direct simulation, Arpaciet al. [1] evaluate effects
of interactions between parallel jobs and local user jobs.
They also study feasibilities of process migrations in order
to avoid the interaction. Another proposal for the interaction
is discussed in [11], which allows parallel jobs to stay in a
workstation, but run at the lowest priority when local user
jobs exist. This method avoids the process migration, but does
not guarantee the performance of parallel jobs.

Several variations of coscheduling have been proposed to
reduce the overhead of coscheduling. For example, Sobalvarro
and Weihl [14] propose a demand-based coscheduling policy
to schedule parallel processes simultaneously only if they
communicate. There are two options: dynamic coscheduling
and predictive coscheduling. When parallel processes are
dynamically coscheduled, an arriving message will cause the

targeted process at that node to start running. Predicative
coscheduling uses the recent history of communications among
processes to predict coming communication activities of each
process. When a process is scheduled on one node, an attempt
is made to schedule its correspondents on other nodes for
simultaneous execution.

Dusseauet al. [7] address the scheduling issue from another
perspective. In their study, they find that local scheduling is
a feasible alternative to coscheduling for parallel applications
with barrier synchronization. They propose a blocking algo-
rithm, called the two-phased fixed-spin policy to avoid the un-
necessary context switching and to increase the possibility of
running several parallel processes simultaneously at their syn-
chronization points. Coscheduling efforts are made by spinning
at the blocking point for a specific period of time through us-
ing a revised SVR4-based local scheduler.

Atallah et al. [2] redefine coscheduling from an effective
speedup perspective. In their study, they first give a concept
called “duty cycle,” which is defined as the ratio of cycles
a workstation commits to local jobs to the number of cycles
available for parallel processes. Based on this and the earliest
starting time at each workstation, they present an algorithm to
select a subset of workstations from a given set to maximize
the effective speedup.

Our scheme is also different from real-time systems. As we
discussed before, a process of a parallel job is not a real-time
process. It should be executed in the time-sharing mode and
be neither fast nor slow but just to catch up with the slowest
process to have them reach the communication phase on time.
In contrast, the real time process has the highest priority to
run. It will affect the local user response time significantly,
which violates the resource sharing principle between local
user jobs and parallel jobs. The difference between real-time
scheduling and power preservation is that for the first, the
scheduler allocatesall CPU power to the real time process
while for the second, it allocates only the preservedpart of its
CPU power to the process.

134 DU AND ZHANG

In addition, power preservation is more flexible than the
real-time mode. When there are local jobs, it preserves
a certain amount of power for parallel jobs and gives the
remaining to local jobs. Consequently, the performance of
local jobs is predictable. When there are no local jobs, all
power is allocated to parallel jobs. As we discussed in Section
4, if no time-sharing process exists, PJ0 will be in the highest
priority. The parallel process is executed even when it has
PJ0 priority. The tspj_dptbl table indicates that it keeps the
same priority after it runs out of its time slice. However,
when some local user processes are available, their priorities
are higher than that of PJ0. They interrupt the execution of
parallel processes and run. So the system resumes to its power
preservation state. Similarly, if there are no parallel jobs, the
TS processes are executed as if there were no any change to
SVR4, and use all the CPU power to proceed.

7. CONCLUSIONS

Our performance evaluation results indicate that to effec-
tively schedule parallel processes on a heterogeneous NOW,
we should consider both architecture information and system-
wide characteristics. Using specific heterogeneous NOW infor-
mation such as the power weight and the preserved power for
parallel jobs in each workstation, and an abstract application
program model, we propose the self-coordinated local sched-
uling scheme. This method coordinates the execution pace of
a parallel job using the local scheduler based on coschedul-
ing principles. Simulation results show its effectiveness. The
power preservation in each workstation makes a fair power
distribution to guarantee the performance of both local and
parallel jobs and achieves the global coordination by local
scheduling, which reduces the cost of coscheduling in NOWs
significantly. The scheme can be applied to schedule multiple
parallel jobs as well.

The scheme can be extended in many directions. One
direct extension is that the preserved power may change from
time to time based on requirements of local and parallel job
users and the utilization of workstations in NOWs. We are
studying these variants. Besides computing power, there are
some other factors such as memory and I/O capability which
need to be modeled and taken into considerations. We are also
investigating the communication interaction between local user
jobs and parallel jobs at a lower network level [6] and applying
the scheme to wider area NOW scheduling applications.

ACKNOWLEDGMENTS

We thank our colleagues Jon Weissman and Neal Wagner at the University
of Texas at San Antonio for reading the paper and making helpful comments.
We appreciate Andrea Dusseau at University of California, Berkeley, and
Evangelos Makatos at FORTH in Greece for reading an early version of
this paper and for their constructive suggestions. We thank the anonymous
reviewers for their comments and suggestions.

REFERENCES

1. Arpaci, R. Het al. The interaction of parallel and sequential workloads
on a network of workstations.Proceedings of the 1995 ACM SIGMET-
RICS Conference on Measurement and Modeling of Computer Systems.
May 1995, pp. 267–278.

2. Atallah, M. J.et al. Models and algorithms for co-scheduling compute-
intensive tasks on a network of workstations.J. Parallel Distrib. Comput.
16 (1992), 319–327.

3. Bailey, D. et al. The NAS parallel benchmarks.Int. J. Supercomputer
Appl. 5, 3 (Fall 1991), 63–73.

4. Crovella, M.et al. Multiprogramming on multiprocessors.Proceedings
of 3rd IEEE Symposium on Parallel and Distributed Processing.1991,
pp. 590–597.

5. Douglis, F., and Ousterhout, J. Transparent process migration: Design
alternatives and the Sprite implementation.Software Practice Exper.21,
8 (1991), 757–785.

6. Du, X., Dong, Y., and Zhang, X. Characterizing communication in-
teractions of parallel and sequential jobs on networks of workstations.
Proceedings of IEEE Annual International Conference on Communica-
tions.June 1997, pp. 1133–1137.

7. Dusseau, A. C., Arpaci, R., and Culler, D. Effective distributed schedul-
ing of parallel workloads.Proceedings of the 1996 ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Systems.May
1996, pp. 25–36.

8. Feitelson, D. G., and Rudolph, L. Gang scheduling performance benefits
for fine-grain synchronization.J. Parallel Distrib. Comput.16, 4 (Dec.
1992), 306–318.

9. Goodheart, B., and Cox, J.The Magic Garden Explained: The Internals
of Unix System V Release 4.Prentice-Hall, New York, 1994.

10. Gupta, A., Tucker, A., and Urushibara, S. The impact of operating
system scheduling policies and synchronization methods on the perfor-
mance of parallel applications.Proceedings of the 1991 ACM SIGMET-
RICS Conference.May 1991, pp. 120–132.

11. Krueger, P., and Babbar, D. Stealth: A liberal approach to distributed
scheduling for networks of workstations. Technical Report, OSU-
CISRCI/93-TR6. Ohio State University, 1993.

12. Nichols, D. Using idle workstations in a shared computing environment.
Proceedings of the 11th ACM Symposium on Operating Systems Princi-
ples.1987, pp. 5–12.

13. Ousterhout, J. Scheduling techniques for concurrent systems.Proceed-
ings of the 3rd International Conference on Distributed Computing Sys-
tems.Oct. 1982, pp. 22–30.

14. Sobalvarro, P. G., and Weihl, W. E. Demand-based co-scheduling of
parallel jobs on multiprogrammed multiprocessors.Proceedings of the
IPPS’95 Workshop on Job Scheduling Strategies for Parallel Processing.
1995, pp. 63–75.

15. Zhang, X., and Yan, Y. Modeling and characterizing parallel comput-
ing performance on heterogeneous NOW.Proceedings of the Seventh
IEEE Symposium on Parallel and Distributed Processing.Oct. 1995,
pp. 25–34.

XING DU is a post-doctoral researcher in the Department of Computer
Science at the College of William and Mary. He received his B.S., M.S.,
and Ph.D in computer science from Nanjing University, P.R. China in 1986,
1989, and 1991, respectively. Since 1991, he has been on the computer science
faculty at Nanjing University. His research interest includes distributed/parallel
processing, performance evaluation, and human–computer interaction.

XIAODONG ZHANG is a professor of computer science at the College of
William and Mary. He received his B.S. in electrical engineering from Beijing

COORDINATING PARALLEL PROCESSES ON NOWS 135

Polytechnic University in 1982, and the M.S. and Ph.D in computer science
from the University of Colorado at Boulder in 1985 and 1989, respectively.
His research interest is primarily in the areas of parallel and distributed
computation, computer system performance evaluation, and high performance
scientific computing. Before joining William and Mary, he was on the

computer science faculty at the University of Texas at San Antonio, where
he established and directed the High Performance Computing and Software
Laboratory. He is on the Editorial Board ofIEEE Transactions on Distributed
Systemsand is currently chairing the Technical Committee on Supercomputing
Applications of the IEEE Computer Society.

Received August 27, 1996; accepted August 21, 1997

