
To have a better control over complex application and
architecture behavior, most analytical methods use hierar-
chical models. In [3], Adve provides a framework for paral-
lel program performance prediction models which well
characterizes most of the existing models by a hierarchy
of higher and lower level models. In the higher-level com-
ponent, task graphs [11, 13] are usually used to represent
the task-level behavior of the program. A task graph is a
directed acyclic graph in which each vertex represents a
task and each edge represents the precedence relationship
between a pair of tasks. There is no internal parallelism
inside a task, and a task must be executed sequentially.
This higher-level model component computes the overall
execution time assuming individual task execution times
are known. The lower-level components represent system-
level effects and are usually simulated by stochastic pro-
cesses [6, 13] or by some type of system overhead function
[10]. Individual task execution times are computed from
lower-level components.

Thomasian and Bay [13] propose a two-level model for
a class of programs which can be represented by directed
acyclic graphs. At the higher level, the system behavior is
specified by a Markov chain whose states correspond to
the combination of tasks in execution. At the lower level,
the transition rates among the states of the Markov chain
are computed using a queueing network solver, which de-
termines the throughput of the computer system for each
system state.

Vrsalovic et al. [15] develop an analytic model for pre-
dicting the performance of iterative algorithms. Using the
same approach, we predict the execution performance of
a program with a larger number of iterations based on the
performance of the same program with a small number of
iterations. However, the method in [13] focuses on iterative
algorithms and models the decomposition of a program
into processes by using pure analytic functions. The model
proposed in this paper focuses on broader categories of
applications. The hierarchical model in this paper distin-
guishes deterministic factors from non-deterministic per-
formance factors, and implicit communications from ex-
plicit communications. Both analytic and experimental
methods are combined performance prediction.

Kapelnikov et al. [6] propose a methodology that embod-
ies two modeling domains: the program domain and the
physical domain. In the program domain, a graphical model
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This paper presents a multiprocessor performance prediction
methodology supported by experimental measurements, which
predicts the execution time of large application programs on
large parallel architectures based on a small set of sample data.
We propose a graph model to describe application program
behavior. In order to precisely abstract an architecture model
for the prediction, important and implicit architecture parame-
ters are obtained by experiments. We focus on performance
predictions of application programs in shared-memory and
data-parallel architectures. Real world applications are imple-
mented using the shared-memory model on the KSR-1 and
using the data-parallel model on the CM-5 for performance
measurements and prediction validation. We show that experi-
mental measurements provide strong support for performance
predictions on multiprocessors with implicit communications
and complex memory systems, such as shared-memory and
data-parallel systems, while analytical techniques partially ap-
plied in the prediction significantly reduce computer simulation
and measurement time.  1996 Academic Press, Inc.

1. INTRODUCTION

1.1. Background

Two classes of methods have been used to predict multi-
processor performance: methods that employ simulation
tools to construct and run a detailed system model and
methods that use analytical techniques [6]. Simulation is
quite expensive in terms of its consumption of computing
resources, and it may be more suitable to focus on studying
a certain part of architecture and system performance.
Analytical methods that use a single model to abstract
both the application and the architecture usually construct
a single overhead function to capture the overall overheads
inherent in both parts. Such a single model is often too
simple to describe practically the complexity of application
programs and parallel architectures [4].

1 This work is supported in part by the National Science Foundation
under Grants CCR-9102854 and CCR-9400719, by the Air Force Office
of Scientific and Research under Grant AFOSR-95-1-0215, and by a grant
from the San Antonio Area Foundation. Part of the experiments were
conducted on the CM-5 machines in Los Alamos National Laboratory
and in the National Center for Supercomputing Applications at the Uni-
versity of Illinois and on the KSR-1 machines at Cornell University and
at the University of Washington.



putation and communication demands of the applications
would be difficult to apply widely, because it is not easy to
extract the communication demand of a parallel program
accurately. For example, in shared-memory machines such
as the KSR-1, a large amount of implicit network traffic and
contention can come from both explicit synchronization
statements and implicit communication effects such as
cache coherence. These implicit network activities are dif-
ficult to capture.

1.2. Semi-empirical Methodology

Instead of solely using analytical techniques, in our per-
formance prediction approach analytical methods are used
to capture as many deterministic performance factors as
possible. Implicit and ‘‘non-deterministic’’ application and
architecture parameters are obtained through experi-
ments. Analytical and empirical results are combined to
predict performance.

Like most of the previous work, our methodology is also
based on a two-level hierarchical model. In the higher
level, a graphical model called the thread graph is proposed
and is used to characterize parallel applications, and a
graphical algorithm is used to estimate the parallel execu-
tion time of a parallel application, assuming the elapsed
times of all individual segments and events in the thread
graph are known. Some novel features of the thread graph
include (i) the explicit representation of explicit communi-
cation and synchronization events, which enables all such
communications and synchronizations to be captured and
handled differently according to their underlying semantics
in determining the execution time of the application, and
(ii) the incorporation of a thread class and a cluster that
enable our graphical approach to model various language
constructs. The graphical algorithm traverses a thread
graph to estimate the parallel execution time of an applica-
tion, while at the same time it takes into account the effects
of various communication events and processor allocation
strategies. On the lower level, the elapsed times of individ-
ual segments and events in the thread graph are determined
with both analytic and experimental methods. Implicit and
non-deterministic system effects are obtained through ex-
perimental measurements. With our performance predic-
tion methodology, the performance of large applications
on parallel architectures can be predicted based on a small
amount of sampling data.

The rest of the paper is organized as follows. Section 2
gives a detailed description of our performance model and
methodology. Section 3 briefly describes the test beds for
the prediction model, the KSR-1 and the Connection Ma-
chine CM-5, and introduces the test seeds, Gauss elimina-
tion (GE), all pairs shortest path (APSP), and electromag-
netic scattering simulation application (EM) programs.
Section 4 presents the validation and performance predic-
tion results. Section 5 is a discussion of the difficulties
and limitations of the semi-empirical approach. Section 6
summarizes the work.

called a computation control graph is used to model a
program’s structure. Some novel features of computation
control graphs include flexibility in modeling loop con-
structs and multiple instantiations of tasks. The physical
domain consists of a queueing network that represents
both system resources and synchronization constraints that
are related to tasks’ interdependencies. Performance pre-
diction involves the process of constructing a Markov pro-
cess whose state space consists of all relevant states of
program execution, solving the closed queueing network
representation of the physical domain model to obtain
system throughputs, approximating state transition rates
from the system throughputs, and solving the Markov pro-
cess to obtain an estimate of the average program execu-
tion time.

Tsuei and Vernon [14] propose a hierarchical analytical
model to evaluate the relative importance of factors that can
limit speedup on MIMD shared memory multiprocessors.
Specifically, they use the hierarchical model to estimate
the relative impact of software structure, lock contention,
and hardware resource contention on speedup. The effect
of each factor in reducing the speedup is expressed as a
multiplicative efficiency factor. For a fairly general class of
parallel programs, the hierarchical model can be solved
without iterating among the submodels.

Adve [3] develops a simple deterministic model for par-
allel program performance prediction. A task-graph-based
representation is used to represent both program parallel-
ism and scheduling. A graph solution algorithm is used to
estimate the parallel execution time of a program. Deter-
ministic values represent mean task times, including com-
munication, and shared-resource contention computed
from a separate and stochastic model. The model is used
to predict the impact of system changes as well as program
design changes that affect load-balancing. In this paper we
propose a similar graph traversal algorithm for our thread
graph representation of a program. Instead of the system-
level model being solved on the fly, most of the non-deter-
ministic factors are taken care of through a lower-level
model before the graph traversal begins.

Menasc̃e et al. [10] also use a task graph for their higher-
level model component. Instead of using the Markov chain
and queueing network, Menasc̃e’s methodology estimates
the execution time of the parallel program based on the
interdependency between network delay and program exe-
cution. In [10], network delay is modeled as a function of
the network message injection rate, which in turn depends
on the total communication demand and estimated execu-
tion time of the program. The estimated execution time is
affected by the network delay. An iterative method is used
to solve a fixed-point system of equations.

There are several limitations to pure analytical methods
in general. First, analytical methods that use queueing
models make many assumptions about the application and
architecture. These assumptions may bring inaccuracies to
the prediction results. Second, methodologies that depend
on precise system overhead functions in terms of the com-
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2. THE PERFORMANCE MODEL AND METHODOLOGY

Many factors affect the performance of an application
on a parallel architecture. The major ones are (1) the
computation and communication (both explicit and im-
plicit) demands imposed on a parallel architecture by an
application and (2) how the parallel architecture is able to
fulfill these demands. In this section, we attempt to develop
a fairly complete representation of computation and com-
munication demands of a parallel application and to
achieve a good balance between analysis and measurement
to estimate the ability of an architecture to fulfill these de-
mands.

2.1. The Higher-Level Performance Model

Because most variations of the task graph have neglected
the detailed semantics of most communication and syn-
chronization events, a novel program representation called
the thread graph is proposed. The thread graph provides
more accurate and detailed information about the commu-
nication and synchronization events of an application. The
thread graph can be seen as a ‘‘transformation’’ or ‘‘expla-
nation’’ of a task graph.

2.1.1. Thread Graph. In the thread graph, a thread is
an abstraction of a logical thread of control. This concept
is slightly different from a thread in an operating system,
which is a more physical concept. For example, a thread
in Unix is a lightweight process that consists of a program
counter, private data and a stack. Events are used to repre-
sent communication points or control transitions in a
thread of control. Examples of events that mark control
transitions include entry and exit points of a loop and the
starting and ending points of an application. Communica-
tion edges consisting of communication events are used to
correlate relevant events and model cooperations among
the multiple threads of control. With the thread graph,
different types of communication events in an application
can be classified and treated differently. Figure 1 gives
some examples of how thread graphs can be used to model
different methods of communication. In Fig. 1, a pointed
line stands for a thread, a dark dot stands for an event, an
oval stands for a communication, and a pointed arc stands
for a loop. The figures in Fig. 1, from left to right, depict
how a communication edge and events are used to express
separated message send and receive, thread creation

16 XU, ZHANG, AND SUN

(fork), thread join, and synchronization barrier, respec-
tively.

In general, the number of threads of control involved
in a computation is not fixed. In a thread graph, the thread
class and cluster are used to model those language mecha-
nisms that can adapt to system size. An example of such
language mechanisms is a parallel region of KSR Fortran
[1]. A thread class is a template that can be instantiated
into different numbers of threads. A thread cluster is in-
stantiated from a thread class and dedicated to a common
goal. We will refer to the template that represents a class
of threads as a class thread, and a thread that is instantiated
from a class thread as an instance thread. Similarly, an
event or a segment in a class thread is called a class event
or segment, while an event or a segment in a instance
thread is called an instance event or segment.

Since loops that contain explicit communication events
can significantly affect the execution behavior of a parallel
program, such loops are expressed explicitly in the thread
graph. Loop entry and loop exit are special events that
represent control transitions. Both the entry and the esti-
mated number of iterations of a loop are recorded as attri-
butes in the corresponding loop exit event. Another attri-
bute of a loop exit event is the remaining number of
iterations of the corresponding loop. It is included to facili-
tate the traversal of a thread graph and is initialized to be
the estimated number of iterations of the loop.

Formally, a thread graph is a 3-tuple, P 5 (G, F, xv),
where

• G 5 hGij is an ensemble of parallel threads that cooper-
ate to solve the problem. Each Gi is in turn separated by
multiple events into segments hs j

ij, i 5 1, 2, ..., n, where n
is the total number of threads, and j 5 1, 2 ..., ki , where
ki is the total number of segments of the thread Gi . In
order that the structure of a program can be represented
in a hierarchical way, a segment in a thread graph can itself
be a thread graph or a thread cluster. This also provides
a way to express recursiveness. A thread graph is said to
be fully instantiated if all segments in it have no internal
parallelism. In the rest of the paper, when we talk about
a thread graph, we will assume it is a fully instantiated
thread graph unless otherwise stated. When a segment
corresponds to a thread cluster, the symbol ŝ is used in-
stead. The symbol Ĝ will denote a thread class or cluster.
Sometimes a segment can also be expressed as an ordered
pair of events, such as kes , etl, where es and et are events
on the same thread.

Let S represent all segments in the parallel program P.

• F is a set of events. An event either marks explicit
communication or transition of control. The events that
mark control transition include the starting and ending
points of an application, entry and exit points of a loop,
and branch points of code blocks.

• xv 5 hcij is a set of communication edges that denotes
explicit cooperation among the parallel threads, where

FIG. 1. Use of thread graphs to model different communication pat-
terns.



The time complexity of G is Q(e). Q(e) is a function of
the application parameters x and the number of available
processors N. The algorithm G can be seen as a kind of
measurement-based simulator, so in the worst case, Q(e)
will be of the same order as the time complexity of the
application being modeled. Fortunately, in most cases what
we need is only a very high-level abstraction of the pro-
gram, and the execution behavior of a thread cluster can
be approximated with that of one representative thread in
the cluster. This will greatly reduce the number of events
that must be traversed. One thing that worth mentioning
here is the time complexity of carrying out steps 4 and
5 in the G algorithm. In most cases, it is a constant or
proportional to the number of processors involved. And
in many cases, it can be made into a constant by sacrificing
extra space. For example, we can use hash tables for mes-
sages and global data structures for barriers or other global
communication events.

2.2. The Lower-Level Performance Model

In order to make our performance prediction methodol-
ogy applicable to as many real architectures as possible, we
construct the lower-level model according to the overhead
patterns in different programming models. In the lower-
level performance model both analytic and measurement
methods are combined to capture the ability of a parallel
architecture to fulfill the computation and communication
demands imposed by an application.

each ci is in the form ke j1
i1

, e j2
i2

, ..., e jr
ir
l, where in turn e jk

ik
is

an event on the thread Gik
, 1 # k # r, and r is the number

of threads that are correlated by the communication edge
ci . In general, Gij

? Gil
when j ? l.

2.1.2. Estimate of Parallel Execution Time. Once an
application program is represented by a thread graph P,
the following steps are conducted to obtain the parallel
execution time of the application with input parameter x
and the number of processors N:

1. Fully instantiate the thread graph P according to the
input x and number of processors N.

2. Obtain the elapsed times of all segments and events,
denoted by tt(P, x, N) and tte(P, x, N) through the lower-
level model.

3. Use a graphical algorithm, G, to traverse the fully
instantiated thread graph to estimate the parallel execution
time of the application. The inputs of G are the fully in-
stantiated thread graph, P(x, N), the elapsed times of all
segments, tt(P, x, N), the elapsed times of all events, tte(P,
x, N), and the processor scheduling strategy. When several
ready events occurs at the same time or there are more
threads than the number of processors, the processor
scheduling strategy takes this into effect. The scheduling
policies are incorporated into algorithm G. So far we have
assumed a random policy in selecting the ready events,
and assumed a time-sharing policy to deal with the situation
that the number of executable threads is larger than the
number of processors available. That is, all ready events
that occur at the same time have the same probability to
be selected as the next events to be processed, and all
active threads share the available processor resources with
the same priority when there are more active threads than
available processors. Thread migration is not considered
in algorithm G. It is possible to further incorporate new
scheduling strategies with minor changes to algorithm G.
Table I is a description of algorithm G at a high-level.

To obtain the time complexity of algorithm G, for any
event e [ F, we define L(e) as a set of loops that encompass
event e in a thread graph. L(e) is empty if e is outside any
loop construct. For any loop l in a thread graph, we define
Size(l) as the number of iterations of loop l. Then, the
number of times an event e is processed in traversing the
thread graph when carrying out the algorithm G, u(e),
will be

u(e) 5 p
li[L(e)

Size(li). (2.1)

Thus, the total number of events that are encountered
when traversing a thread graph, Q(e), is

Q(e) 5 O
e[F

u(e) 5 O
e[F

S p
li[L(e)

Size(li)D . (2.2)
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TABLE I
A Description of G at Higher Level

1: hPut all ready events into a ready event pool.j
2: While (there are ready events) do
3: h
4: Pick up one ready event, say es , according to the scheduling pol-

icy.
5: Process the event, es , according to its underlying semantics.
6: /* Check for more ready events, and put them into the ready

event pool.*/
7: Let et be the event that immediately follows es in the thread.
8: h
9: If (es is not a loop exit, or the remaining number of itera-

tions of the loop is zero)
10: h
11: Put et into the ready event pool.
12: Reset the remaining number of iterations of the loop,
if es is a loop exit.
13: j
14: If (es is a loop exit, and the remaining number of iterations
of the loop is nonzero)
15: h
16: Decrement the remaining number of iterations of the
loop by one.
17: Put the corresponding loop entry event into the ready
event pool.
18: j
19: j
20: j



2.2.1. Shared-Memory Programming Model. In a
shared-memory machine, many implicit communication
activities will affect the performance of an application.
These include remote memory accesses and cache coher-
ence activities.

The estimation of the elapsed time of segments in a
thread graph is based on the execution behavior of loop
constructs, which are the repetition of the same2 code
blocks. A segment, denoted by s, in a fully instantiated
thread graph can be separated into subsegments of sequen-
tial code blocks and loop constructs. Because a loop is, to
a great extent, the repetition of the same code blocks, the
basic idea of our lower-level performance model is to use
the performance of a small number of iterations of a loop
to estimate the performance of the loop with a larger num-
ber of iterations. Each iteration of a loop construct in a
shared-memory program basically consists of two major
parts: local processing and remote memory accesses. The
random effects inside a loop include the dynamic applica-
tion effects introduced by the conditional statements and
system random effects introduced by remote memory ac-
cesses. By measuring the performance of a loop with a
small number of iterations, we hope these empirical data
will imply both the deterministic and random effects and
can be used to estimate the performance of the loop with
a larger number of iterations.

A given segment, s, in a fully instantiated thread graph
can be separated into a set of subsegments, denoted by
hssj. Each ss is either a sequential code block or a loop
construct. If ss is a sequential code block, we can regard it
as a loop construct that has a constant number of iterations,
namely just 1. For each ss [ s, we define F (ss, x, N) to
be the estimated number of iterations that ss executes
when the application parameters are x and the number of
available processors is N. Let the symbol tt(ss, x, N) denote
the elapsed time of ss with the application parameter x on
N processors. Then tt(ss, x, N) can be approximated with
the formula

tt(ss, x, N) 8
F (ss, x, N)

F (ss, x0 , N0)
tt(ss, x0 , N0), (2.3)

where x0 is a set of application parameters with values
smaller than those of x, and N0 is the number of processors
involved in measuring the empirical data.3

Once the elapsed time of all subsegments of segment s
is estimated, the elapsed time of segment s with application
parameters x on N processors, denoted by tt(s, x, N), can
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be estimated with the formula

tt(s, x, N) 5 O
ssi[s

tt(ss, x, N). (2.4)

In practice, to obtain tt(s, x, N), we can group the subseg-
ments that have the same F (ss, x, N) together and model
tt(s, x, N) as a function of x, N and some undecided empiri-
cal parameters—in other words, analyze the computational
complexity of the entire segment in terms of x and N.
Instead of measuring the elapsed times of all individual
subsegments, we can measure the elapsed times of the
entire segment s with a small set of application parameters
of small value and solve the undecided empirical parame-
ters. An interesting problem motivated by this is how to
extract and apply application-independent empirical data,
greatly reducing prediction time.

When a thread cluster Ĝ executes without explicit com-
munication with other threads, we can determine the
elapsed time of the cluster as a whole. To do this, we
can approximate the elapsed time of the cluster with the
elapsed time of a representative thread in the cluster. We
usually choose a thread in a cluster that has the maximum
work load as the representative thread. It can also be
chosen according to different situations. Special care must
be taken to treat segments that cannot execute concur-
rently with other threads (segments corresponding to criti-
cal sections in the shared-memory programming model)
and to treat effects of the number of events in the commu-
nication edges. The elapsed time of Ĝ can be approxi-
mated as

tt(Ĝ, x, k) P O
s[Sp(G)

tt(s, x, k)

1 k O
s[Ss(G)

tt(ss, x, k) (2.5)

1 O
e[E(G)

tt(e, x, k),

where G is a representative thread in Ĝ, k is the number
of instance threads in the cluster, Ĝ, S s(G) is the set of
segments in G that cannot be executed concurrently, S p(G)
is the set of segments in G that execute concurrently with
other threads, and E(G) is the set of events in G.

Another important part of the lower-level performance
model is the estimation of the elapsed times of all explicit
communication events. In this paper, we use direct mea-
surement to obtain the elapsed times of the explicit com-
munication events involving different numbers of proces-
sors. We construct a dedicated execution environment for
each type of communication event and measure its elapsed
time directly. The reason for constructing such running
environments is to eliminate the effects of load imbalance
(for barrier) and contention (for lock), which have been
taken care of by the graph algorithm G.

2 Different iterations may not be exactly the same, due to conditionals
and dynamic system effects.

3 Note that the choice of x0 is very important for a good estimation.
Several factors that will affect the precision of the prediction include
dynamic application factors, such as data-dependent computation, and
dynamic system effects, such as the effect of the memory hierarchy
(see discussion).



we used as the test beds are the KSR-1 [1], which supports
shared-memory programming model, and the CM-5 [2],
which supports both message-passing and data-parallel
programming models. The problems we used as test
seeds are Gauss elimination (GE), all pairs shortest path
(APSP), and a large electromagnetic simulation (EM) ap-
plication [7].

3.1. Architectural Characteristics

3.1.1. The Shared-Memory KSR-1. The KSR-1 [1], intro-
duced by Kendall Square Research, is a ring-based, cache-
coherent, shared-memory multiprocessor system with up
to 1088 64-bit custom superscalar RISC processors (20
MHz). A basic ring unit in the KSR-1 has 32 processors.
The system uses a two-level hierarchy to interconnect 34
of these rings(1088 processors). Each processor has a 32-
Mbyte cache and a 0.5-Mbyte subcache.

The basic structure of the KSR-1 is the slotted ring, with
a ring bandwidth divided into a number of slots circulating
continuously through the ring. A standard KSR-1 ring has
34 message slots, 32 of which are designed for the 32 proces-
sors and the remaining 2 slots used by the directory cells
connecting to the next ring level. Each slot can be loaded
with a packet made up of a 16-byte header and a 128-byte
subpage (the basic data transfer unit in the KSR-1). A
processor waits for an empty slot to transmit a message.
A single bit in the header of the slot identifies it as empty
or full as the slots rotate through a ring interface of the
processor.

3.1.2. The Connection Machine CM-5. The CM-5 [2] is
the newest member of the Thinking Machines Connection
Machine family. It is a distributed memory multiprocessor
system which can be scaled up to 16K processors and sup-
ports both SIMD and MIMD programming models. Each
CM-5 node consists of a SPARC processor operating at
either 32 or 40 MHz, 32 or 128 MB of memory, and an
interface to the control and data interconnection networks.
The SPARC processor is augmented with four vector units,
each with direct parallel access to the node’s main memory.
This yields an aggregated memory bandwidth of 256 MB/
sec per processing node and a 128 MFLOPS peak floating-
point rate per processing node.

The parallel vector units on the CM-5 essentially make it
a hybrid between vector and parallel architectures. Parallel
variables are distributed among physical vector units.
Memory layout of parallel variables onto the vector units
is handled by system software, but may be overridden by
the user.

All communication between physical CM-5 nodes is via
packet-switched message passing on either the data or the
control interconnection networks. The data network uses
a fat-tree topology designed for low-latency communica-
tion of shorter messages. Global broadcasting, synchroni-
zation, and reduction operations are performed by hard-
ware in the control network.

2.2.2. Data-Parallel Programming Model. The major
overheads in the execution of a data-parallel program in-
clude implicit synchronizations and communications. Seg-
ment s can be separated into a set of subsegments, hssj,
where each ss is either a sequential code block or a parallel
code block. Similar to the shared-memory programming
model, a sequential code block can be regarded as a special
parallel code block with parallelism of one. A parallel code
block is similar to a thread cluster in a shared-memory
program, but simpler. A thread cluster here is simply a loop
construct that is distributed among multiple processors. We
define F (ss, x), the size of a parallel code block ss, as the
estimated number of iterations of the corresponding loop
construct. When there are N processors involved in execut-
ing the subsegment, the number of iterations one processor
will carry out is F (ss, x)/min(F (ss, x), N). Thus, the
elapsed time of ss with application parameter x and ma-
chine size N, tt(ss, x, N), can be approximated with the
formula

tt(ss, x, N) 5 L F (ss, x)
F (ss, x0)

min(N0 , F (ss, x0))
min(N, F (ss, x)) J tt(ss, x0 , N0),

(2.6)

where x0 is a set of application parameters of values smaller
than the ones of x, and N0 is the machine size used to
measure the empirical data. The effects of explicit commu-
nications and dynamic system effects are handled in the
same way as in the previous section. Once the elapsed
times of all the subsegments of a segment have been esti-
mated, the elapsed time of the segment s itself is then
approximated by

tt(s, x, N) 5 O
ss[s

tt(ss, x, N) 1 Osyn , (2.7)

where Osyn is the accumulation of synchronization over-
heads, vector startup times, and instruction dependency
overheads. This can be obtained by direct measurement
or solved as an empirical parameter. We notice that a
different segment may have a different value of Osyn . Simi-
lar to the lower-level performance model for shared-mem-
ory programs, we can group the subsegments that have
the same F together, model the tt(s, x, N) as a function
of x, N and some undecided empirical parameters, and
solve the unknowns through a small number of small-size
sample runs.

3. TEST BEDS AND SEEDS OF PERFORMANCE
PREDICTION METHODOLOGY

We validated the semi-empirical performance prediction
methodology by comparing the measured and predicted
parallel execution times of three different applications on
two different parallel machines. The parallel architectures
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3.2. Application Characteristics

3.2.1. Gauss Elimination. The Gauss elimination algo-
rithm consists mainly of an iteration of two parts: (1) deter-
mination of the pivot row and computation of the pivot
column, and (2) elimination of the remaining columns by
using the values in the pivot column. The shared-memory
version of Gauss elimination (GE) mainly parallelizes the
elimination process by employing multiple threads, where
multiple columns are eliminated simultaneously. In each
iteration, all of the threads must wait at a synchronization
point for the main thread to do the pivot. To make full
use of the multiple threads, the initialization of the matrix
is also parallelized. The thread graph representation of the
shared-memory version of the GE program is shown in
the left part of Fig. 2, where the thread in the left is the
main thread and the threads in the right form a thread
cluster. P is the number of processors employed, and N is
the size of the linear system. Edge k2, 3l is the initialization,
edge k3, 5l is pivoting, and edge k5, 7l is the elimination part.
The expressions beside the pointed arcs are the estimated
number of iterations of the loops in terms of P and N. The
data-parallel version of GE is different from the shared-
memory version. The initialization of the matrix is not
parallelized. While the shared-memory version parallelizes
the elimination of multiple columns, the data-parallel ver-
sion parallelizes the elimination of the elements in each
row (see the right part of Fig. 2).

3.2.2. All Pairs Shortest Path. The all pairs shortest path
(APSP) problem calculates the shortest paths between all
pairs of nodes in a weighted directed graph. The parallel
algorithm of all pairs shortest path is based on Dijkstra’s
sequential algorithm. Here we only implemented the
shared-memory version of APSP on the KSR-1. It uses a
path matrix to store the connections among nodes. For a
given number of threads, the partition of the shortest path
searching among threads can be done statically. Each
thread is responsible for its shortest path. The program
structure of the shared-memory version of the APSP pro-
gram is mainly represented by a thread cluster shown in
Fig. 3. In Fig. 3, P is the number of processors employed,
and N is the size of the matrix.
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3.2.3. The Electromagnetic Scattering Application. This
application simulates electromagnetic (EM) scattering
from a conducting plane body. In the simulation model, a
plane wave from free space defined as region ‘‘A’’ in the
application is incident on the conducting plane. The con-
ducting plane contains two slots which are connected to a
microwave network behind the plane. Connected by the
microwave network, the electromagnetic fields in the two
slots interact with each other, creating two equivalent mag-
netic current sources in the slots so that a new scattered
EM field is formed above the slots.

The well-known moment method [7] is used for the
numerical model and simulation. First, the loaded slots
are imitated. Second, an equivalent admittance matrix of
region ‘‘A’’ is calculated by using the pulse basis mode
function expansion. Then intermediate results of the exci-
tation vector and coefficient vectors are obtained based
on the first two computations. At this stage the resulting
EM scattering field is thus simulated by computing a large
linear system called the EM strength matrix. There are four
parameters representing characteristics of the equivalent
magnetic current originally formed by the penetrating inci-
dent EM field. These parameters are used as mode function
expansions and the number of pulse functions in the mo-
ment method. Another parameter used for visualization
purposes is the number of grid points for discretizing the
visualized EM scattering field. The parameters have a di-

FIG. 2. The thread graph representation of the GE programs.

FIG. 3. A thread graph representation of the APSP program on the
KSR-1.



prediction ratio as

Rconservative(A, x, N) 5
T actual

p (A, x, N)
Tsample(A) 1 Testimate(A, x, N)

. (4.8)

We call Eq. (4.8) conservative because, in practice,
Tsample(A) is used to predict the performance of an applica-
tion with a wide range of application parameters. In such
cases, the time spent to measure the empirical data can
be neglected.

Let Tp(A, x, N) denote the estimated parallel execution
time of the application A with parameter x on N processors.
The error of a prediction method is defined as

E(A, x, N) 5 UT actual
p (A, x, N) 2 Tp(A, x, N)

T actual
p (A, x, N) U . (4.9)

The average error, Ē (A, X, N), which is the average
error on a set of measured points when N processors are
involved, is defined as

Ē(A, X, N) 5
ox[X E(A, x, N)

uXu
, (4.10)

where uXu is the number of points measured. In practice,
the measured points should be distributed as evenly as pos-
sible.

4.2. Performance Prediction on the KSR-1

4.2.1. The GE Program on the KSR-1. In this section
we compare the predicted and measured parallel execution
times of the GE program on the KSR-1. To measure the
empirical data, the sizes of the sample runs used were
N 5 170 and N 5 410 on 1 processor, N 5 210 and N 5
370 on 2 processors, N 5 240 and N 5 400 on 8 processors,
N 5 160 and N 5 320 on 16 processors, N 5 120 and
N 5 480 on 24 processors, and N 5 192 and N 5 240 on
48 processors.

Figure 5 compares the predicted and measured parallel
execution times of the GE program. The application pa-
rameter N is scaled from 50 to 800 on 1 processor, from
50 to 1000 on 2 processors, from 100 to 2000 on 8 proces-
sors, from 100 to 1600 on 16 processors, and from 100 to
2400 on 24 and 48 processors. The left figure of Fig. 5
reports the validation results on 1, 8, and 24 processors
while the right figure reports the results on 2, 16, and
48 processors.

Table II reports the effectiveness of the semi-empirical
approach in predicting the performance of the GE pro-
gram. From Table II, we find that, in most cases, the aver-
age errors are less than 10%, and the greatest average
error is only 12.12%. Table II also shows good conservative
prediction ratios.

4.2.2. The APSP Program on the KSR-1. Figure 6 re-
ports the predicted and measured parallel execution times

rect impact on the computational requirements and simula-
tion resolution of the moment method. For detailed infor-
mation on the numerical method and implementations, the
interested reader may refer to [7, 16].

The shared-memory implementation of the EM program
is constructed mainly by a thread cluster (see Fig. 4). All
edges except edge k5, 6l are loops. Edge k5, 6l corresponds
to a critical section. At the end of each segment, there is
a barrier. The input parameters of the EM simulation are
I, J, M, and N, which determine the problem size of the
simulation. The ranges of I and J we studied are from 5
to 10, and the ranges of M and N are from 20 to 256. For
the data-parallel version of the EM application, instead of
multiple threads, large data sets are declared as parallel
shaped data to be physically distributed across the pro-
cessing nodes. Each processing node will perform opera-
tions simultaneously on its assigned section of the data
sets. Repeated operations in different iterations in the se-
quential program are carried out concurrently by virtual
processors in the system.

4. VALIDATION AND PREDICTION RESULTS

In this section, we first give some simple metrics to evalu-
ate the effectiveness of the performance prediction
method. Then, we report the prediction and validation
results using the three applications on two parallel ma-
chines.

4.1. The Effectiveness of a Performance
Prediction Method

A major purpose of performance prediction of a com-
plex system is to use as little time as possible while ob-
taining reasonably high accuracy.

Let T actual
p (A, x, N) denote the actual parallel execution

time of application A with its parameter x on N processors,
let Tsample(A) denote the time spent to gather the sample
data, and let Testimate(A, x, N) denote the time spent to
estimate the parallel execution time excluding the time
to obtain the sampling data. We define the conservative
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FIG. 4. A thread graph representation of the EM simulation program
structure on the KSR-1.



of the APSP program on the KSR-1. The numbers of
processors are 2, 8, 16, 24, and 48, respectively, and the
sample data are collected when the application parameter
is set in a way similar to that for the GE program, that is,
N 5 100 and N 5 200 on 2 processors, N 5 96 and N 5
160 on 8 processors, N 5 160 and N 5 400 on 16 processors,
N 5 240 and N 5 480 on 24 processors, and N 5 192 and
N 5 240 on 48 processors.

Table III reports the effectiveness of the semi-empirical
approach in predicting the performance of the GE and
APSP programs on the KSR-1. Table III shows good con-
servative prediction ratios and high precisions.

4.2.3. The EM Program. To predict parallel execution
times of the EM program, we collected the sample data
by setting the application parameters I and J to 5 and M
and N to 20.

The predicted and measured parallel execution times of
the EM program on the KSR-1 are compared in Fig. 7.
In the left figure, parameters I and J are fixed at 5, and
parameters M and N are scaled from 20 to 256. The num-
bers of processors involved are 10, 20, and 60, respectively.
In the right figure, parameters I and J are further increased
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to 10, and all other conditions remain the same with the
left figure. Like that of the GE and APSP programs, in
Fig. 7 sample data on the same number of processors are
used to predict the parallel execution time and to capture
effects of remote memory accesses and cache coherence
activities. The predicted results reasonably matched the
actual execution times.

To show the effectiveness of the semi-empirical ap-
proach in this case, Table IV summarizes the conservative
prediction ratios and average errors for different applica-
tion parameters and machine sizes. We notice that the
maximum average error of the predicted results is only
about 6%. In the average case, the deviations are around
5%.

4.3. Performance Prediction on the CM-5

4.3.1. The GE Program. Figure 8 compares the pre-
dicted and measured parallel execution times of the GE
program on the CM-5. The numbers of processors involved
are 32, 64, and 128 processors operating in the scalar mode,
and 128 processors operating in the vector mode, respec-
tively. The application parameter N was set to 64 and 160
when sample data were collected. Because the program

FIG. 5. Predicted and measured parallel execution times of the GE program on the KSR-1.

TABLE II
Effectiveness of the Semi-Empirical Approach in Predicting

the Performance of the GE Program on the KSR-1

No. of Prediction Prediction
processors Average error ratio (average) ratio (max)

1 12.12% 5 10
2 9.98% 8 28
8 5.22% 17 43

16 8.41% 5 16
24 9.32% 7 18
48 9.41% 6 17

TABLE III
Effectiveness of the Semi-Empirical Approach in Predicting

the Performance of the APSP Program on the KSR-1

No. of Prediction Prediction
processors Average error ratio (average) ratio (max)

2 3.18% 34 106
8 5.00% 21 71

16 6.21% 21 60
24 6.00% 11 30
48 11.98% 5 14



dominant number of operations of the EM program on
the CM-5 are carried out on parallel data sets with sizes
of I 1 J, M 3 N and M, and some other data sets of
constant sizes. Because the parallel fragments of the EM
program are much more coarse-grained than those of the
GE program, we neglected the synchronization and vector
startup overheads, and so the parallel execution time of
the EM program is modeled as

TP 5
I 1 J

min(P, I 1 J)
cI1J 1

MN
min(P, MN)

cMN ,

(4.11)

1
M

min(P, M)
cM 1

cWAC

min(P, wac)
,

structure abstraction of the GE program is fairly detailed,
the predicted results are fairly precise. Table V gives the
effectiveness of the semi-empirical approach in predicting
the parallel execution time of the GE program on the CM-
5. An interesting phenomenon is that when the processors
operate in the vector mode, the predicted results are more
precise when the same number of processors is involved.
This is because the effects of global communication are
less significant and more computation can be conducted
in each node locally.

4.3.2. The EM Program. Since the structure of the data-
parallel program is highly regular, in this section a higher-
level abstraction of the program is used. We find that the
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FIG. 6. Predicted and measured parallel execution times of the APSP program on the KSR-1.

FIG. 7. Predicted and measured parallel execution times of the EM program on the KSR-1.



where P is the number of processors involved, cI1J , cMN ,
and cM are the normalized overall elapsed times of all
operations on the corresponding data sets, cWAC is used to
approximate the data sets whose sizes are independent of
application parameters, and wac stands for the weighted
average constant size and is used to approximate the effects
of operations on data sets of constant sizes.

Because the program abstraction is much greater than
that of the GE program, the precision of prediction is

24 XU, ZHANG, AND SUN

not as good as with the GE program. For example, the
maximum average error of the predicted results is up to
14.9%. Table VI summarizes the effectiveness of the semi-
empirical approach in predicting the performance of the
EM program on the CM-5, and Fig. 9 compares the pre-
dicted and measured parallel execution times.

FIG. 8. Predicted and measured parallel execution times of the GE program on the CM-5.

TABLE IV
Effectiveness of the Semi-Empirical Approach in Predicting

the Performance of the EM Program on the KSR-1

No. of Prediction Prediction
processors Average error ratio (average) ratio (max)

10 4.48% 4 13
20 5.69% 4 12
60 5.30% 3 8

TABLE V
Effectiveness of the Semi-Empirical Approach in Predicting

the Performance of the GE Program on the CM-5

No. of Prediction Prediction
processors Average error ratio (average) ratio (max)

32 2.70% 33 101
64 2.55% 35 97

128 9.0% 31 94
128 2.92% 32 86
(vector)



parameter is large, the conservative prediction ratio can
be proportionally high. The conservative prediction ratio
is a conservative measure. In reality, the same sample data
can be used to predict parallel execution times of an appli-
cation with the application parameter scaled in a wide
range. The real prediction ratio is the summation of the
total individual conservative prediction ratios when pre-
dicting the performance of the application with different
application parameters.

5. DISCUSSION

We have attempted to develop a fairly complete repre-
sentation of computation and communication demands of a
parallel application and to achieve a good balance between
using analytical techniques and using experimental mea-
surements in predicting multiprocessor performance. In
the higher-level model component, a graphical tool is used
to model the communication and synchronization structure
of an application. The time complexity of graphical algo-
rithm G is ‘‘moderate’’ as a function of the number of
events that must be traversed. In the lower-level model,
the execution behavior of loops with a small number of
iterations is used to estimate the performance of the loops
with a larger number of iterations. Dynamic system and
application effects are captured with measurements. For
the applications and the ranges of application parameters
we have studied, this methodology demonstrates reason-
able prediction accuracy and good time reduction.

The following factors will affect the accuracy of our
predictions in practice:

• dynamic system effects, which include network con-
tention, remote memory accesses, and operating system in-
tervention,

• dynamic application factors, such as the conditionals,
and data-dependent computation,

• the choice of appropriate x0 and N0 ,
• the disturbance and inaccuracy in measuring the em-

pirical data,
• how accurately F (ss, x, N) can be estimated and the

effort involved in the estimation, and
• automatic program restructuring by the compiler that

causes incomplete and implicit parallelism.

To show how dynamic system effects can affect predic-
tion accuracy, we fix the application parameters and use
empirical data obtained from systems of different sizes
to predict performance. Figure 10 presents the predicted
performance of the EM simulation program with fixed
application parameters, and using sample data collected
from sample runs on different numbers of processors. From
Fig. 10, we observe much larger deviations when empirical
data on a different number of processors are used. How-
ever, the results also showed that the actual execution time
of the EM program is slightly longer than the predicted
execution times when the empirical data on a smaller num-
ber of processors are used and slightly shorter than the

4.4. Summary of the Validation

• If the program abstraction is sufficiently detailed (for
instance, like the thread graph representations of the
shared-memory version of the EM or the shared-memory
and data-parallel versions of GE) the predicted results of
the semi-empirical method can be reasonably precise.

• Tables IV and V indicate that the larger the machine
size, the smaller the conservative prediction ratio. There
are two reasons for this. First, when the sample data are
collected, the problem size must be tuned according to the
machine size, so that each processing node can have
enough workload to make sure that the sample data reflect
the nature of the computation and communication. Second,
the actual execution time will be shorter on a larger ma-
chine for the same application parameter.

• The larger the computation complexity of a program,
the better prediction ratio we would expect. A better pre-
diction ratio can also be expected for programs with smaller
inherent parallelism. This is because the larger the compu-
tational complexity or smaller inherent parallelism of a
program, the longer the program will execute as the appli-
cation parameter scales.

• The conservative prediction ratio, or the time reduc-
tion, can be as high as tens or hundreds when the problem
size is moderately large. In practice, when the application
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TABLE VI
The Average Error of the Semi-

Empirical Approach in Predicting the
Performance of the EM Program on the
CM-5

Application parameter Average error

I, J 5 10; M, N 5 128 14.9%
I, J 5 10; M, N 5 256 5.94%

FIG. 9. Predicted and measured parallel execution times of the EM
program on the CM-5.



predicted execution time when sample data on a larger
number of processors are used. This indicates that it is
possible to estimate the upper and/or lower bound(s) of
the performance if the sample data from the same number
of processors are not available.

As to the dynamic application effects, because the per-
formances of loops with a small number of iterations are
used to estimate the performances of ones with a larger
number of iterations, the effects of data-dependent compu-
tations inside the loops should be partially implied in the
empirical data. While it is very hard to fully validate this
assumption, for the applications we have studied, we do
observe quite satisfactory estimation. However, the accu-
racy is highly application dependent and will also depend
on how we choose the sizes of the sample runs. In addition
to the dynamic application effects, some important factors
that are highly dependent on the choice of x0 include (1)
the effect of the memory hierarchy, the effect of caching
when x0 is small scale, and the effect of paging when x is
in large scale and (2) the effect of load imbalance. In the
validation section, we have carefully chosen x0 to ensure
a perfectly balanced workload to simplify our calculation.
The effect of the memory hierarchy is not significant for
the applications and problem sizes we studied. To capture
the effects of memory hierarchies, a possible solution is to
separate problem sizes into different ranges—the range
that the data can be completely held in the caches, the
range that the data can be held in the local memory—and
the range that the data must be swapped in and out of
secondary memory—and measure empirical data for each
range. This may decrease the time reduction in estimating
performance. An interesting research direction motivated
by this is how to extract and use application- and architec-
ture-independent empirical data.
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Other factors that can cause inaccuracies in the predic-
tion results are the instrumentation perturbation in mea-
suring the empirical data and the compiler transformations
that cannot be captured by just analyzing the source code.
This includes the effect of incomplete parallelism of the
compiler-generated code. So far we have only considered
programs with explicit parallelism, and we use actual mea-
surements to capture the effect of incomplete and implicit
parallelism. To reduce the instrumentation perturbation,
we should insert as little instrumentation code as possible.
To capture the transformations conducted automatically
by the compiler, three possible solutions are (1) to select
important instrumentation points only (our current ap-
proach), (2) incorporate some analysis tools to capture
structures of implicit and/or incomplete parallelism gener-
ated by the compiler, and (3) to analyze and to instrument
the transformed code. The third solution is not economical
unless it can be conducted automatically.

As to the estimation of F (ss, x, N), for large categories
of applications such as numerical problems and scientific
applications, F (ss, x, N) is often a simple (polynomial)
function of x and N. For applications with more dynamic
execution structures, program slicing may be an effective
way to estimate F (ss, x, N). However, the effectiveness of
doing this is highly dependent on the overhead involved,
and it is also highly dependent on the application programs.

There are several limits of our work at the current stage.
First, we assume that a fairly ‘‘complete’’ program is avail-
able for measurements. (Although this limitation can be
partially offset by implement parts of an application by
demand, this will inevitably add more burden and intro-
duce more inaccuracy.)

Second, to estimate program performance accurately
with P processors requires one or more measurements of

FIG. 10. Predicted and measured parallel execution times on the KSR-1.



prediction results. There are three restrictions to the pro-
grams we can model at present. First, the communication
structure of the program should be as regular as possible.
Second, the number of iterations of the major loop in terms
of application parameters and system size should be easily
determined by static analysis or by program slicing with
small overhead. Finally, the change of application parame-
ters should not significantly change the communication
pattern of the program.
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