
In the race to improve cache performance,
many researchers have proposed schemes
that increase a cache’s associativity. The

associativity of a cache is the number of
places in the cache where a block may
reside.1 In a direct-mapped cache, which has
an associativity of 1, there is only one location
to search for a match for each reference. In a
cache with associativity n—an n-way set-
associative cache—there are n locations (see
the boxes on definitions and set-associative
caches). Increasing associativity reduces the
miss rate by decreasing the number of con-
flict, or interference, references.

The column-associative cache4 and the pre-
dictive sequential associative cache5 seem to
have achieved near-optimal performance for
an associativity of two. Increasing associativ-
ity beyond two, therefore, is one of the most
important ways to further improve cache per-
formance. 

We propose two schemes for implement-
ing associativity greater than two: the sequen-
tial multicolumn cache, which is an extension
of the column-associative cache, and the par-
allel multicolumn cache. For an associativity
of four, they achieve the low miss rate of a
four-way set-associative cache. Our simula-
tion results show that both schemes can effec-
tively reduce the average access time. With a
4-Kbyte cache and a miss penalty of 20
cycles, the improvements in average access
time over a direct-mapped cache were 9.8%
for the SMC and 10.8% for the PMC. The
improvement of the SMC in average access
time reached 22.4% when the associativity
was eight and the miss penalty increased to
100 cycles. The two schemes are effective for
a wide range of cache sizes, from 1 to 128
Kbytes.

Advantages and disadvantages
of high associativity

Hill and Smith6 reports that using a two-
way set-associative cache instead of a direct-
mapped cache reduces misses by about
30%. Increasing associativity, however, also
increases hit access time. This generally
leads to a longer cycle time because in most
microprocessors access to the cache lies in
the critical path. There are two reasons for
the longer hit access time:

• The multiplexing logic that selects the
correct data point from the referenced
set causes a delay.

• Only after completing tag checking
does the multiplexing logic know
which data point to select and dispatch
to the CPU. Therefore, it is difficult or
impossible to implement a speculative
dispatch of data to the CPU (or opti-
mistic execution2).

In contrast, a direct-mapped cache re-
quires no such multiplexing logic; the cache
system can speculatively dispatch data to the
CPU as soon as it reads the data.

Higher associativity is important when the
miss penalty is large and when memory and
memory interconnect contention delay are
significant or sensitive to the cache miss rate.
Both situations may occur with shared-mem-
ory multiprocessors.1 A uniprocessor also may
have a large miss penalty when it has only a
first-level cache and the speed gap between
the processor and the memory is large. 

Increasing associativity also has the advan-
tage of reducing the probability of thrashing.
Repeatedly accessing m different blocks that
map to the same set will cause thrashing. A
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cache with an associativity of n can avoid such thrashing if n
≥ m and LRU (least recently used) replacement is guaranteed.

Researchers have proposed various cache designs that aim
at increasing associativity without sacrificing the advantages
of a direct-mapped cache (see the cache schemes box, next
page). These designs succeed in retaining the low cycle times
of a direct-mapped cache while achieving miss rates com-
parable to those of two-way set-associative caches. Agarwal
and Pudar also shows that the column-associative cache can
overcome secondary thrashing, the main drawback of the
hash-rehash cache.4 None of these designs, however, can
keep cycle times low for associativity greater than two.

Multicolumn caches
Both the SMC and PMC cache schemes use the multiple

MRU block technique and the LRU replacement algorithm.
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Definitions and variables
Throughout this article, we use the following defini-

tions and variables: 
A location is a place in a cache where a block may

reside. This definition does not restrict how to deter-
mine locations or how to search them for the desired
data when servicing a reference.

A miss penalty is the time required to service a miss
from lower-level memory.

The average access time for a cache is the average
number of cycles required to complete a reference.

If C is the size of a given cache in blocks, we define
c to be the integer such that C = 2c. Similarly, for asso-
ciativity n, n′ is the integer such that n = 2n′.

We use x for the block address of a reference.

The recently proposed column-associative cache, the
predictive sequential associative cache, and others are gen-
erally considered to be improvements of direct-mapped
caches, and they do not address the implementation of
higher associativity. Here, we give a systematic and gen-
eralized discussion of the implementation of associativity.

In a traditional n-way set-associative cache, a data array
holds data blocks and a tag array holds their associated
tags, which are all organized into n banks. There is a one-
to-one correspondence between data banks and tag banks.
On a reference, the cache system uses the lower c − n′
bits of the block address to select a row in the tag array of
n tags and a row (of the same row number) in the data
array of n data items. The system reads the n tags simul-
taneously and compares them against the tag bits of the
address in parallel. At the same time, it reads n candidate
data items, one of which a multiplexer later selects using
the outcome of the tag comparisons.

In an n-way set-associative cache, mapping functions
determine the n candidate locations, which can be any
blocks in the cache, that make up a set. These functions,
together with the search approach determining how to
examine these locations, distinguish the various imple-
mentations of associativity. During a search, the relation-
ships and orders among these locations are open.

Mapping functions
Because the mapping function lies in the critical path

of cache accesses, it must work as quickly as possible.
Therefore, most cache designs use bit selection as the map-
ping function. Bit selection works by conceptually divid-
ing the cache into n equal banks, each of size 2c − n′. It then
uses the lower c − n′ bits of the block address as an index
to select one candidate location from each bank.

This design uses the same mapping function for each
of the banks if the blocks are all relatively addressed, and
this mapping requires no extra time. In contrast, some
cache designs, such as the skewed-associative cache,2 use

different mapping functions for different banks as a way
to increase associativity.

Search approach
The search approach determines how the cache system

examines candidate locations for a match when servicing
a reference. There are two main kinds of search approach:
parallel and sequential.

Parallel search. This approach examines all locations
in parallel. While the cache system reads and compares
the tags, it also reads all the candidate data; the multiplexer
later selects one data point if the reference turns out to be
a hit. Each location in the set is of equal importance.
Traditional implementations of set-associative caches use
this search approach. These implementations organize
both tag memory and data memory into multiple banks.

Sequential search. A sequential search examines loca-
tions one by one until it finds a match or exhausts all the
locations. This approach organizes both tag memory and
data memory into a single bank. To implement an asso-
ciativity of n, however, the tag memory and data memo-
ry are divided into n banks.

With a sequential search, the cache access time for a hit
may vary for different references, depending on how many
locations the cache system examines before it finds a hit.
We call a reference an ith hit if the system finds a match
in the ith location; its access time is the ith hit time. The
ratio of the number of ith hits to the total number of hits
is the ith hit rate. We call a reference the ith fetch if it turns
out to be a miss after the system examines i locations, in
which case the system must fetch a block from lower-level
memory. In addition, we say one location is more impor-
tant than another for a reference if the system is more like-
ly to find a hit in that location. Usually, the more recently
a location was accessed, the more important it is, due to
the temporal locality of processor reference streams. To
achieve the shortest average access times, the ith hit rates
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must be highest for small values of i. That is, the proces-
sor should make as many first hits as possible.

If the candidate locations are of similar importance for
each reference, or if the cache system examines a less
important location first, there will be little gain and even
some degradation in performance. Fortunately, not all can-
didate locations are of equal importance. Only one location,
the most recently used location, has distinguished impor-
tance. So and Rechtschaffen3 report that for an associativ-
ity of four, most of the hits to the cache happen to the MRU
locations for their traces. Our simulation produced a simi-
lar result. To ensure that most hits are first hits, the MRU
location should be the entry point for the search. Therefore,
in designing a sequential search approach, it is important
to know how to find the MRU location.

The cache system must determine the search order,
including the entry point, before a search begins. There
are two kinds of approaches to determine the search order:
mapping and swapping.

Mapping approach. This approach determines the search
order dynamically on a reference by using steering infor-
mation in a mapping table. The mapping will lengthen the

cache access cycle, however, if it uses the effective address
as the index to look up the steering information. This kind
of approach is not effective for first-level caches. If the
mapping can use as the index some other sources avail-
able at earlier pipeline stages, however, the steering infor-
mation may be available on time. Such an approach will
add no additional delay to the access cycle time, but
requires extra memory for the mapping table.

Swapping approach. This approach determines the
search order statically. In other words, it uses a fixed order
and assumes that the most recently used block is in loca-
tion 0, the second most recently used block is in location
1, and so forth. Performing appropriate swaps of blocks
after each reference can guarantee the correct order. This
approach is impractical for associativity larger than two,
however, if a complete order is to be maintained.

To reduce complexity and cost, designers can simplify
the search approach so that it only searches the most
important locations in a strict order of importance. It can
then search the remaining locations in an arbitrary order
if the performance degradation that the search causes is
acceptable.

Set-associative caches (continued)

Designers have proposed various schemes for improv-
ing cache performance. Most of the following use sequen-
tial search and have an associativity of two.

Hash-rehash cache
A hash-rehash cache7 uses two mapping functions to

determine the candidate locations. It uses bit selection,
however, to reduce the overhead. For a reference, the
cache system derives the address of the first location direct-
ly from the lower c bits of x and the address of the second
location by flipping the most significant bit of the derived
address. Most of the following cache schemes determine
candidate locations in this way.

The hash-rehash cache uses a sequential search. It tries
to keep the MRU blocks in the first location for references
by swapping blocks, examining the second location only
if the first probe is a miss. If the second probe is a hit, the
system swaps the contents in the two locations because
the second location now contains the MRU block. If the
second probe is a miss, the system moves the data in the
first location to the second location, which is the former
MRU block, and places the newly fetched block in the first
location.

Agarwal et al.7 found that the hash-rehash cache has a
higher miss rate than a two-way set-associative cache with
LRU replacement, and has an average access time similar
to that of a direct-mapped cache. The higher miss rate
results from the non-LRU replacement and the lack of an
index to filter out unnecessary probes.

Column-associative cache
The column-associative cache, proposed by Agarwal and

Pudar,4 improves the hash-rehash cache by adding a rehash
bit, which it uses to implement approximate LRU replace-
ment and to filter out unnecessary probes. In the column-
associative cache, each location has an associated rehash bit
that indicates whether it is a rehashed location. The cache
system sets the rehash bit for a location, marking it as a
rehashed location, when the system probes it second on a
reference. The column-associative cache differs in operation
from the hash-rehash cache only when the rehash bit of the
first location is set, which means both blocks in the set are
useless for the current reference. In this case, the system
does not probe the second location, and it replaces the block
in the first location with the newly fetched block and clears
the rehash bit.

Agarwal and Pudar found that the miss rate and average
access time of the column-associative cache are compara-
ble to those of the traditional two-way set-associative cache.

Predictive sequential associative cache
The PSA cache, proposed by Calder et al.,5 also uses bit

selection and a sequential search. This cache, however, uses
the mapping approach instead of the swapping approach
to determine search order. The steering bit table determines
the entry point for a search. The PSA cache reads the steer-
ing bit using a prediction index produced from predictive
sources available at earlier pipeline stages, so it determines
the search order when the cache is accessed. This approach
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Multiple MRU block technique. As we described in the
box on set-associative caches, the cache system usually
searches the candidate locations in a set in the order of impor-
tance. The MRU caches maintain only one order for each set.
This means that for any reference mapping into the set, the
search begins from the same entry point—the MRU location
for the set (see Figure 1a). Thus, they suffer from a low first
hit rate in some cases. For example, consider a long sequence
of references with an interval of d between the addresses of
each pair of consecutive references. If the sequence can fit
into a direct-mapped cache, subsequent references to any of
these locations will result in first hits. In an MRU cache with
block size b, however, 1/(b/d) of all the subsequent refer-
ences will be non-first hits. The worst case of b = d will have
no first hits; in fact, all hits will be the nth hits. The problem
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eliminates swapping without lengthening the cache access
cycle. Calder et al. examines four prediction sources: effec-
tive address, register contents and offset, register number
and offset, and instruction and previous references. The
effective address is usually impractical, however, especially
in a pipelined cache.

In addition to the rehash bit, which is similar to that of the
column-associative cache, the PSA cache uses the MRU bit
to implement a true LRU replacement. It uses the rehash bit
only to filter out unnecessary probes.

The PSA cache has the same miss rate as a two-way set-
associative cache. However, simulation results show that for
an 8-Kbyte cache, the PSA cache has a slightly longer aver-
age access time than the column-associative cache, unless it
uses the effective address as the prediction source.5 This is
due to the predictive nature of the PSA cache: sometimes
the prediction is incorrect. Calder et al. does not report per-
formances for other cache sizes or extend the PSA cache to
higher associativity.

MRU cache
Both Kessler et al.1 and Chang et al.8 propose cache

schemes that address associativity greater than two. Though
both are named the MRU cache, they differ significantly from
each other.

Kessler’s scheme uses a sequential search and determines
the search order with a mapping approach. The cache sys-
tem maintains an MRU list, indexing it with the effective
address, to give information on the search order. Because
the cache system must fetch the MRU information before
accessing the cache, either the cache access cycle is length-
ened or one more cycle is necessary to access the MRU list.
Therefore, Kessler et al. states that this scheme may not be
suitable for first-level caches.

Chang’s MRU cache, proposed for a multichip imple-
mentation of the cache in CMOS System/370, is an improve-
ment of the traditional four-way set-associative cache. This
cache uses a parallel search. It uses MRU information not to
determine the search order but to guide the speculative selec-

tion of data. When the cache system fetches the candidate
data items from data banks, it looks up the MRU table and
uses the MRU information to speculatively select the desired
data from the four candidates. Concurrently, it reads and
compares the tags. If the system selects the wrong data item,
it will detect the error on the next cycle and use the result
of the two-cycle backup access. This design also uses MRU
information in the address translation using a translation
look-aside buffer. Though Chang et al. reports that this
scheme reduces access time by 30 to 35 percent, this esti-
mation is for their multichip implementation.8 The reduced
access time is still larger than that of a direct-mapped cache
due to the multiplexing of data.

Both MRU cache schemes suffer from a serious drawback:
the performance of an MRU cache can often be worse than
that of a direct-mapped cache for long sequences of con-
secutive addresses, a common occurrence.4 In some extreme
cases, it is possible for all the hits to be the nth hits for an
MRU cache with an associativity of n. These may result in a
longer average access time when n is greater than two.

Skewed-associative cache
The previous schemes all increase associativity by increas-

ing the number of candidate locations in a set. In contrast,
the skewed-associative cache, proposed by Seznec,2 increas-
es associativity in an orthogonal dimension, using carefully
selected skewing functions instead of bit selection to deter-
mine candidate locations. Different mapping functions oper-
ate on different banks. This cache can reduce the possibility
of conflicts by mapping onto different sets a group of con-
flicting references that a traditional cache would map onto
one set. Seznec finds that the two-way skewed-associative
cache has a miss rate close to that of a four-way set-asso-
ciative cache.

The major disadvantages of the skewed-associative cache
are a longer cycle time and the mapping hardware necessary
for skewing. Seznec only reports performance for caches in
the range of 4 to 8 Kbytes.

Cache schemes (continued)
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here is that a block in a set may have different importance to
different references mapping into the same set, but the sin-
gle MRU search order for the set does not account for this.

We propose a multiple MRU block technique to solve this
problem. In our approach, as in a direct-mapped cache, the
major location is the location onto which a reference is
mapped. The other locations in the same set are nonmajor
locations for the reference. We classify references to one set
into different groups in terms of major locations, with each
group of references corresponding to one major location.
Maintaining an independent search order for each group of
references, instead of one search order for all, would optimize
performance. The MRU block is the most important one in a
search order, and the possibility that a reference will find a hit
in a location other than the MRU block is very small. Therefore,
we only keep information about multiple MRU blocks.

In our scheme, when the cache services a reference, the
major location for the reference serves as the entry point for the
search. We have multiple entry points, each corresponding to
a group of references (see Figure 1b). We use the swapping
approach to guarantee that the MRU block always remains in
the major location after a reference, though other data blocks
may later replace it. The system performs a single swap oper-
ation only when a nonfirst hit or a miss occurs. Therefore, in
most cases, no swap is necessary.

During swapping, the cache cannot respond to accesses
from the CPU. Hardware support will
reduce the time required to perform
swaps. We use the same hardware as
the column-associative cache does;
this consists primarily of an addition-
al buffer, and the cost is very small. A
swap requires, on average, only one
cycle. We have accounted for this one
cycle in our design and simulation.

With our multiple MRU block
approach, all hits for the above cases
of reference sequences will be first
hits, including the worst case.
Designers can also use this approach
to extend the original MRU caches or
other schemes for performance
improvement.

Sequential multicolumn cache.
The SMC is an extension of the col-
umn-associative cache. It uses a
sequential search approach starting
from the major location. Though the
nonmajor locations are much less
important than the major ones, we
find that the way the cache system
searches them significantly affects
cache performance. Our simulation
experiments indicate that a naive
sequential search of the nonmajor
locations will degrade performance
for higher associativity. Therefore,
we use a search index to improve
search efficiency.

A location in the set can only con-
tain a match for a reference if the
block in the location is loaded from
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Figure 2. Index for a set in a four-way SMC.

First hit NY

N Y

(M cycles)

NY

Probe the major location. (1 cycle)

Hit?

End

1 cycle

i = 1

Do more selected
locations exist?

i th fetch

i th hit

Fetch a block from
lower-level memory.

Swap

i = i + 1

Form the address of
the next selected location.

selected location.
Probe the next (1 cycle)

End

(i + 1 + M ) cycles

Swap

End

(i + 1) cycles

(1 cycle)

(1 cycle)

Hit?

Figure 3. Search algorithm of the SMC. M represents the miss penalty.

.



the lower-level memory on a miss for a previous reference
that has the same major location as the current reference. We
refer to these locations as selected locations belonging to the
corresponding major location. We use an index table to main-
tain information about selected locations. The cache system
uses this index table to find the addresses of locations it will
examine and to skip over those locations that cannot contain
a match.

The address of a selected location has two parts: the high-
er n′ bits are the bank number, and the lower c − n′ bits are
the relative block address within the bank. The cache system
derives the relative block address directly from the lower c
− n′ bits of x, and it generates the bank number using infor-
mation in the index table during the search.

In the index table, we allocate a bit vector of length n for
each location, with each bit corresponding to a location in
the set. The value of a bit in the vector indicates whether the
corresponding location is a selected location (except the
major location). To support fast modification of the index
table, we concatenate all the bit vectors for locations in a set
into an item. Figure 2 illustrates the index for a set in a four-
way SMC. In this figure, bit vector i (i = 0, 1, 2, 3) is the index
for location i, bit j (j = 0, 1, 2, 3) in a bit vector corresponds
to the jth location in the set, and a 1 in the bit indicates that
the corresponding location is a selected location. The index
in Figure 2 gives the following information:

• For references whose major location is 1, there are two
selected locations: 0 and 2;

• For references whose major location is 3, 1 is the only
selected location (there is a 1 in bit 3 of bit vector 3, but
location 3 is the major location);

• For references whose major location is 0 or 2, there is
no selected location.

Figure 3 shows the search algorithm of the SMC. On a ref-
erence, the search examines the major location. At the same
time, the cache system reads index information about the cor-
responding set in the index table and uses it to form the
address of the next selected location. If the first probe is a
miss, the system examines the next selected location while it
generates the address of the further next selected location,
again using the index information. This process continues until
it produces a match or until it has examined all the selected
locations, in which case the system fetches a block from lower-
level memory. Each probe requires one cycle. For a nonfirst
hit or a miss, a swap operation is necessary to move the new
MRU block to the major location for the current reference.

The index table and block number generation require hard-
ware support. For an n-way SMC with S sets, the size of the
index table memory is S words × n × n bits, with each word
corresponding to a set. Figure 4 shows the organization of the
index mechanism in a four-way SMC. Upon a reference, the
mechanism fetches the corresponding word in the index mem-
ory, latches it into IR2, and latches the corresponding bit vec-
tor into IR1. It reserves the word in IR2 for use in updating
the index memory if necessary, whereas the block number
logic uses the bit vector in IR1 immediately to generate the
block number of the next selected location. These operations

proceed in parallel with the probe of the major location, and
finish in the same cycle. At the end of this cycle, the index
mechanism clears the corresponding bit in IR1. It uses the con-
tent in IR1 again in the next cycle to generate the block num-
ber of a further selected location, if there is one.

The BNL is actually a priority encoding logic. It can be
implemented with 10 AND gates and two OR gates, and with
a delay of two levels of gates. Because the size of the index
table is only 1/32 of the cache size if the block size is 16
bytes, the access time of the index table is much smaller than
that of the cache memory. For example, Wilton and Jouppi9

reports that reducing the size of a direct-mapped cache by
half, in the range of 4 to 128 Kbytes, reduces the access time
of the cache memory by 10 to 15%. Therefore, the index
memory can be implemented in such a way that the access
of the index memory and the generation of the block num-
ber do not become the critical path.

The END signal that the termination condition logic gen-
erates controls the termination of the search process. The
END is valid when there are no unprobed selected locations.
The TCL can be implemented with two AND gates and two
OR gates by using some signals generated in the BNL. With
these supports, the search engine is quite simple and adds
little complexity to that of a direct-mapped cache.

The cache system updates the index memory when a swap
or a miss occurs. The swapping and setting logic component,
which is actually a 16-bit, 6-input multiplexer, performs this
function. When a swap occurs, the SSL must swap the con-
tents of the corresponding two bits in each bit vector for the
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set, while the others remain unchanged. The index mecha-
nism does this by writing the content in IR2, which contains
the bit vectors for the set under consideration, back to the
index memory, and controlling the multiplexing in the SSL.

When a miss occurs, the system fetches a new block into
a location in the set. This sets the corresponding bit in the
bit vector for the major location of current reference, and
clears the corresponding bits in remaining bit vectors for the
set. Again, the index mechanism does this by writing IR2
back to the index memory, with one bit of the multiplexer
in SSL selecting a 1, three bits of the multiplexer selecting
0s, and the remaining selecting the content in IR2. The mech-
anism can perform these operations during the swap oper-
ation or the fetching of the new block, and hence do not
increase the access time of the SMC.

A four-way SMC does not require much hardware beyond
that included in the column-associative cache: an index mem-
ory whose size is only 1/32 of the cache size if the block size
is 16 (and 1/64 if the block size is 32), two registers (one of
16 bits, the other of 4 bits), a 16-bit multiplexer, and a dozen
AND/OR gates. Compared with a direct-mapped cache, an
additional swapping buffer is necessary. The cost of this hard-
ware is small and acceptable.

Parallel multicolumn cache. A PMC separates the imple-
mentation of the tag array from that of the data array. Though
it keeps the data memory in one bank, it organizes the tag
memory into n banks. The cache system accesses the data

bank sequentially, one word at a
time, but performs tag checking in
parallel. This decoupling makes it
possible to dispatch data specula-
tively to the CPU. No multiplexing
operation on the data is necessary.

The PMC uses a parallel search, as
shown in Figure 5. On a reference, it
reads the data in the major location
from the data bank, the same way a
direct-mapped cache does, and dis-
patches it to the CPU. At the same
time, it reads and checks n tags in
parallel, using a method similar to
that of a conventional n-way set-
associative cache. A first hit occurs if
the tag for the major location match-
es the tag of the reference. If any of
the other tags match the tag of the
reference, a second hit occurs,
requiring one more cycle to access
the data bank again for the desired
data. The cache system generates the
address for this access using the out-
come of the tag checking. If the ref-
erence is a miss, it will fetch a new
block from lower-level memory. As
in the SMC, a swap operation is nec-
essary in the case of a miss or a sec-
ond hit.

The PMC generates the address for
the second access to the data bank

after tag checking with a delay of an OR gate. This adds lit-
tle to the cycle time in a VLSI processor that does not imple-
ment optimistic execution. If the processor uses optimistic
execution, however, the cache system checks tags in the next
cycle. The hardware for generating the address for the sec-
ond access adds a delay to the cycle time. To obtain the same
cycle time as that in a direct-mapped cache, we allocate a
complete cycle for the generation of the address for the sec-
ond access. In this case, four cycles, not three, are necessary
for a second hit. Figure 5 shows the time required for this
case in square brackets. In our simulation, we consider both
cases, which we call the PMC 1 and the PMC 2.

The PMC essentially combines the direct-mapped cache
and the traditional n-way set-associative cache with the
application of the multiple MRU block technique. It inherits
both the short cycle time of the direct-mapped cache and
the parallel search of the traditional n-way set-associative
cache. In complexity and hardware cost, the PMC falls
between the direct-mapped cache and the traditional n-way
set-associative cache. It eliminates the multiplexing logic in
a traditional n-way set-associative cache and organizes the
data array into one bank, but adds a buffer for swapping.

Performance evaluation
We chose to compare the performance of our cache

schemes with that of the column-associative cache because
that cache performed best in two other comparison tests.
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Agarwal and Pudar4 compared the performance of the hash-
rehash cache, the column-associative cache, and Jouppi’s
victim cache10 by simulation using ATUM (Address Traces
Using Microcode)11 traces. The results show that the column-
associative cache has the lowest miss rate of the three. Calder
et al. used the SPEC92 benchmarks to compare the perfor-
mance of the hash-rehash cache, the column-associative
cache, Kessler’s two-way MRU cache, and the PSC.5 The col-
umn-associative cache proved to have the lowest average
access time. An exception was the PSC when it uses the often
impractical effective address as the predictive source.

For our comparisons, we used the ATUM traces, which
include traces for the following 10 programs: dec0, fora,
forf.3, fsxzz, macr, memxx, mul8.3, pasc, spic, and ue02.
These traces comprise realistic workloads and include both
operating system and multiprogramming activity. Agarwal
and Pudar used the ATUM traces to evaluate the column-
associative cache. Thus, using the same traces would be fair
for our comparisons. We extended the Dinero III simulator
extensively to support our schemes and the column-asso-
ciative cache.

We tested associativities of 4, 8, and 16, and cache sizes
from 1 to 128 Kbytes. We chose a block size of 16 for our sim-
ulation, the same as that in Agarwal and Pudar’s simulation.4

We also studied performance of the SMC and PMC for miss
penalties ranging from 20 to 100 cycles with the cache size
fixed at 4 Kbytes.

Performance metrics. The miss rate and the average
access time are two important measurements of cache per-
formance; we used both in our evaluation. The average
access time, though dependent on the cache’s organization
and on a particular address stream, reflects the actual per-
formance of the cache design more directly and more accu-
rately than does the miss rate. Therefore, we paid more
attention to this measurement in our evaluation.

Suppose M is the miss penalty (in cycles), R is the total num-
ber of references in a trace, Hi is the number of ith hits, and
Fi is the number of ith fetches in the simulation. Also suppose
that TCOL, TSMCn, TPMCn, and T ′PMCn are the average access times
for the column-associative cache, the SMC (with associativity
n), the PMC 1, and the PMC 2. Based on Agarwal and Pudar’s
work4 and the search algorithms described earlier, we have

The PMC has only one kind of fetch, whose number we
denote by F. In our simulations, we accumulated the values
of Hi, Fi, and R, and calculated TCOL, TMSCn, TPMCn, and T ′PMCn

using these formulas.

To compare the performance of our multicolumn caches
with that of the direct-mapped cache and the column-asso-
ciative cache, we define improvement in average access time
over the direct-mapped cache (denoted by IMP) as follows:

Here, TDIR is the average access time of a direct-mapped
cache, and T is TCOL, TSMCn, TPMCn, or T ′PMCn, depending on the
cache under consideration. We used the same cache size to
calculate TDIR and T for IMP calculations.

Simulation results. Figures 6a, 6b, and 7 (next page) show
that both the SMC and PMC can reduce the miss rate and the
average access time. Both have faster average access times
than the direct-mapped and column-associative caches. For
an associativity of four and a cache size of 4 Kbytes, the IMP
of the SMC was 9.8%, the PMC 1, 10.9%, and the PMC 2, 7.0%.
In contrast, the IMP of the column-associative cache was only
4.3%. The SMC has the highest IMPs: 12.7% for n = 4 and
15.8% for n = 16 when the cache size is 16 Kbytes. When n
increases from 4 to 8, the gain in performance is moderate, and
may still be worth exploiting in some designs. Nevertheless,
there is only a small gain in performance when n increases to
16 or larger.

For n = 4, the performance of the PMC 1 is comparable to
that of the SMC. The performance improvement of the PMC
2, however, is much lower than that of the PMC 1 due to the
one extra cycle from second hits. This is also true for the
cases of n = 8 and n = 16, though we did not include the
performance of the PMC 1n these cases due to space limita-
tions. Therefore, when the miss penalty is 20 cycles, the SMC
scheme is more appropriate for a pipelined cache than is the
PMC scheme.

Figure 7 shows that the SMC and PMC can effectively
reduce the average access time for both small and large
caches. The best improvement occurs with cache sizes in the
range of 4 to 32 Kbytes, currently common sizes for on-chip
caches.

Figure 8 shows the IMP as a function of the miss penalty,
from which we conclude the following:

• The curves for the SMC and PMC rise more sharply than
that of the column-associative cache as the miss penal-
ty increases, which means that the multicolumn
approach brings more benefits for larger miss penalties.

• The improvement of the PMC 1 approaches that of the
SMC as the miss penalty increases. Therefore, the PMC
scheme works well for a pipelined cache when the miss
penalty is large.

• There is still a relatively large gain in performance when
n increases from 4 to 8 and the miss penalty is large. The
gain is much smaller, however, when n increases to 16.

TWO MAJOR PERFORMANCE BOTTLENECKS for
implementing set-associative caches are the multiplexing
operation to select the data item using a parallel search, and
the delay for tag comparisons using a sequential search. A
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direct-mapped cache does not need the multiplexing, and a
hit is always the first hit. However, the miss rate is signifi-
cantly higher than that of an n-way set-associative cache.
Our multicolumn cache system gains the advantage of direct-
mapped caches by first checking the major location while
allowing high-degree n-way associativity by minimizing the
number of sequential searches. The additional hardware cost
is small and acceptable. 

We are currently conducting simulations to evaluate a
group of representative cache schemes to provide insight

into how close to optimal each design is.
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