
70 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 1, JANUARY 1997

Adaptively Scheduling Parallel Loops
in Distributed Shared-Memory Systems
Yong Yan, Member, IEEE, Canming Jin, and Xiaodong Zhang, Senior Member, IEEE

Abstract —Using runtime information of load distributions and processor affinity, we propose an adaptive scheduling algorithm and
its variations from different control mechanisms. The proposed algorithm applies different degrees of aggressiveness to adjust loop
scheduling granularities, aiming at improving the execution performance of parallel loops by making scheduling decisions that match
the real workload distributions at runtime. We experimentally compared the performance of our algorithm and its variations with
several existing scheduling algorithms on two parallel machines: the KSR-1 and the Convex Exemplar. The kernel application
programs we used for performance evaluation were carefully selected for different classes of parallel loops. Our results show that
using runtime information to adaptively adjust scheduling granularity is an effective way to handle loops with a wide range of load
distributions when no prior knowledge of the execution can be used. The overhead caused by collecting runtime information is
insignificant in comparison with the performance improvement. Our experiments show that the adaptive algorithm and its five
variations outperformed the existing scheduling algorithms.

Index Terms —Adaptive scheduling algorithms, dynamic information, load balancing, parallel loops, processor affinity, shared-
memory systems.

—————————— ✦ ——————————

1 INTRODUCTION

OOPS are the richest sources of parallelism and are
widely used in scientific application programs. In many

scientific applications, a set of independent tasks typically
exists in a parallel loop, called a DoAll loop, where the proc-
essing of each element in each iteration is independent of
the others.

The performance of a loop scheduling algorithm is
mainly affected by three overhead sources: synchronization
and loop allocation, load imbalance, and data communication.
Although it is desirable for an efficient algorithm to mini-
mize the above three sources of overhead, it is usually im-
possible because conflicts can arise among them. Exploiting
processor affinity (processor affinity refers to certain data
access dependence of a task to a specific processor; a more
precise definition is given in Section 3.1) favors the alloca-
tion of loop iterations close to their data, which tends to
cause load imbalance. Load balance favors the “fine grain”
allocation of loop iterations (where a small number of it-
erations are allocated) in order to minimize the effects of
uneven assignment. However, the “fine grain” allocation
tends to increase synchronization overhead and loop allo-
cation overhead. In different applications, each overhead
source affects performance differently. Hence, an efficient
loop scheduling algorithm should optimize its performance
by adaptively trading off synchronization overhead, loop
allocation overhead, load imbalance overhead, and data-

communication overhead. Moreover, a dynamic scheduling
algorithm should not assume any prior knowledge of the
execution times of the loop iterations because the execution
of the loop usually is unpredictable in practice.

So far, many novel dynamic scheduling algorithms have
been proposed, e.g., [2], [4], [5], [6], [8], [9], [11], [10]. These
algorithms fall into two distinct classes: central queue based
and distributed queue based. In central queue based algo-
rithms [2], [8], [11], [10], iterations of a parallel loop are all
stored in a shared central queue and each processor exclu-
sively grabs some iterations from the central queue to exe-
cute. The major advantage of using a central queue is the
possibility of evenly balancing the workload. While keep-
ing a good load balance, the central queue based algorithms
differ in the way they reduce synchronization and loop al-
location overheads. However, three limitations are associ-
ated with the use of a central queue:

1) An iteration in the central queue is likely to be dy-
namically allocated to execute on any processor,
which does not facilitate the exploitation of processor
affinity;

2) During allocation, all the processors but one should
remotely access the central work queue, and thereby
generate heavy network traffic;

3) Because all the processors contend for the central
queue, the central queue tends to be a performance
bottleneck, resulting in a longer synchronization de-
lay.

In order to exploit the processor affinity inherent in the
parallel execution of many loops and to eliminate the cen-
tral bottleneck, the affinity scheduling algorithm proposed
in [6] distributes the central queue to be local to each proc-

1045-9219/97$10.00 ©1997 IEEE

————————————————

• Y. Yan and X. Zhang are with the High Performance Computing and
Software Laboratory, the University of Texas at San Antonio, San Antonio,
TX 78249-0664.

 E-mail: yyan@dragon.cs.utsa.edu; zhang@ringer.cs.utsa.edu.
• C. Jin is with InterVoice Inc., Dallas, Texas. E-mail: cjin@intervoice.com.

Manuscript received Feb. 19, 1996.
For information on obtaining reprints of this article, please send e-mail to:
transpds@computer.org, and reference IEEECS Log Number D96040.

L

YAN ET AL.: ADAPTIVELY SCHEDULING PARALLEL LOOPS IN SHARED-MEMORY SYSTEMS 71

essor, and the algorithm partitions iterations of a parallel
loop statically into local queues so that each processor only
is involved in remote access while load imbalance occurs.
Markatos and Leblanc [6] show that affinity scheduling
almost achieves the best performance in all tested cases
when compared with those central queue based algorithms.
To enhance the affinity scheduling algorithm in the pres-
ence of large, correlated imbalance in loop execution time,
Subramaniam and Eager [9] propose two loop partition
methods: dynamic partition and wrapped partition. These
two partition methods, however, only improve affinity
scheduling for some specific applications because both of
them execute under some specific assumptions about the
distribution of loop execution time.

In the design of distributed queue based algorithms, we
have no reason to prefer other kinds of loop partition
methods to uniform partition, due to the uneven and un-
predictable execution time of loop iterations. Hence, it is
crucial for a distributed queue based algorithm to be able to
dynamically and efficiently schedule tasks at run-time to
even the load imbalance caused by the static partition. In
existing affinity scheduling algorithms [6], [9], all the proc-
essors schedule loop iterations in their local queues using
the same allocation scheme where, at each time, 1/P of the
remaining iterations in the local queue are allocated (P is
the number of processors). This iteration allocation scheme
may not be efficient. For example, if the initial loop parti-
tion is balanced then all processors will complete the exe-
cution of iterations in their local queues at the same time,
and each processor should grab all the iterations in the local
queue in an allocation, instead of only 1/P of the remaining
iterations. On the other hand, if the initial loop partition is
not balanced, those lightly loaded processors should finish
execution of the iterations in their local queue as soon as
possible so that they can immediately turn to help heavily
loaded processors. Hence, processors should be able to dy-
namically increase or decrease their allocation granularity
based on runtime information to reduce synchronization
and loop allocation overhead and balance load more
evenly. This motivates us to design adaptive scheduling
algorithms to further improve existing affinity scheduling
algorithms.

The major objective of this paper is to exploit the poten-
tial of dynamic information to reduce loop execution time.
We propose an adaptive scheduling algorithm and its five
variations. Our algorithms dynamically adjust allocation
granularity according to a program’s execution history. We
classify parallel loop execution patterns and fairly select a
set of applications to experimentally verify the effectiveness
of our algorithms in comparison with the proposed affinity
scheduling algorithms in [6], [9].

Our experimental results show that using runtime in-
formation to adaptively adjust scheduling granularity is an
effective way to handle a wide range of load distributions
when no prior knowledge can be used. The overhead
caused by collecting runtime information is insignificant in
comparison with the benefit gained by this method when
proper algorithms are designed. The experiments show that
the more aggressive an algorithm is in using dynamic in-
formation, the more it improves the execution performance

of parallel loops. The adaptive algorithm outperformed the
existing scheduling algorithms experimentally.

The organization of this paper is as follows. Section 2 de-
scribes in detail the main ideas in the design of the adaptive
scheduling algorithm and presents five variations that have
different degrees of aggressiveness in the adjustment of
loop scheduling granularities. In order to assess precisely
the effectiveness of the proposed algorithms in practice, we
analyze and classify the program characteristics of applica-
tions in Section 3. We selected five representative kernel
applications as benchmarks for performance evaluation. In
Section 4, we report our experimental results and compari-
sons. We summarize the paper in Section 5.

2 ADAPTIVE SCHEDULING ALGORITHMS

Similar to the affinity scheduling algorithm [6], the adap-
tive affinity scheduling algorithm is also constructed to
have following three phases:

Initial partition phase: Deterministic assignment policy is
used to partition iterations of a parallel loop into local
queues of processors, which ensures that an iteration
is always assigned to the same processor at the start.
With this assignment scheme, if a parallel loop exe-
cutes repeatedly and each parallel iteration accesses
the same data set in different executions, the first exe-
cution of the parallel loop will bring data locally to
processors so that the subsequent execution of the
parallel loop only involves local data access.

Local scheduling phase: Based on some local scheduling
policy, each processor allocates a part of the remain-
ing iterations in a local queue to execute until the local
queue is empty. Local scheduling does not cause re-
mote access overhead. Because each local queue is
shared by all processors, a critical section is used to
protect the allocation of the loop iterations in the local
queue. The local scheduling overheads mainly come
from the synchronization overhead and the loop allo-
cation overhead in the execution of the critical section.
Reducing the number of allocations is crucial to im-
prove the performance of the local scheduling phase.

Remote scheduling phase: When a processor finishes the
execution of all the iterations in the local queue, it re-
motely allocates a portion of the iterations from the
most loaded processor in the system to execute. The
remote scheduling phase is aimed at dynamically bal-
ancing the workload. An iteration is at most reas-
signed once, which avoids processor thrashing. Re-
mote scheduling causes remote data access overhead
as well as synchronization overhead and loop alloca-
tion overhead.

Instead of relying on preknowledge about a loop’s exe-
cution, our adaptive affinity scheduling algorithm exploits
the potential of using dynamic execution history to adap-
tively adjust iteration chunking size to reduce synchroniza-
tion and loop allocation overheads. The algorithms also
maintain a better load balance. The main idea of our de-
signs is to minimize local scheduling overhead so that the
phase of dynamically balancing the workload can be

72 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 1, JANUARY 1997

speeded up, which results in reduction of loop execution
time.

In the initial phase, a loop with N iterations is parti-
tioned into chunks of uniform size N/P over P processors
because we have no reason to prefer other partition meth-
ods in the absence of a precise prediction about the execu-
tion distribution of the loop’s iterations. Our initial parti-
tion is identical to the one in [6].

In the local scheduling phase, a processing speed vari-
able si, termed the PS variable, is set for each processor,
which keeps track of the number of iterations the processor
has executed so far (i = 1, L, P). Variable si is initially set to
zero and is increased by one each time processor i finishes
the execution of an iteration. By comparing the local PS
variable with other PS variables, a processor can observe
the load distribution. At any time, the processors with
smaller PS variable values have executed iterations that
have a heavier workload than those executed by the proces-
sors with larger PS variable values. Because, in most appli-
cations, a load distribution state has a certain steady dura-
tion, it is feasible to speculate about the load distribution in
the near future by the current observation. Although some
applications really have a surge variance in the load distri-
bution, the prediction difference can be minimized by dy-
namic readjustments. In order that processors response
spontaneously to the dynamic changes of iteration work-
load, it is necessary to differentiate the workload states of
processors. For fairness, we select the average number of

iterations executed by all processors, i.e., s Pii

P

=Â 1
, as the

pivot to partition the workload states of processors into the
following three types:

• heavily loaded (HL)—the processor’s PS value is

smaller than s Pii

P

=Â -
1

a ;

• normally loaded (NL)—the processor’s PS value is

within the range of s Pii

P

=Â -FH 1
a , s Pii

P

=Â + IK1
a ;

and
• lightly loaded (LL)—the processor’s PS value is equal

to or larger than s Pii

P

=Â +
1

a ;

where α is a nonnegative, range control variable, which
adjusts the distribution of HL processors, NL processors,
and LL processors. Variations of parameter α would affect
the algorithmic performance. The dynamic features in the
execution of real applications’ loops make it impractical or
impossible to analytically determine an optimal value of α.
Here, we will discuss the effect of different values of α on
performance through experiments, giving an empirical
method of determining a performance-efficient α.

In order to control chunk size in the allocation of loop it-
erations, a chunk-size control variable ki is set for processor
i (i = 1, L, P). Each processor always removes 1/ki of the
remaining iterations in its local work queue for execution.
In the beginning of the local scheduling phase, all the
chunk-size control variables are initialized to the same
value, such as P, the total number of processors. Then, each
ki (i = 1, L, P) is adaptively and independently adjusted by

a chunk-size control function Π. Function Π uses the load
state and the current value of ki of processor i as its two
input parameters, and adjusts the chunk-size control vari-
able ki as follows:

• If processor i is heavily loaded, Π increases ki, aiming
at reducing chunk size so that more iterations re-
maining in the heavily loaded processor can be exe-
cuted by those lightly loaded processors, therefore,
balancing workload more efficiently.

• If processor i is normally loaded or lightly loaded, Π
decreases ki, aiming at increasing chunk size so that a
normally loaded or lightly loaded processor can finish
all the iterations in their local work queues as soon as
possible, and then immediately starts to help heavily
loaded processors.

When processor i completes execution of the iterations in
the local queue, it turns to the remote scheduling phase. In
the affinity scheduling algorithm of [6], when a processor
exhausts its local work queue and starts to help other heav-
ily loaded processors, it just removes 1/P of the remain-
ing iterations from the most heavily loaded processor. This
allocation method may not be efficient when only a few
processors can turn to help other processors. Here, we de-
termine the chunking size according to the current number
of lightly loaded or normally loaded processors because
they are able to help those heavily loaded processors in the
near future. For processor i, it determines its chunk control
variable ki as follows:

k P ni = +min , 1k p , (2.1)

where n is the total number of lightly loaded processors
and normally loaded processors (n + 1 means to include the
most heavily loaded processor from which processor i will
allocate the remaining iterations), and P is the total number
of processors. Then, processor i allocates 1/ki of the re-
maining iterations in the most heavily loaded processor to
execute. This procedure will repeat until all local work
queues are empty. Initially, ki has a smaller value than P so
that a big chunk size is used to reduce the number of re-
mote allocations. Our experiments in the next section will
show that the selected big chunk size does not increase the
risk of imbalancing load. Subsequently, when more proces-
sors become lightly loaded or normally loaded, ki will in-
crease until it reaches the maximal value, P.

In the following, a pseudocode description of the
adaptive affinity scheduling algorithm is given. In imple-
mentation, this code can be automatically inserted by a
compiler into application programs for each processor to
dynamically schedule the execution of loops without the
interference of the operating system. As with other exist-
ing work, we generate dynamic scheduling programs by
hand in our experiments in order to focus on the algo-
rithmic study.

1. Initial partition phase:
initial_partition(N, P) // N iterations are uniformly parti-

tioned over P processors
{for (i = 0; i < P; i ++)

assign_iterations(i); // assign iterations to processor i.
 for (i = 0; i < P, i ++){

YAN ET AL.: ADAPTIVELY SCHEDULING PARALLEL LOOPS IN SHARED-MEMORY SYSTEMS 73

si = 0; ki = P;} // Initialize PS variables and ¢Kis
}
2. Local scheduling phase on processor i:
loop { // processor i gets 1/ki of the local iterations to exe-

cute and adjusts ki.
Lock(local_queue_i);
range = get_iterations(local_queue_i, 1/ki); // allo-

cate 1/ki of the iterations.
unlock(local_queue_i)
While (range – – ! = 0) {

execute_one_iteration(); si ++;}

state = load_state s P sii

P
i=ÂFH IK

F
H

I
K1

, ,a ; //compute

the load state of processor i.
ki = Π(state, ki); // adjust the chunking granularity

} until (local_queue_i = ∅)
3. Remote scheduling phase on processor i:
ki = 1;
loop { if (ki ! = P) {

ki = find_non_heavily_loaded_processor(); ki =
min{P, ki + 1}; }

j = find_most_loaded_processor();
lock(local_queue_j);
range = get_iterations(j, 1/ki); // get 1/ki of the it-

erations on processor j.
unlock(local_queue_j);
execute(range);

} until (all iterations have been finished).

Adaptively changing loop scheduling granularity is the
major characteristic which distinguishes our adaptive af-
finity scheduling from the affinity scheduling algorithm in
[6]. Remotely reading the PS variables of other processors is
the overhead caused by our adaptive scheduling algorithm
in collecting execution history of other processors. If the
increased overhead nullifies the benefit of adaptively
varying loop scheduling granularity, the adaptive affinity
scheduling algorithm may not exhibit a performance im-
provement over existing affinity scheduling algorithms.

Different variations of the adaptive affinity scheduling
algorithm can be constructed by designing different chunk-
size control protocols for the function Π. Here, we propose
four mechanisms for our adaptive algorithm. Let ki be the
chunk size control variable of processor i in the local
scheduling phase.

• Exponentially Adaptive (EA) Mechanism
 In the EA mechanism, a processor increases or de-

creases the value of its chunk-size control variable ki
by a factor at each time according to the current load
state. The chunk-size control function Π is formally
defined as

’ =
*R

S|
T|

state
if state = HL

if state = NL or LL
, k

k base

k basei
i

i
c h

 where base is an integer constant. Here, we choose two
for base. Initially, ki is set to P in our adaptive algorithm.

• Linearly Adaptive (LA) Mechanism
 In the LA mechanism, a processor increases or de-

creases its chunk size control variable ki by a constant

at each time interval according to the current load
state. The chunk-size control function Π is formally
defined as

’ =
+

-

R
S|
T|

state
if state = HL

if state = NL or LL
,

,
k

k con

k coni
i

i
c h m rmax 1

 where con is a constant specified by users. We choose
1 in our experiments. Because the LA mechanism
changes the chunk size at a slower pace than the EA
algorithm, it has less risk of imbalancing the work-
load, but larger synchronization and loop allocation
overhead.

• Conservatively Adaptive (CA) Mechanism
 A careful selection of the chunking size in a loop

scheduling algorithm is crucial to find a compromise
between synchronization overhead and load imbal-
ance. Allocating a bigger chunk of the iterations of a
loop tends to reduce synchronization and loop alloca-
tion overhead, but increase the risk of imbalancing
load. Previous work in [5] shows that in order to have
reasonable load imbalance and synchronization over-
head, it is safe for the chunk size control variable ki to
choose a value in [P, 2P]. The CA mechanism is con-
structed by restricting the varying range of the chunk-
size control variables of the LA mechanism within
[P/2, 2P]. The chunk size control function is defined
as follows:

’ =
+

-

R
S|
T|

state
if state = HL

if state = NL or LL
,

min ,

,
k

P k con

P k con
i

i

i

c h m r
m r
2

2max

 where con is a constant in [0, P]. We will use one in
our experiments.

• Greedily Adaptive (GA) Mechanism
 The GA mechanism employs a two-phase consensus

method to greedily enlarge the chunking size on non-
heavily loaded processors. The GA mechanism rec-
ords the previous load state of the processor. If a
processor finds it is in a nonheavily loaded state in
two consecutive allocations, it greedily reduces the
chunk-size control variable to 1, i.e., it grabs all the
remaining iterations in the local work queue to exe-
cute. Otherwise, the processor increases or decreases
the chunking size by using the conservation method
in the CA mechanism with con = 1 experimentally.
 Let Spre

i record the previous load state of processor

i, and let Sc record the current load state of processor i.
The chunk size control function is

’ =

+ =

- π =

π π

R
S
||

T
||

S k

P k con S

P k con S S

S S

c i

i c

i c pre
i

c pre
i

,

min ,

,c h
m r
m r
2

2

1

if HL

if HL and HL

if HL and HL

max

Keeping and maintaining the PS variable for each proc-
essor allows the above four adaptive mechanisms to know
exactly the current workload of each processor; thereby, the
PS variables can be used to adjust the speed for each proc-

74 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 1, JANUARY 1997

essor, and as a consequence, to adjust the workload among
the processors. But it also introduces loop allocation over-
head. Here, we design a heuristic variation, denoted by
HA, which still adopts the framework of our adaptive
scheduling algorithm. Instead of using PS variables to de-
termine workload distribution among processors, we use
the number of iterations actually executed by each proces-
sor to guide the adjustments of scheduling granularities.
Initially, a parallel loop is uniformly distributed to proces-
sors. Each processor i repeats grabbing 1/ki of the remain-
ing iterations in its local queue to execute without doing
any adjustment to ki. If processor i finishes all the iterations
in its local work queue, and turns to get iterations from the
most heavily loaded processor j, processor i is said to be
lightly loaded and processor j is heavily loaded. Then
processor i increases its scheduling granularity and proces-
sor j decreases its scheduling granularity. Hence, the lightly
loaded processors can turn as early as possible to help
heavily loaded processors, and the heavily load processors
can remain as much workload as possible to even those
lightly loaded processors. At the end of each execution of
the parallel loop, processors check whether they have exe-
cuted approximately the same number of iterations, i.e., a
balanced workload. If so, processors increase their sched-
uling granularities to speed up subsequent executions of
the parallel loop.

Comparing with the four variations of the adaptive algo-
rithm: EA, LA, CA, and GA, the HA variation differs in
several aspects:

1) Instead of determining the load state at each time of
local scheduling that is used by the adaptive algo-
rithms, the HA variation updates the load states of
processors only in the remote scheduling phase and at
the end of one execution of the parallel loop, so that it
causes less scheduling overhead than the adaptive al-
gorithm.

2) The HA variation works by requiring that the par-
allel loop be nested in a sequential loop to execute
repeatedly.

When the parallel loop only executes once, the HA varia-
tion becomes the affinity algorithm [6].

The pseudocode of the heuristic variation of the adaptive
affinity scheduling algorithm (HA variation) is shown as
follows.

1. Initial partition phase:
initial_partition(N, P) // N iterations are uniformly parti-

tioned over P processors
{for (i = 0; i < P, i ++)

assign_iterations(i); // assign iterations to processor i.
 for (i = 0; i < P; i ++)

ki = P;
}
2. Local scheduling phase on processor i:
loop { Lock(local_queue_i);

range = get_iterations(i, 1/ki); // allocate 1/ki of the
remaining iterations

unlock(local_queue_i);
execute(range);

} until (local_queue_i = ∅)

3. Remote scheduling phase on processor i:
loop {j = find_most_loaded_processor();

lock(local_queue_j);
range = get_iterations(j, 1/kj); // get 1/kj of the it-

erations on processor j.
unlock(local_queue_j);
if (ki > 1) ki = ki – 1; // increase the chunk size for

processor i.
if (kj < 2 ∗ P) kj = kj + 1; // decrease the chunk size for

processor j.
execute(range); }

4. The program section at the end of each parallel loop:
end_para_loop
{ barrier(&barrier, &P);

if (tid == 0) // only processor 0 execute the code.
 find_maximum_and_minimum_of_chunk_

sizes(kmax, kmin);
if ((kmax – kmin < P/2) // if the workload is bal-

anced, increase chunk size.
 for (each processor i with ki > 1) ki = ki/2;

barrier(&barrier, &P);
}

3 EXPERIMENTAL EVALUATION METHODS

Markatos and Leblanc [6] show that the affinity scheduling
algorithm (hereafter, simplified as the ML algorithm) out-
performs other algorithms that do not exploit processor
affinity. Hence, we focus on comparing the variations of the
adaptive scheduling algorithm with the affinity scheduling
algorithm and its two variations in [9]. The scheduling al-
gorithms we have evaluated and compared are:

1) the ML affinity scheduling algorithm,
2) the SE dynamic initial partition affinity scheduling al-

gorithm,
3) the adaptive affinity algorithm with the exponential

adaptive mechanism (EA),
4) the adaptive affinity algorithm with the linearly

adaptive affinity mechanism (LA),
5) the adaptive affinity algorithm with the conserva-

tively adaptive mechanism (CA),
6) the adaptive affinity algorithm with the greedily

adaptive mechanism (GA), and
7) the heuristic adaptive variation (HA).

The experiments were conducted on two machines: the
KSR-1, a hierarchical-ring-based, cache coherent shared-
memory system and the Convex Examplar, a crossbar and
ring-based cache coherent shared-memory system. Here,
we address our methods of selecting application kernels
and of evaluating the algorithms.

3.1 Principles for Selecting Application Kernels
Considering the effects of program features on scheduling
algorithms, we characterize parallel loops by three factors:
the affinity of loop iterations to processors, the distribution
of loop execution time, and the granularity of loop iterations.

The iterations of a parallel loop may exhibit affinity to
processors only when the loop is nested in a sequential loop
to be executed repeatedly. One fact in parallel processing is
that the dominant overhead source in many applications is

YAN ET AL.: ADAPTIVELY SCHEDULING PARALLEL LOOPS IN SHARED-MEMORY SYSTEMS 75

communications, not synchronization. Hence, we first clas-
sify parallel loops into two classes: potential affinity parallel
loops that are nested in a sequential loop, and nonaffinity
parallel loops that are only executed once. How strong the
iterations of a potential affinity parallel loop that exhibits
affinity to processors is significantly affected by the sizes of
data sets accessed by iterations, and by the data locality of
iterations.

A better data locality of an iteration means that the data
set accessed by the iteration changes less significantly in
different executions of the iterations. Data locality deter-
mines the affinity of iterations to processors. On the other
hand, the sizes of data sets accessed by iterations determine
the benefit of exploiting processor affinity. For those paral-
lel loops with better data locality, if their iterations have
very small data sets (e.g., one integer), exploiting processor
affinity will not improve the execution times of these par-
allel loops more than by balancing load and reducing syn-
chronization overhead.

Let D(i) be the data set of an iteration in the ith execution
of a parallel loop, and let D(i) be the size in bytes of data

set D(i). Then, D D i N
i

N
=

=Â a f
1

 is the average size of data

sets of the iteration over N executions of the parallel loop,

and d = - -
=Â D i D i N

i

N a f a f1
1

, (D(0) = D(1)) is the aver-

age size difference of two data sets in two consecutive loop
executions of an iteration, which indicates approximately
how much data should be reloaded in each execution of an
iteration of the parallel loop. So, the data locality of an it-
eration can be quantitatively evaluated by the following
defined locality rate:

locality_rate = 1 –
d
D

,

where the locality rate is a value in [0, 1]. A locality rate of
one means an iteration always accesses the same set of data.
A larger locality rate represents a better data locality. Then,
how strong an iteration has affinity to a processor can be
quantitatively evaluated by locality_rate × D , the average
number of data sets that will be accessed repeatedly (these
data sets may be always stored in a local cache). In the se-
lection of potential affinity parallel loops, we use data lo-
cality and data size to differentiate the affinity of iterations
to processors.

The unpredictable variance in the execution times of
parallel loops is a major obstacle for loop scheduling algo-
rithms to work efficiently. In order to show how much par-
allel loop scheduling algorithms can tolerate different dis-
tributions of workload among iterations, we selected par-
allel loops by load distribution to cover three distinguished
types of loops:

1) balanced loops where each iteration has the same
amount of computation time,

2) predictable imbalanced loops where the computation
times of iterations of a parallel loop vary as a predict-
able function of the loop control variable or where the
load distribution in a parallel loop is fixed when it
executes repeatedly, and

3) unpredictable imbalanced loops where the computa-
tion times of iterations change randomly, depending

on initial input and some runtime variables (e.g., the
execution time of a branch statement depends on its
actual execution path).

The ML algorithm only handles load imbalance by remote
scheduling. The SE algorithm improves the ML algorithm
performance only for those predictable imbalanced parallel
loops where the load distribution of a parallel loop is not
changed in multiple executions of the parallel loop, and the
execution times of the iterations of a loop increase or de-
crease monotonically with the loop control variable. Our
adaptive algorithm and its variations dynamically adjust
the loop scheduling granularity to speed up the load bal-
ance procedure based on the execution history of processors.
In the following experiments, we will show that the adaptive
algorithm can handle load imbalance more efficiently over a
wider range than the ML and the SE algorithms.

Besides affinity and load distribution, the iteration
granularity of a loop is another important factor affecting
the performance of loop scheduling algorithms. For parallel
loops with coarse granularity where the execution times of
loop iterations are significantly larger than the overhead of
remote access delay, balancing the workload is more crucial
than reducing synchronization and loop allocation over-
heads. For parallel loops with fine granularity where the
execution times of loop iterations are much smaller than the
overhead of remote access delay, it is important to mini-
mize scheduling overheads. Because the determination of
the iteration granularity of a parallel loop depends on the
interaction between the parallel loop and the underlying
system, it is difficult to tell whether a parallel loop is
coarsely grained or finely grained before execution. Instead
of classifying parallel loops by granularity, we consider the
effect of iteration granularity in our experiments.

Based on the above analyses, we classify parallel loops
into six types by their affinity and load distributions:

I) loops with potential affinity and balanced workload,
II) loops with potential affinity and predictable work-

load,
III) loops with potential affinity and unpredictable

workload,
IV) loops with nonaffinity and balanced workload,
V) loops with nonaffinity and predictable workload, and
VI) loops with nonaffinity and unpredictable workload.

In order to have a complete understanding of how well
each scheduling algorithm works in the area of real-world
applications, we select one application from each type. A
loop with nonaffinity and unpredictable workload is a rare
case in practice. Therefore, we only evaluate scheduling
algorithms for applications of the first five types of loops.

3.2 Applications
The selected application kernels including potential affinity
loops are Successive Over-Relaxation (SOR) (type I), Jacobi
Iteration (JI) (type II), and Transitive Closure (TC) (type III).
Matrix Multiplication (MM) (type IV), and Adjoint Convo-
lution (AC) (type V) are application kernels including non-
affinity loops.

Type I: Balanced affinity loops in SOR.
 DO SEQUENTIAL 1 I = 1, L

76 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 1, JANUARY 1997

 DO PARALLEL 2 J = 1, N
 DO SEQUENTIAL 3 K = 1, N
 A(J, K) = UPDATE(A, J, K)
3 CONTINUE
2 CONTINUE
1 CONTINUE

All the iterations of the SOR parallel loop take about the
same time to execute and each iteration always accesses the
same set of data. Exploiting processor affinity may improve
performance better than balancing the workload. In this
application, each parallel iteration has locality rate of one
and a data set of N array elements. The computational
granularity of each parallel iteration is O(N).

Type II: Predictable affinity loops in a Jacobi Iteration
(JI).

 DO SEQUENTIAL 1 I = 1, L /* L controls
iteration precision. */

 DO PARALLEL 2 J = 1, N
 X1[J] = 0
 DO SEQUENTIAL 3 K = 1, N
 IF (A[J][K] .NE. 0).AND.(J .NE.
K)
 X1[J] = X1[J] + A[J][K] * X0[K]
3 CONTINUE
 X1[J] = (B[J] - X1[J])/A[J][J]
2 CONTINUE
 DO SEQUENTIAL 4 L = 1, N
 X0[L] = X1[L]
4 CONTINUE
1 CONTINUE

In the JI program, the top 20% of rows of elements in the
nonsingular matrix A are nonzero elements, which are gen-
erated by a random number generator. The iterations of the
parallel loop have a different workload which is deter-
mined by the distribution of nonzero elements in A, so ex-
ploiting load imbalance would improve performance.
However, the workload of each parallel iteration is not
changed when it is executed repeatedly.

The jth iteration of the parallel loop always accesses the
jth row of the matrices A, B[j] and x0[j]. When the jth itera-
tion is fixed to be executed repeatedly on a processor, it
only needs to reload x0[j] into a cache because x0[j] is up-
dated after each execution of the parallel loop. Hence, this
application kernel exhibits good processor affinity. Each
iteration has a data set of the size of N + 2 elements, and
data locality close to one. The average computational granu-
larity of each iteration is smaller than that in the SOR kernel.

Type III: Unpredictable imbalanced affinity loops in
the Transitive Closure (TC) kernel.
 DO SEQUENTIAL 1 I = 1, N
 DO PARALLEL 2 J = 1, N
 IF (A[J][I] .EQ. TRUE) THEN
 DO SEQUENTIAL 3 K = 1, N
 IF (A[I][K] .EQ. TRUE)
 A[J][K] = TRUE
3 CONTINUE
2 CONTINUE
1 CONTINUE

The TC program may exhibit more serious load imbal-
ance than JI, where each iteration of the parallel loop and
each execution of a parallel iteration may have computa-
tional granularity of O(1) or O(N), depending on the input

matrix A. The iterations exhibit a weaker affinity to proces-
sors than SOR and JI. Due to the random computation fea-
ture, it is difficult to quantify the data locality and affinity
of each parallel iteration.

Type IV: Balanced nonaffinity loops in Matrix Multi-
plication (MM).
 DO PARALLEL 1 I = 1, N
 DO PARALLEL 2 J = 1, N
 DO SEQUENTIAL 3 K = 1, N
 C[I][J] = C[I][J] + A[I][K] *
B[K][J]
3 CONTINUE
2 CONTINUE
1 CONTINUE

The MM program does not have affinity to exploit. All
the parallel iterations have computational granularity of
O(N). So, reducing synchronization and loop allocation
overhead is the only way to improve performance. This
application is used to investigate whether the adaptive
algorithm has a lower scheduling overhead than the ML
algorithm.

Type V: Predictable imbalanced nonaffinity loops in
Adjoint Convolution (AC).
 DO PARALLEL 1 I =1, N * N
 DO SEQUENTIAL 2 K = I, N * N
 A[I] = A[I] + X * B[K] * C[I - K]
2 CONTINUE
1 CONTINUE

Similar to the matrix multiplication application, the par-
allel loop in the AC kernel only executes once, hence it does
not exhibit processor affinity. However, the computational
granularity of the ith parallel iteration is O(N2 – i), changing
as a specific function of the control variable i to produce a
significant imbalanced load distribution (a triangular pat-
tern). This kernel is used to examine how efficiently the
adaptive algorithms can handle the load imbalance caused
by a uniform partition.

4 EXPERIMENTAL RESULTS

The performance metric we use to evaluate algorithms is
execution time. Execution time measures how differently
the scheduling algorithms work for different types of appli-
cations for given problem size.

4.1 Comparisons of Loop Scheduling Algorithms
First we use N/P2 as the α value in our four adaptive sched-
uling variations CA, LA, EA, and GA. We shall discuss the
effect of the α value on performance in a later section, and
discuss why α = N/P2 is cost-effective in the next section.

Fig. 1 presents the execution time (in seconds) of SOR
(L = 500, N = 1,024) running on two to eight processors on
both the KSR-1 and the Convex Exemplar. Since SOR is a
perfectly balanced application kernel, the dynamic partition
of the SE algorithm did not improve the performance of the
ML affinity algorithm. On the other hand, it introduced
some overhead into the ML algorithm. As the result, the
ML and the SE perform the worst among them all, due to
the overhead caused by more loop allocation and synchro-
nization steps. By adaptively increasing the chunk size each

YAN ET AL.: ADAPTIVELY SCHEDULING PARALLEL LOOPS IN SHARED-MEMORY SYSTEMS 77

time when a processor accesses the local work queue, the
adaptive algorithms reduce the times that processors need
for accessing the local work queues, therefore, scheduling
and synchronization overhead is reduced. All our five
adaptive algorithms outperformed the ML and the SE algo-
rithms. The EA and GA performed the best among them all,
since they take no more than three steps to adjust their
chunk size to finish the remaining iterations. The LA varia-
tion needs more allocation steps than the EA and the GA
need. The HA and the CA variations change the chunk size
in a limited range; therefore, they could not get the best
benefit by reducing the synchronization and loop allocation
overhead for perfectly balanced applications.

Fig. 2 plots the execution time of the Jacobi Iteration (JI)
(L = 500, N = 1,024) for the different scheduling algorithms
on the KSR-1 and on the Convex Exemplar. JI should be an
application that fits the SE algorithm best. Since the work-
load distribution illustrates a “rectangular” shape—the
leftmost 20% having a very heavy load and the remaining
80% having almost zero workload. The SE algorithm can

readjust the initial partition to balance the workload for
each processor to improve the execution time. The lower
execution time curves of the SE algorithm confirm this.

Instead of readjusting the initial partition, our adaptive al-
gorithms reduced the execution time by adjusting the chunk
size for each processor. A lightly loaded processor took a
larger number of iterations to execute. Then it turned to help
the heavily loaded processor. The heavily loaded processor
took a small number of iterations to execute, and it might
leave some iterations for the other processors to finish.

For solving a linear system of size N = 1,024 by the JI kernel,
our LA, GA, EA, and HA variations perform as well as the SE.
The CA variation performed slightly worse than the other
adaptive algorithms because, when using the CA variation,
the processors with zero workload still cannot take more than
2/P iterations to execute. Therefore they need more time to
finish their lightly loaded jobs, and turn to help the heavily
loaded processor. In the meantime, the heavily loaded proces-
sor may have already taken a large number of jobs to execute
and did not leave enough jobs for the idle processors.

(a)

(b)

Fig. 1. Performance of SOR on the KSR-1 (a) and EXEMPLAR (b).

(a)

(b)

Fig. 2. Performance of JI on the KSR-1 (a) and the EXEMPLAR (b).

78 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 1, JANUARY 1997

Fig. 3 presents the execution time of the transitive clo-
sure kernel with a random input graph of 1,024 nodes,
where about 10% of the edges are uniformly presented. In
each execution of the parallel loop, the workload is uni-
formly distributed among iterations. However, the total
workload increases at the next execution of the parallel
loop. Fig. 3a and Fig. 3b show the comparative performance
of seven tested algorithms respectively on both the KSR-1
machine and the Exemplar. The SE algorithm and the ML
algorithm perform similarly because, in this case, the SE
algorithm had little chance to improve the ML algorithm by
readjusting the load distribution. Algorithms LA, EA, and
GA performed the best among them all because they ad-
justed scheduling granularity more aggressively. Combin-
ing these results with the experimental results of SOR, we
conclude that for load balanced applications,
aggressively adjusting scheduling granularity is an efficient
method to reduce scheduling and synchronization over-
head, thus to improve performance well. These results also

show that the overhead of collecting state information is not
significant comparing with the benefit gained from adap-
tively adjusting scheduling granularity.

Again, we tested the scheduling algorithm and its varia-
tions for the transitive closure kernel with a skewed input
graph of 640 nodes containing a clique of 320 nodes, and no
other edges. In this case, load imbalance is significant in the
computation across iterations and the total load of the par-
allel loop increases from one execution to the next. The exe-
cution times for each scheduling algorithm are presented in
Fig. 4a and Fig. 4b. Although the authors of [9] claim that
the SE algorithm assumes that the execution time of any
particular iteration does not vary widely from one execu-
tion of the loop to another, our results show that the SE
algorithm can still improve the ML algorithm in our case
studies. Because our adaptive algorithm capture the vari-
ance in load more precisely than the SE algorithm, LA, EA,
GA, and HA, performed better than the SE algorithm. The
CA variation performed similarly to the SE algorithm.

(a)

(b)

Fig. 4. Performance of TC with skewed input on the KSR-1 (a) and the
EXEMPLAR (b).

(a)

(b)

Fig. 3. Performance of TC with random input on the KSR-1 (a) and the
EXEMPLAR (b).

YAN ET AL.: ADAPTIVELY SCHEDULING PARALLEL LOOPS IN SHARED-MEMORY SYSTEMS 79

These experimental results show that adaptively adjusting
scheduling granularity is an efficient way to handle the
load imbalance in unpredictable loop applications.

If the parallel loop is not embedded in a sequential loop (we
call it a nonaffinity loop), both the SE algorithm and our heu-
ristic variation HA have no chance to improve the ML affinity
algorithm. because they adjust the initial partition or adjust the
chunk size near the end of one execution of the parallel loop,
and hope that the new partition or the new chunk size can
play a role in the next execution of the parallel loop. Now we
want to see if other adaptive variations can perform better
than the ML algorithm for the nonaffinity loop.

Fig. 5a and Fig. 5b present the performance of the sched-
uling algorithms for the matrix multiplication (MM) with
N = 512. Algorithms ML, SE, and HA performed similarly.
Algorithms EA, LA, and GA dynamically detect the work-
load distribution conditions and rapidly increase the chunk
size, so that the processors take all the remaining iterations to
execute after only a few accesses to the local work queue. The
CA variation also increases the chunk size to a limit (2/P of

the remaining iterations); therefore, it involves less synchro-
nization and loop allocation overhead than ML but presents
more overhead than GA, LA, and EA. Compared with the
experimental results on kernel SOR, adaptive variations do
not improve the ML algorithm on MM significantly because
the parallel loop only executes for one time.

Fig. 6a and Fig. 6b present the performance of the sched-
uling algorithms for kernel Adjoint Convolution with N =
128. SE and HA could not improve the ML algorithm, since
the parallel loop is not embedded within a sequential loop.
Load imbalance across iterations was significant since the
first iteration took time proportional to O(N2), while the last
iteration took time proportional to O(1). As expected, ML,
SE, and HA performed similarly, while EA, LA, and GA
performed the best among them all. The CA variation’s
performance was in between.

4.2 Determine the Cost-Efficient Value
In the previous section, we used N/P2 as the value of α in
our adaptive scheduling algorithm and its variations,

(a)

(b)

Fig. 6. Performance of AC on the KSR-1 (a) and the EXEMPLAR (b).

(a)

(b)

Fig. 5. Performance of MM on the KSR-1 (a) and the EXEMPLAR (b).

80 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 1, JANUARY 1997

where N is the number of iterations in the parallel loop and
P is the number of processors we used to execute the par-
allel loop. Here, we tested several values of α in trying to
give an optimal value.

We evaluated our adaptive scheduling algorithm and its
variations with different α values for the five benchmark
applications on both the KSR-1 and the Exemplar. The α
values we selected to evaluate are N/P, N/P2, 32, and 4,
respectively. Due to the space limitation, we only present
part of the results here for two of our adaptive scheduling
variations EA and CA with respect to one kernel applica-
tion. The remaining results that we do not specify in what
follows also support the conclusions we are going to present.

Fig. 7a presents the performance of the SOR kernel on
the KSR-1 using the EA adaptive variation with the differ-
ent α values. We also present the performance of the ML
algorithm running the SOR kernel for a comparison. EA
with α = N/P and α = N/P2 showed the best performance.
While EA with α = 4 presented the worst performance.
Since SOR is a well-balanced application, all the processors
should have a normal workload. A very large value of α
like N/P guarantees that the workload state of each proces-
sor is always “normal” so that the processor can increase its
chunk size and reduce its execution time. Although SOR is
well-balanced, sometimes events such as cache misses, page
faults, and interprocessor communication delays can bring
some execution time variance among iterations. If we use a
very small value for α, such as α = 4, in the presence of in-
terference from such kinds of events, some processors take
their workload states as “heavy” and, therefore, decrease
their chunk size by a factor of two. Since we do not give a
limit for the chunk size for the EA variation, this decrease
of chunk size at an exponential rate may cause some proc-
essors to take a very small chunk so that the processor may
take only one iteration for each access to the local work
queue (similar to self-scheduling). This is why the EA (with α
= 4) spent much more time than the ML when the number
of processors is two or four. When the number of proces-
sors increases to six and eight, α = 4 becomes close to N/P2.
The same reason holds with α = 32 for EA. When
P = 2, the processors cannot determine their workload
states correctly due to the system interference and the small
value of α. As the number of processors increases, the
α = 32 gets close to the value of N/P2. Therefore, we had
the good performance of the algorithms with number of
processors four, six, and eight.

Fig. 7b presents the performance of the SOR application
on the KSR-1 using the CA adaptive variation with differ-
ent α values. We also show the curve for the ML algorithm
and the curve for the EA variation with α = 4 in order to
compare them. Fig. 7b shows that CA with α = N/P and

α = N/P2 performed the best among them all. CA with
α = 4 shows that too small a value of α (in comparison with

the value of N/P2) may cause a negative effect on the per-
formance of our adaptive algorithm due to system interfer-
ence. CA with α = 4 performed the worst among the other
CA curves. But we also notice that this curve is much lower
than that of the EA with α = 4. The reason is that we limit
the range of chunk size for the CA variation within

[P/2, 2P]. It guarantees that the processor takes at least 1
2P

of the remaining iterations to execute each access to the
local work queue.

5 CONCLUSION

By adaptively adjusting the loop allocation granularity ac-
cording to the workload and execution speed of each proc-
essor, our loop scheduling algorithm demonstrates better
performance than the affinity scheduling algorithm pro-
posed by Markatos and Leblanc in [6] and the dynamic
partitioned affinity scheduling algorithm proposed by
Subramaniam and Eager in [9]. The authors had shown that
the two algorithms presented the best performance among
all the loop scheduling algorithms. Our adaptive schedul-
ing algorithm is suitable for a wider range of application
programs. They can reduce the execution time not only for
well load-balanced parallel loops, but also for those load
unbalanced parallel loops. Our experiments show that the
overhead caused by collecting state information is not sig-

(a)

(b)

Fig. 7. Performance of SOR on the KSR-1: using EA with different α
values (a); using CA with different α values (b).

YAN ET AL.: ADAPTIVELY SCHEDULING PARALLEL LOOPS IN SHARED-MEMORY SYSTEMS 81

nificant comparing with the benefit gained. One important
conclusion from this research is that efficiently using run-
time information can significantly improve the efficiency of
loop scheduling algorithms.

Among the variations of the adaptive scheduling algo-
rithm, the EA, LA, and GA variations always demonstrate
better performance than the CA and HA variations. Al-
though EA, LA, and GA have higher risk than CA in terms
of causing the load-imbalance, and in terms of being much
more sensitive to the system interference, we have not ob-
served the worst performance phenomena in our case
studies, such as Ping Pong effect where the state of a proc-
essor is often switched between the lightly loaded and the
heavily loaded, to cause overwhelmed scheduling over-
head. In addition, the negative effect of the EA, LA, and GA
variations can be significantly reduced by selecting the ap-
propriate workload control constant α as N/P2. Currently,
we are developing an analytical model to determine opti-
mal values of α.

Machine architecture may be another important factor
that affects the performance of loop scheduling algorithms.
So far, we are only able to test our adaptive algorithm and
its variations on the KSR-1 and the Exemplar. Our experi-
mental results indicate that the algorithm’s performance is
quite independent to shared-memory architectures. How-
ever, the effectiveness of the adaptive algorithm is signifi-
cantly affected by the system size. When the system size
scales very large, the cost to collect runtime information
increases so that the advantages of the adaptive algorithm
is nullified by the increased overhead. So, the adaptive al-
gorithm is very suitable for scheduling the parallel loops
over a small number of processors.

ACKNOWLEDGMENTS

We appreciate Neal Wagner’s and Samir Das’ careful
reading of the manuscript and constructive comments. We
wish to thank the anonymous referees for their helpful
comments and suggestions. This work is supported in part
by the U.S. National Science Foundation under grants CCR-
9102854 and CCR-9400719, by the U.S. Air Force under re-
search agreement FD-204092-64157, and by the Air Force
Office of Scientific Research under grant AFOSR-95-1-0215.

REFERENCES

[1] CONVEX Exemplar Architecture. CONVEX Computer Corp., sec-
ond edition, document no. 710-004730-001, Nov. 1994.

[2] S.E. Hummel, E. Schonberg, and L.E. Flynn, “Factoring: A Practi-
cal and Robust Method for Scheduling Parallel Loops,” Comm.
ACM, vol. 35, no. 8, pp. 90-101, 1992.

[3] KSR-1 Technology Background. Kendall Square Research, 1992
[4] S. Lucco, “A Dynamic Scheduling Method for Irregular Parallel

Programs,” Proc. ACM SIGPLAN ’92 Conf. Programming Language
Design and Implementation, pp. 200-211, 1992.

[5] J. Liu, V.A. Saletore, and T.G. Lewis, “Safe Self-Scheduling: A
Parallel Loop Scheduling Scheme for Shared-Memory Multiproces-
sors,” Int’l J. Parallel Programming, vol. 22, no. 6, pp. 589-616, 1994.

[6] E.P. Markatos and T.J. Leblanc, “Using Processor Affinity in Loop
Scheduling on Shared-Memory Multiprocessors,” IEEE Trans.
Parallel and Distributed Systems, vol. 5, no. 4, pp. 379-400, Apr. 1994.

[7] L.M. Ni and C.E. Wu, “Design Tradeoffs for Process Scheduling
in Shared Memory Multiprocessor System,” IEEE Trans. Software
Eng., vol. 15, no. 3, pp. 327-334, Mar. 1989.

[8] C. Polychronopoulos and D. Kuck, “Guided Self-Scheduling: A
Practical Self-Scheduling Scheme for Parallel Supercomputers,”
IEEE Trans. Computers, vol. 36, no. 12, pp. 1,425-1,439, Dec. 1987.

[9] S. Subramaniam and D.L. Eager, “Affinity Scheduling of Unbal-
anced Workloads,” Proc. Supercomputing ’94, pp. 214-226, 1994.

[10] P. Tang and P.C. Yew, “Processor Self-Scheduling for Multiple
Nested Parallel Loops,” Proc. 1986 Int’l Conf. Parallel Processing,
pp. 528-535, 1986.

[11] T.H. Tzen and L.M. Ni, “Trapezoid Self-Scheduling: A Practical
Scheduling Scheme for Parallel Compilers”, IEEE Trans. Parallel
and Distributed Systems, vol. 4, no. 1, pp. 87-98, Jan. 1993.

Yong Yan is a PhD candidate in computer sci-
ence at the University of Texas at San Antonio.
He received the BS and MS degrees in com-
puter science from Huazhong University of Sci-
ence and Technology, Wuhan, China, in 1984
and 1987, respectively. He has been a faculty
member there since 1987. He was a visiting
scholar in the High Performance Computing and
Software Laboratory at UTSA from 1993 to
1995. Since 1987, he has extensively published
in the areas of parallel and distributed comput-
ing, performance evaluation, operating systems,

and algorithm analysis. He is a member of the IEEE Computer Society
and the Association for Computing Machinery.

Canming Jin received BS and MS degrees in
computer science from Huazhong University of
Science and Technology, Wuhan, China, in
1984 and 1987, respectively, and a second MS
degree in computer science from the University
of Texas at San Antonio in 1995. Before she
came to the United States, she lectured in the
Department of Computer Science in Huazhong
University of Science and Technology, China,
for about six years. She is currently working at
InterVoice Inc., in Dallas, developing reliable
distributed database systems. Her interests in-

clude high-performance software development, object-oriented pro-
gramming methodology, and parallel computing.

Xiaodong Zhang received his BS degree in
electrical engineering from Beijing Polytechnic
University in 1982, and his MS and PhD de-
grees in computer science from the University of
Colorado at Boulder in 1985 and 1989, respec-
tively. He is an associate professor of computer
science at the University of Texas at San Anto-
nio, where he is directing the High Performance
and Computing and Software Laboratory. His
research interests are parallel and distributed
computation, computer system performance
evaluation, and scientific computing. Dr. Zhang

is the current chair of the IEEE Technical Committee on Supercom-
puting Applications.

