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g Performance 
evaluations of 
software-based mutual 
&xclu.sion algorithms 
must take into account 
the effects of 
architectures and 
systems. The authors 
demonstrate a 
framework for such 
evaluation, and use 
the framework as a 
basis for designing 
more efficient 
algorithms. 
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hared-memory multiprocessor systems must provide facilities 
called critical sections for programs to share physical and logical 
resources. Only one processor at a time can process a CS. This 
requires a method to ensure mutually exclusive access to the log- 
ically atomic operations of a shared CS. 

Two approaches to mutual exclusion are hardware algorithms, which 
use primitives, and software algorithms, which require only software read 
and write instructions (see the “Hardware primitives versus software algo- 
rithms” sidebar). 

We previously examined architecture and system effects on spin-locks, 
a type of hardware a1gorithm.l Extensive experiments on two different 
shared-memory multiprocessor systems-Bolt, Beranek, and Newman’s 
TC2OOCl and Kendall Square Research’s KSR-l-showed that the exe- 
cution Elehavior of these algorithms, and therefore their performance, 
differs significantly. These machines use different types of interconnec- 
tion networks and cache/memory systems. This construction produces 
different types of nonuniform memory access (NUMA) execution pat- 
terns for the mutual exclusion algorithms. 

We’ve concluded that architecture and system effects should be seri- 
ously considered when developing and implementing mutual exclusion 
algorithms. Our experience has motivated us to investigate comprehensive 
performance effects on portable software mutual exclusion protocols. 

However, standard analyses of mutual exclusion algorithms do not fully 
account for these effects. For example, these analyses express the mem- 
ory-access complexity of an algorithm as a function of IV, the number of 
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Properties of algorithms 
Contention-sensitive 1 

Time-bounded Interconnection network structure 

Starvation freedom Network contention 
Deadlock freedom 

Architecture and system effects 
Process-response time (scalability) 

Execution complexities 

We propose a comprehensive per- 
formance-evaluation frameworkthat 
examines the overhead patterns inher- 
ent in the mutual exclusion algorithms 
and in the architectures on which the 
algorithms run. We used this frame- 
work to evaluate several representative 
mutual exclusion algorithms one the 
BBN TC2000 and KSR-1. 

Our research with this framework 
has helped us determine characteristics 
of efficient software mutual exclusion 
algorithms. Based on these character- 
istics, we’ve developed three mutual 
exclusion algorithms, two of which 
combine good features of two of the 
representative algorithms. Tests show 
that these new algorithms are fast and 
can be highly scalable. 

Figure I. Performance-evaluation framework for mutual exclusion 
algorithms based on the properties of algorithms, execution 
complexities, and architecture and system effects. 

remote accesses to shared memorv. This notation has a framework / 

Our framework is based on three performance factors: 

1. properties of algorithms, 
2. execution complexities of algorithms, and 
3. architecture and system effects on algorithms. 

limited ability to represent the algorithm’s complexity, 
for two reasons. First, in a modern NUMA shared- 
memory system, remote memory accesses can be con- 
structed at more than one level, which can cause differ- 
ent delays for different accesses. Second, data-access 
distribution can strongly affect network contention. For 
example, the same number of hot-spot remote accesses 
and the same number of distributed remote accesses will 
create significantly different network contention over- 
heads, which results in much lower performance for the 
hot-spot case. Algorithm analyses describing a general 
number of remote memory accesses will not fully and 
precisely express the overhead patterns in mutual exclu- 
sion algorithms or the effects of interconnection net- 
work architectures. 

Figure 1 gives a 3D view of the framework. 

PROPERT~ESOFALG~RITHMS 
A mutual exclusion aIgorithm has three basic properties: 

a Mu&al exclusion guarantees that only one process exe- 
cutes the CS at any time. 

0 Deadlockfi-eedom guarantees that processes will not 
be blocked forever. 
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l Starvation-fi-eedom guarantees that each requesting 
process eventually executes the CS. 

Some additional properties impose stronger condi- 
tions on an algorithm, but are not required for the algo- 
rithm’s correctness. (Stronger requirements might actu- 
ally significantly increase the management overhead and 
slow down the mutual exclusion execution.) Three 
major properties are 

l FIFO, which guarantees a fair order for each request- 
ing process to access the CS. To maintain this prop- 
erty, higher overhead is inevitable. Because a shared- 
memory system does not have a global clock, 
additional software structures must form and main- 
tain a FIFO process queue. 

l The time-bound condition, which requires placement of 
an assumed time bound on the instruction speed or on 
the execution time of the CS. Based on this property, 
mutual exclusion algorithms fall into two categories, 
following Lamport’s two algorithms (see the “Early 
mutual exclusion algorithms” sidebar). The first requires 
time bounds; the second does not. Algorithms that do 
not require time bounds are more useful in practice. 

l Contention sensitivity, which relates to process depen- 
dence. The performance of a good contention- 
sensitive mutual exclusion algorithm should be affected 
only by the number of processes contending for the CS, 
not by the total number of executing processes. 

EXECUTIONCOMPLEXITIESOFALG~RITHMS 
Instead of theoretical memory-access complexity, we pro- 
pose a set of execution complexities, which cover the 
effects of architecture, system, and software implementa- 
tion on an algorithm. Execution complexities consist of 
four execution measurements and analyses: process-response 
time, &a&g deqee, haying distance, and release cost. 

Process-response time measures the average delay for 
a requesting process to access the CS; this delay indi- 
cates the algorithm’s overall execution performance. 
The measured response time might not be consistent 
with the result of the algorithm’s theoretical complexity 
using the total number of remote accesses. The follow- 
ing three measures provide further insights into the exe- 
cution performance. 

Sharing degree (S+) for a shared variable defines the 
maximum number of process threads concurrently 
accessing the variable. The function Sdeg(v) returns the 
sharing degree of variable v. This measure lets us exam- 
ine shared-variable access distributions for an algorithm 
to detect hot spots (areas of strong contention, which 
we’ll discuss in more detail later). The average sharing 
degree for an algorithm is 

s _ ‘, ” 1 ‘dt&+) 
deg - k ’ 

wherevifor(i= 1, . . . . K) represents the shared variables 
in the algorithm. 
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Sharing distance (s&s) for a shared variable defines 
the maximum remote-access time to the variable from 
a processor. The function Sdis(v) returns the sharing dis- 
tance of variable v. This measure lets us evaluate and 
compare NUMA effects on the algorithm. The average 
sharing distance for an algorithm is 

s = ‘i f 1 ‘dis(‘1) 
dls k ’ 

,Release cost (R,,,J measures the required overhead 
for an algorithm to release the lock and exit the CS. 
Generally, when a process exits the CS, that process 
informs another requesting process to enter the CS. The 
most efficient way to perform this is to inform only-one 
process in the system. However, on a cache-coherent 
shared-memory system, the situation is more complex 
because all requesting processes might have to be 
informed, thus causing cache invalidations. There might 
also be some additional software overhead in algorithm 
executions, such as changing the spinning status of the 
requesting processes when a new process enters the CS. 
The release cost might degrade the performance of a 
mutual exclusion algorithm significantly. 

Parallel-computing performance on scalable shared- 
memory architectures depends mainly on the structure 
of the interconnection networks linking processors to 
memory modules, and on the efficiency of the memory- 
and cache-management systems. Different applications 
interact with these architectural factors in different ways. 
Therefore, designers of architectures and algorithms 
can benefit from a comparative performance evaluation 
that considers the architecture, the application algo- 
rithm, and the relationship between the two. Three 
major factors affect mutual exclusion algorithm perfor- 
mance in shared-memory systems: memory hierarchies 
from interconnection network structures and NUMA 
models, cache eficts from NUMA models, and hot spots 
causing network and memory contention. 

Memory hierarchies 
The choice of interconnection networks to link proces- 
sors to cache or memory modules can make NUMA 
times vary drastically, depending on the access patterns 
involved. Examples of interconnection networks for 
large-scale shared-memory multiprocessors are the multi- 
stage interconnection network (BBN Butterfly systems), 
hierarchical ring structure (KSR systems), cluster-based 
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network (the Dash system), hierarchical bus (the Data- 
Diffusion Machine (DDM) system), and torus network 
(the Cray T3D system). 

In large NUMA architectures, the memory-system 
organization also affects communication latency. 
NUMA memory systems fall into three types in terms 
of data migration and coherence: 

Cache-coherent iVU&!% (CC-NUI7CIA). Each processor 
has an associated cache and a designated portion of 
the global shared memory. Cache coherence might 
be maintained by a directory-based cache-coherence 
protocol. The Dash system is an example. 
Non-cache-coherent NUM (Non-CC-NUM). This 
architecture either supports no local ‘caches (for 
example, the BBN GP10002), or provides a local 
cache that disallows caching of shared data, to avoid 
the cache-coherence problem (for example, the BBN 
TCZOOO’). 
Cache-only memoy architectwe (COW). Like CC- 
NUMA, in COMA each processor has a cache and a 
designated portion of the global shared memory. 
However, COMA augments the memory of each 
processor to act as a large cache. A write-invalidate 
protocol maintains consistency among cache blocks 
in the system. A COMA system allows transparent 
migration and replication of data items to the proces- 
sors where they are referenced. The KSR-1 is a 
COMA system.3 

Cache effects 
Caches let shared-memory systems effectively reduce 
average memory-access time by exploiting temporal and 
spatial localities. Temporal locality occurs in many pro- 
grams: once a location (data or instruction) is referenced; 
it is often referenced again very soon. Spatial locali is 
the probability that once a location is referenced, a near- 
by location will be referenced soon. A local spin in a 
mutual exclusion algorithm demonstrates temporal 
locality. Data prefetching is another important cache 
mechanism, which generally exploits a program’s spatial 
locality. Mutual exclusion algorithm implementations 
can effectively use prefetching to reduce the number of 
memory accesses. 

However, false sharing and cache pollution are two side 
effects of cache prefetching. False sharing occurs when 
a cache miss causes the system to bring back a block of 
data containing more information than the required 
block. With an invalidation-based coherence protocol, 
false sharing will generate unnecessary invalidation 

IEEE Parallel &  Distributed Technolqgy 



Table 1. Additional properties and complexities of several mutual 
exclusion algorithms. 

ALGORITHM FIFO TIME-BOUND CONTENTION SENSITIVITY #ACCESSES 

B-L No No Moderate W 
FIFO Yes No Moderate 
Lamoort No No Moderate 

overheads. A mutual exclusion algo- 
rithm can eliminate false sharing by 

YA ’ Yes 
d-ary No 
~~--~ 

No No/l -sensitive 
No Moderate 

O~loiin)l 
~ --~ I I  

Wxb(N 

distributing shared variables well. 
Cache pollution means that additional 
data loaded in a cache for a cache miss are invalidated 
before they are referenced. Cache pollution is due to 
limited cache size and concurrent writes to the shared 
data. Cache pollution degrades system performance by 
consuming limited bandwidth between processors and 
memory modules. The additional invalidation time 
increases the average memory-access delay in a mutual 
exclusion algorithm. 

Hot spots 
Hot-spot contention on a network-based shared- 
memory architecture occurs when a large number of 
processors try to simultaneously access a globally shared 
variable across the network. A mutual exclusion opera- 
tion generates a hot spot in a system. Hot-spot effects 
might degrade overall network traffic, not just the 
traffic to shared variables. However, hot-spot effects 
vary on different architectures. 

A SCALARILITY METRIC FOR MUTUAL EXCLUSION 

ALGORITHMS 

A comprehensive performance factor for evaluating and 
comparing mutual exclusion algorithms is scalability: 
how their performance on parallel machines increases as 
the number of processors increases. We have proposed 
a latency metric that uses network delay to evaluate par- 
allel computing scalability.4 Based on this concept, we 
use the following metric to measure and compare the 
scalabilities of mutual exclusion algorithms. 

For a given mutual exclusion algorithm implementa- 
tion on a given machine, let L(N) be the average latency 
when the algorithm runs on Nprocessors, and let L(M) 
be the average latency when it runs on N’ > N proces- 
sors. The average latency time is the process-response 
time. This is because we consider the total execution 
time of a mutual exclusion primitive to be an important 
latency source. 

If the system size changes from Nto N’, the point-to- 
point scalability is 

Jw9 scale(N,N’) = L(N3. 

In practice, this equation’s value is less than or equal to 1. 
A large value means that the program and the architec- 
ture have small increments in latencies, providing effi- 

cient utilization of an increasing number of processors. 
On the other hand, a small value means large increments 
in latency. Because the processor increment in execu- 
tion directly affects the scalability measurement, we use 
this increment as a weight variable. The weighted average 
scalability for a mutual exclusion algorithm running on 
a multiprocessor system up top processors is 

This metric concerns relative latency increments rather 
than absolute cycle times, so it can be used for scalabil- 
ity comparisons among different architectures. 

Four representatiue mutual 
exclusion algorithms 
To demonstrate our framework’s usefulness, we chose 
these mutual exclusion algorithms: 

l The B-L algorithm: an algorithm independently pro- 
posed by Burns and Lynch5 and Lamport.(j 

l Lamport’s algorithm without the time-bound 
requirement.7 

l A FIFO-based algorithm proposed by Lycklama and 
Hadzilacos.* 

l The YA algorithm: a tree-structured algorithm pro- 
posed by Yang and Anderson.9 

Each algorithm maintains mutual exclusion, deadlock- 
freedom, and starvation-freedom. Table 1 lists their 
additional properties (the d-ary algorithm is a newly 
designed algorithm, which we will discuss later). 

THE B-L ALGORITHM 

Figure 2 outlines the B-L algorithm. In the first stage of 
this algorithm, each process sets its bit to indicate its 
request to enter the CS, and tests the bits of the lower- 
numbered processes. If it finds other CS requests, it 
gives up and restarts. On the other hand, if none of the 
lower-numbered processes has its bit set, the request- 
ing process proceeds to the second stage, where it tests 
the bits of the higher-numbered processes, and waits for 
its turn. 
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Shared int x[N]; /* N is the number of 
threads */ 

Private int t; 

' Initial Vj: :x[j]=O: 

Process i; /*i=O,l,...,N-l*/ 
1. noi 
2. NOWCS ; 
3. L: x[i]=l; 
4. for (t=0;t<i-l;t++) 
5. if x[t] ( 
6. x[i]=O: 
7. do 0 while(x[tl); 
8. goto L;l 
9. for(t=i+l;t<N:t++) 

10. do while (x[t]): 
11. cs ; 
12. x[il.=O;l 
13. while(l) ; 

Figure 2. The B-L algorithm. 

- 
Shared int b[N],x,y; i+ N is the number of 

threads */ 
private int j; 

Initial (~j::b[j]==O)A(y==-1): 

Process i; /*i=0,1,2,...,N-l*/ 
1. Doi 
2. Non-CS ; 
3. L: b[i]=l; 
4. x=i; 
5. if(y!=-111 
6. b[i]=O: 
7. do 0 while (y!=-1): 
8. goto L:l 
9. y=i; 

10. if(x!=i) { 
11. b[i]=O; 
12. for(j=O;j<N;j++) 
13 do 0 while (b[jl): 
14. if(y!=i) ( 
15. do (1 while (y!=-1); 
16. goto L:) 1 
li. cs : 
18. y=-1: 
19. b[il=O:l 
20. while(l) 

L 1 
Figure 3. Lamport’s tast mutual exclusion algorithm. 

Two loops spin on the elements of shared array x[N], 
where Nis the number of requesting processes. For ele- 
ment ~[i] (0 I i 5 N- l), the maximum number of shar- 
ing degree S,,,,(x[z]) is N. This indicates that the two spin- 
ning loops might generate hot variables. 

The B-L algorithm is not contention-sensitive. When 

only one process contends for the CS, the process must 
visit N- 1 shared variables. When process i exits from the 
CS and releases the CS, the processes spinning on x[z] 
in statements 7 and 10 will be awakened. In addition, all 
the processes spinning in statement 7 will go back and 
restart after the CS is released. Therefore, all the addi- 
tional operations executed because of a release of the CS 
are considered as the release cost (R,,,,). However, the 
processes detained in the queuing loop (statement 9) will 
never restart. Thus, the more processes that can enter 
the queuing phase, the more efficient execution will be. 

LAMPORT'S AL~RI~M 
Figure 3 outlines Lamport’s “fast mutual exclusion algo- 
rithm,” which assumes that “contention for a critical 
section is rare in a well-designed system; most of the 
time, a process will be able to enter without having to 
wait.“’ This algorithm minimizes the number of mem- 
ory accesses in the absence of contention. It uses two 
shared variables, x and y, for a requesting process to 
determine if contention for the CS exists. When the sys- 
tem has no contention, a process enters the CS by-this 
statement sequence: 3 + 4 4 5 + 9 3 10 + 17. 

When more than one process is contending for the 
CS, the first process executing statement 9 will sety to 
its identification so that statement 5 will prevent other 
processes from contending for the CS. For those 
processes that have passed statement 5, at most one 
process can enter the CS directly by passing statement 
10, and the other processes turn to execute statements 
11 and 12. The for loop in’statement 12 guarantees 
that each contending process has set its b[z] label to 0 
before a process enters the CS by passing statement 14. 

Lamport’s algorithm has three spinning loops: state- 
ments 7,13, and 15. Although these loops have the same 
average sharing degree (Nin the worst case), the loops 
in statements 7 and IS will generate higher contention 
than the loop in statement 13. This is because state- 
ments 7 and 15 always spin on the single shared variable 
y, while statement 13 spins on different elements of array 6. 
This algorithm has a higher number of spinning oper- 
ations than the B-L algorithm. 

Because this algorithm provides two possible execu- 
tion paths to the CS for a process, the probability for 
each path to be executed determines the average process- 
response time. When a high number of processes 
are contending to enter the CS, the probability of a 
process entering the CS by satisfying (x!=z) in statement 
10 is small. In most cases, it enters the CS by satisfying 
(y!=i) in statement 14. Further, when a high number of 
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Shared int c[Nl ,v[Nl ,turn[Nl [21: 
/* N is the number of threads */ 

Private int j,bit,s[Nl [21: 

Process i; /*i=O,l,...,N-l*/ 
1. Doi 
2. Non-CS: 
3. c[il=l: 
4. for (j=O;j<N-l;j++) 1 
5. s[jl [Ol=turn[jl [Ol:s[jl [II= 

turn[jl [ll:l 
6. bit=l-bit; 
7. turn[i] [bit]=l-turn[il [bit] ; 
8. v[i]=l; 
9. c[i]=O; 

10. for(j=O;j<N;j++) 
11. do~lwhile(c[j]v~v[jl~s~jl LO]== 

turn[jl [Olr\s[jl [ll== 
turn[jl [II)): 

12. Entry(i) : 
13. cs ; 
14. Exit(i) : 
15. v[il=O; I 
16. while(l): 

L 

Figure 4. A FIFO-based algorithm. 

processes contend for the CS, at most two can enter the 
CS consecutively: one enters by passing statement 10, 
another enters by passing statement 14, and the rest of 
them go back and restart. This shows that Lamport’s 
algorithm has a potentially high release cost. 

THE FIFO-BASED ALGORITHM 
To study the cost of a fairness requirement on mutual 
exclusion algorithms, we selected a FIFO-based algo- 
rithm (see Figure 4).* In this algorithm, a specific seg- 
ment of the program, called the doonvay, enacts the FIFO 
property. InFigure 4, Entry(i) and Exit (i) are the 
entry code and the exit code. The doorway comprises 
statements 3 to 10, which are surrounded by a variable c[z] 
that is set to 1 on entry to the doorway and to 0 after exit- 
ing the doorway. Moreover, in the doorway code, each 
process owns a two-bit communication variable tzlm[z] 
(tzcmz[z~ [0] and tuyn[z] [l]). The algorithm modifies this 
variable’s value in each iteration of the process by alter- 
nately complementing the value of one of its bits. 

When a process wants to enter the CS, it first saves all 
the other communication variables in statements 4 and 5. 
It then changes its own communication variable in state- 
ments 6 and 7, signals its intention to enter the interior 
by setting variable v[z] to 1 in statement 8, exits the door- 
way in statement 9, and waits to contend for the CS in 
statements 10 and 11. The number of shared-variable 
accesses for a process to execute the doorway code is 
2N+ 3. 
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Shared int c [Nl [WI ,p [Nl [Nl ,t[Nl [Nl ; 
I* N is the number of threads */ 

Private int rival,j,k,l,high,comp: 

InitialVi,j:O <j < log2(N)::c[j,il = 
-1 A p[j,il = 0: 

Process i; /*i=O,l,..., N-l*/ 
1. j=O;k=i/2;l=i: 
2. high=(int) (log(N)/log(Z)): 
3. if(log(NPROCESS)/log(2)>high) 
4. high++: 
5. Do i 
6. Non-CS: 
7. while(j<high) ( 
8. c[j] [ll=i: 
9. t[j] [kl=i; 

10. p[jl [il=O: 
11. if(1%2==0) comp=l+l: 
12. else comp=l-1; 
13. rival=c[jl [compl; 
14. if(rival!=-111 
15. if(p[jl [kl==i){ 
16. if(p[j] [rival]==01 

p[j] [rivall=l; 
17. do while(p[j] [il==O): 
18. if(t[jl [kl==i) 
19. do while(p[jl [il<=l) ; 
20. I 
21 
22 
23 
24 
25 
26 

27 
28 
29 
30 
31 

I 
k=k/2;1=1/2;j++; 

cs : 
while(j>O)i 

k=i/power(2,j+2);l=i/power 
(Z,j+l);j--: 

c[jl [11=-l; 
rival=t[jl [kl : 
if(rival!=i) p[jl [rivall=2;1 

while(l); 

THE YA ALGORITHM 
This algorithm (see Figure 5) constructs a binary tree- 
based structure. To enter the CS, a requesting process 
must traverse a path from the leaves up to the root, exe- 
cuting the entry section code along the path. Upon exit- 
ing the CS, the process traverses this path in reverse, 
executing the exit section code. 

Along the path for a process to enter the CS, two spin- 
ning loops are at statements 17 and 18. Each statement’s 
sharing degree is 2 because the spinning variable pb] [i] 
is accessed by two concurrent processes at most. No process 
in this algorithm has to restart after a release of the CS. 
This feature eliminates the release cost. Moreover, each 
process has a unique execution path from its entry to 
the exit. The process-response time is O(log(N)). The 
algorithm is not contention-sensitive. _ 

Yang and Anderson have proposed another algorithm 
that combines Lamport’s fast mutual exclusion algorithm 
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Figure 5. The YA algorithm, which is tree-based. 



Critical <rT:) section 

Two-process mutual 
exclusion algorithm 

Localring 1 Local ring 2 

Figure 6. The two-level refined mapping structure tor 
mutual exclusion algorithms on the KSR-1. 

and their tree-based mutual exclusion algorithm.9 This 
algorithm’s process-response time is O(N). This algo- 
rithm is 1 -sensitive-that is, it performs best if only one 
process contends for the CS. 

Perfurmance evaluation on the 
TC2000 and the KSR-1 
The BBNTC2000 supports up to 512 Motorola 88100 
processors, each operating at 20 MHz.’ Its networkuses 
a butterfly switch composed of 8x8 switches. 

The KSR-1 is a hierarchical-ring-based system with 
up to 1,088 64-bit custom superscalar RISC processors 
(20 MHz).~ A basic ring unit in the KSR-1 has 32 
processors. The system uses a two-level hierarchy to 
interconnect 34 rings (1,088 processors). Each proces- 
sor has a 32-Mbyte cache. 

The basic structure of the KSR- 1 is the slotted ring, 
which divides the ring bandwidth into a number of mes- 
sage slots circulating continuously through the ring. 
The number of slots is equal to the number of proces- 
sors plus the number of directory/router cells connect- 
ing to the upper (level- 1) ring. A standard KSR- 1 ring 
has 34 slots: 32 for the processors and two for the ceils. 
Each slot can be loaded with a packet consisting of a 16- 
byte header and 12 8 bytes of data. This packet, called a 
subpage, is the KSR-l’s basic data unit. A processor on 
the ring that is ready to transmit a message waits until 
an available empty slot rotates through that processor’s 
ring interface. 

We performed our experiments on a TC2000 with 
64 processors and on a two-ring KSR- 1 with 64 proces- 
sors. We measured the average time to acquire and 
release the lock for different numbers of processors. 
Each processor requested lock acquisition 1,000 times 
in a loop. Twh additional instructions set the CSs for 
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these experiments to make them nonempty and to check 
each execution’s correctness. We also ran ail experi- 
ments under benchmark mode. Therefore; the systems 
were solely used for these measurements. 

AFKXITECTLJRE EFFECTS 
The following architecture effects can cause differences 
in the performance of mutual exclusion algoi-ithms on 
the TC2 000 and the KSR-1: 

NilLM effects 
In both systems, a processor accesses shired-memory and 
cache space at different distances with different timing 
costs. However, the NUMA models of the two systems 
differ. 

The TC2000 has only two levels of memory accksses- 
local and remote-between which the difference in 
access t ime is approximately a factor of 4.7. The average 
access time for read/writes is 0.42 ys for local and 1.96 
ps for remote. 

On the KSR-1, a memory access can have multiple 
distances: the subcache, the local cache, a remote cache 
in the local ring (remote), and a remote cache in a 
remote ring (remote-remote). The access-time differ- 
ence can be up to about 2 8.5 times, not considering sub- 
cache access. The average access time for read/writes is 
0.1 ps for subcache, 2.5 ~1s for local, 9.5 ,LS for remote, 
and 28.5 p,s for remote-remote. 

Non-CC-NlhX4 versus COMA 
The TC2000 avoids the cache-coherence problem by 
disallowing caching of shared data, while the KSR- 1 is 
a cache-coherence and cache-only system. Because of 
this difference in memory systems, a mutual exclusion 
algorithm will exhibit different execution patterns on 
each machine. 

System reactions to hot spots 
The TC2000 is much more hot-spot-sensitive than the 
KSR- 1, because of different network structures. Our 
previous research indicates that ring-network transac- 
tions in the KSR-1 decrease no more than SO% in the 
presence of memory hot spots.1o This compares with a 
300% latency change in the TC2OOCi. 

Process sequences 
The KSR-l’s rotating slotted-ring network can natur- 
ally order CS requests to be sequenced by their locations 
on a ring. Although this ordering property does not 
provide a FIFO service, it guarantees that any request- 



Table 2. Sharing degree (S,,,) and sharing distance (S,,,) of the 
naive and refined mutual exclusion algorithms. 

NAIVE(ON TC2000 AND KSR-1) REFINEO (ON KM-l) 
S dW Sd,S S deg Sdh 

B-L 
FIFO 

ing process will eventually execute its 
CS. However, a software structure for 
FIFO service might cause additional 
overhead because of rearrangement of 
the natural ring orders. 

Lamport 
YA 
d-ary 

n 
n 

2” 
n/a 

global 
global 
global 
global 

n/a 

n/2 
n/2 
n/2 
2 
d 

local 
local 
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Locality issues 
The KSR-1 system is more locality-sensitive than the 
TC2000 because of its hierarchical structure. 

this two-level refined mapping structure, which 
reduces the average sharing degree and the average 
sharing distance. 

RESULTS 
The KSR-l’s architecture and memory systems are 
complex, and the ways of implementing a software- 
based algorithm on it can affect the algorithm’s perfor- 
mance significantly. To show this, we implemented the 
mutual exclusion algorithms on the KSR-1 in two dif- 
ferent ways: 

Table 2 compares the sharing degree.and sharing dis- 
tance for the naive and refined algorithms on the 
TC2000 and the KSR-1. 

Process-response times 

l Naive mapping: We fully used the shared-memory 
illusion provided by the KSR-1 for easy program- 
ming, without considering detailed structures of the 
ring network and the COMA system. 

l Refined mapping: We varied the algorithm imple- 
mentations to account for the effects of the architec- 
ture and memory system. (We did not refine the 
FIFO algorithm because its major component is the 
refined B-L algorithm.) 

Figure 7a presents process-response times for the 
mutual exclusion algorithms on the KSR- 1. For naive 
mapping, the FIFO algorithm’s process-response time 
sharply increased for more than 48 processors because 
of the overhead of forming the FIFO queue. Lamport’s 
fast algorithm also performed poorly because of high 
release costs. The B-L algorithm and YA algorithm per- 
formed the best among the four. 

The TC2000’s architecture and memory systems are 
less complex. So, we used only a naive mapping on the 
TC2000. 

When refining each base algorithm to improve its 
performance on the KSR-1, we had three main con- 
cerns. First, program-thread scheduling and execution 
should efficiently exploit hierarchical locality by pro- 
cessing referenced data in a local cache or in caches in 
the local ring as much as possible. Second, the algorithm 
designs should consider the structure of the COMA sys- 
tem to minimize cache-access misses and cache invali- 
dations. This consideration includes the effective use of 
the cache subpage, which will bring a group of variables 
to a local cache to reduce remote accesses. Finally, we 
must explicitly manage processor locality by manually 
mapping the data structures among the rings without 
using the compiler and system’s mapping options. 

The refined mapping improved performance signif- 
icantly. The refined B-L algorithm performed better 
than the refined YA algorithm, for three reasons. First, 
the B-L algorithm’s first stage rules out a large number 
of requesting processes. This filtering effectively 
reduces the number of restarted threads. Second, the 
B-L algorithm does not force the requesting processes 
to enter the CS in a certain pattern, such as a tree. So, 
the B-L algorithm should have less software delay time 
in practice, although it might have higher contention 
than the YA algorithm. However, the KSR-l’s ring 
structure might effectively handle network con- 
tention.lO Finally, in the B-L algorithm, the shared vari- 
ables are vectors. This structure lets us use the cache 
subpage (128 bytes), which will bring up to 32 integer 
variables at a time to a local cache for reduction of 
remote accesses. 

To exploit the system’s localities, a refined imple- 
mentation maps the original algorithm into two local 
rings. The process in each local ring selects a leader. A 
two-process management in the global ring coordinates 
the two leaders contending for the CS. Figure 6 shows 

Figure 7b presents process-response time on the 
TC2000. The results show that the YA algorithm can be 
more effectively implemented on the TC2000 than on 
the KSR- 1, for two main reasons. 

First, the TC2000’s multistage interconnection net- 
work (MIN)-based architecture is much more hot-spot 
sensitive than the KSR- 1. lo Except for the YA algorithm, 
all the algorithms are hot-spot sensitive. Hot-spot 
effects can decrease significantly on the TC2000 if 
shared variables in an algorithm are widely distributed 
or efficient delays are used to reduce the number of 

Spring 1996 33 



- Lamport algorithm 
+ FIFO algorithm 
- Refined Lampott algorithm 
+ YA algorithm 

30 

20 
:: FL? 
z i IO 
8 0 k '0 IO 20 30 40 50 60 
(4 

Processors 

i 
70 

- Lampoti algorithm 
- FIFO algorithm 
- B-L algorithm 
+ YA algorithm 

g 20 
cn 
$ IO 
E e a 0 0 IO 20 30 40 50 60 
(b) 

Processors 

Figure 7. Process-response times for the mutual exclusion algorithms: (a) on the KSR-1, (b) on the TC2000. 
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Figure 8. Release cost for the mutual exclusion Figure 9. Remote memory accesses for the mutual ex- 
algorithms and their refined versions on the KSR-1. clusion algorithms and their refined versions on the KSR-1. 

remote accesses to the shared variables. For example, the 
YA algorithm uses a tree structure to distribute shared- 
variable accesses. 

Second, the TC2000’s simple local/remote memory- 
access model generates straightforward overhead pat- 
terns. In contrast, dynamic data migrations and cache 
coherence on the KSR-L complicate algorithm map- 
ping, and can seriously degrade performance if the 
COMA system is not properly used. 

Release costs 
We measure the release cost by counting the average 
number of restarted processes caused by each release of 
the CS in an algorithm. In this study, we conducted exper- 
iments only on the KSR-1 because the release cost is 
mainly algorithm-dependent, rather than architecture- 
dependent. 

0 IO 20 30 40 50 60 ; 
Processors 

;0 

Figure 8,presents release costs. The YA algorithm and 
its refined version have no release costs. The FIFO algo- 
rithm has an insignificant number of restarted threads 
because the additional FIFO software filter generates a 
limited number of waiting processes for the CS. The 
results indicate that the refined implementations reduce 
the release costs for the Lamport fast algorithm and the 
B-L algorithm. This is because the refined implemen- 
tations exploit more localities of the ring architequre 
and reduce network contention’. Therefore, the num- 
ber of waiting processes decreases, which reduces the 
number of restarted threads. 

Remote accesses 
Besides being the only complexity measure in standard 
theoretical analysis, an algorithm’s number of remote 
accesses is important to execution evaluation. 

34 IEEE Parallel &  Distributed Technology 



Figure 9 reports the number of remote accesses for each 
algorithm and its refined version on the KSR-1 as the 
number of processors increases to 64. The number of 
remote accesses for each algorithm’s execution is consis- 
tent with that algorithm’s theoretical complexity analysis. 
The YA algorithm has the fewest remote accesses, fol- 
lowed by the B-L, Lamport, and FIFO algorithms. Also, 
the number of remote memory accesses for each refined 
implementation is significantly lower than the number of 
accesses for the corresponding naive version. This further 
shows the effectiveness of the refined implementations. 

Fairness 
As our results have shown, a mutual exclusion algorithm 
with FIFO support can have tremendous overhead 
caused by execution of the additional software structure. 
We ran a group of fairness tests on the KSR- 1 to observe 
whether the competing processes in a non-FIFO algo- 
rithm can still fairly access the CS in any given period 
of execution time. We evaluated fairness by measuring 
the variance of the numbers of accesses to the CS from 
each processor for each algorithm. 

Figure 10 presents the standard deviation results. 
The variance of the access sequence is relatively 
insignificant. For example, the highest standard devi- 
ation measure of the B-L algorithm is 0.35. There- 
fore, additional software might not be necessary to 
support the FIFO sequence, unless the application 
requires it. 

Contention sensitivity 
We compared the contention sensitivity of the four 
algorithms and their refined versions on up to 64 proces- 
sors of the KSR- 1, using these conditions: 

l When the total number of processes is less than eight, 
all processes contend for the CS. Thus, when the 
process number increases from one to eight, the con- 
tention to the CS increases, which will degrade per- 
formance of both contention-sensitive algorithms 
and noncontention-sensitive algorithms. 

l When the total number of processes is more 
than eight, only eight random processes contend 
for the CS; all the other processes do the work 
without accessing the CS. The contention to the 
CS stays unchanged. Thus, the performance of 
contention-sensitive algorithms should also stay 
unchanged. 

l All the processes in an application are randomly dis- 
tributed over the hierarchical ring structure. 
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Figure 10. Fairness of the mutual exclusion algorithms 
on the KSR-1. 
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Figure 11. Process-response times for the mutual exclusion 
algorithms and their refined versions on the KSR-1. 

Figure 11 shows that the B-L, Lamport, and FIFO 
algorithms have more stable contention sensitivity than 
does the YA algorithm. Except for the YA algorithm, 
shared variables/vectors form the basic data structures 
of the algorithms. The response time of these algorithms 
depends only on the number of processes contending 
for the CS. Therefore, after more than eight processors 
are used, the response time of the three algorithms 
remains roughly constant. 

The YA algorithm uses a binary tree. The total num- 
ber of processes determine the tree’s height and width. 
That is the main reason why this algorithm’s contention 
sensitivity differs from that of the other algorithms. 
However, the refined YA algorithm’s contention sensi- 
tivity becomes more stable, because the new imple- 
mentation reduces network contention. Testing con- 
tention sensitivity can also reveal the performance 
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Figure 12. Execution times for implementation of the 
mutual exclusion algorithms in a parallel quicksort 
algorithm on the KSR-1. 
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Figure 13. Scalability of the mutual exclusion 
algorithms on the KSR-1 and the TCZOOO. 

changes of the algorithms with different CS-access pat- 
terns in an application program. 

Performance in an application program 
We implemented the mutual exclusion algorithms in 
a parallel quicksort (QS) algorithm to evaluate their 
effects on the program. In this algorithm, a queue 
stores and allocates tasks. The task queue is a shared 
resource. Each process visits the “task queue exclu- 
sively when it generates a task and places it into the 
queue, or when it requests a new task from the queue. 
The efficiency of mutual exclusion in the QS algo- 
rithm significantly affects the algorithm’s execution 
performance. 

We measured the process-response time of each 
mutual exclusion algorithm implemented in the QS 
algorithm on the KSR-1 (see Figure 12). The Lamport 
algorithm performed the slowest. As we expected, the 
B-L and YA algorithms performed significantly better. 
These results are consistent with the previous perfor- 
mance results for these algorithms. 

Scalability 
Finally, we compared the scalability of the algorithms 
on both machines. We used the scalability metric to 
compare the algorithms’ access latency in increments 
from two to 64 processors. The measurements quanti- 
tatively give the scaling characteristics of each algo- 
rithm on each machine (see Figure 13). 

An interesting result concerns relative-latency incre- 
ments. Absolute access-delay times for some algo- 
rithms on the KSR-1 are similar to those on the 
TC2000 because of the faster ring network. However, 
the relative-latency increment for each algorithm is 
lower on the KSR-1 because of cache coherence and 
fewer hot-spot effects. 

The measurements also show that algorithm scala- 
bility is architecture-dependent. For example, the YA 
algorithm on the KSR is more scalable than the ones 
on the TCZOOO. These results further confirm our 
analysis of the architectural effects on, and implemen- 
tation variations of, these algorithms. 

iCEwee new efficient algorithms 

We’ll now describe the structure and performance of 
the three fast mutual exclusion algorithms we’ve devel- 
oped. We have previously prepared correctness proofs 
of each aig0rithm.i’ 

THE d-ARY TREE ALGORITHM 
Based on our analyses and experiments, an efficient 
mutual exclusion algorithm in a shared-memory system 
should have these characteristics: 

1. It should use hierarchical data structures to exploit 
architectural locality and reduce hot-spot effects. 

2. It should use a vector to allocate shared variables to 
exploit cache-prefetching for possibly enhancing its 
contention sensitivity, and to reduce the number of 
remote-memory accesses. 

3. Because shared-memory architectures vary, its 
structures must be adjustable to adaptively optimize 
its performance on different machines. 
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Furthermore, our qualitative and quantitative results 
indicate that the binary tree structure in the YA algo- 
rithm can effectively distribute network contention and 
eliminate the release cost (Characteristic 1). However, 
the algorithm is not contention-sensitive. On the other 
hand, the B-L algorithm effectively uses the cache- 
prefetching function and is more contention-sensitive 
(Characteristic 2). It responded faster than the YA algo- 
rithm on the KSR- 1. 

The d-a y tree algorithm is a hybrid that combines the 
good features of the YA and the B-L algorithms. d is an 
integer (>I) that can adaptively change to adjust algo- 
rithm performance on different architectures (Charac- 
teristic 3). (Table 1 lists this algorithm’s additional prop- 
erties, and Table 2 lists its sharing degree and sharing 
distance on the TC2000 and the KSR-1.) 

Figure 14 outlines the algorithm, which constructs a 
logical d-ary tree as distributed processes in the system. 
Entry and exit sections are associated with each link in 
the tree. The two code sections are similar to the B-L 
algorithm. To enter the CS, a requesting process must 
traverse a path from its leaves up to the root, executing 
the entry section of each link along the path. Upon exit- 
ing the CS, the process traverses the path in reverse, 
executing each link’s exit section. 

The tree structure is similar to that of the YA algo- 
rithm. However, the tree structure’s adjustable parame- 
ter makes this algorithm unique and adaptive. When d 
increases, the tree’s height decreases, which means the 
traveling distance of accessing the CS decreases, but con- 
tention and the release cost might also increase. When 
d is larger than the number of processes in the system, 
the d-ary tree algorithm is equivalent to the B-L algo- 
rithm. When d = 2, the algorithm constructs a binary 
tree, but it differs from the YA algorithm, because the 
contending process is based on the B-L algorithm. 

The d-at-y tree algorithm satisfies the basic require- 
ment of mutual exclusion. (It is a straightforward proof 
based on the correctness of the B-L algorithm and the 
tree structure. The formal proof is beyond the scope of 
this article.) This algorithm does not guarantee FIFO 
order. The spinning loops of statements 11 and 1.5 in 
Figure 14 have the same sharing degree, d. Although 
the algorithm’s performance still depends on the total 
number of processes, the adaptive tree structure makes 
it more contention-sensitive than the YA algorithm, 
because it takes advantage of cache prefetching. 

We measured the process-response times of the d-ary 
tree algorithm running on the KSR- 1 (see Figure 1 Sa) and 
the TC2000 (see Figure 1 Sb) for different values of d. On 
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Adjustable parameter: d /* the number of 

children of a node */ 

Shared int x[N] [WI ; /* N is the number of 

threads */ 

Private int high,k,i,j,l,len; 

InitialVj,i::x[jl [il=O; 

Process id: /*id=O,l,...,N-l*/ 

1. j=O;k=id/d;l=id: 

2. len=NPROCESS; 

/*len records the number of nodes at 

level j*/ 

3. high=logd(NPROCESS); 

4. Do ( 

5. Non-C's: 

6. while (j<high) ( 

7. yy: xCj1 [11=1: 
8. for (i=k*d;i<l;i++) 

9. if (x[jl [iI) 
10. x[jl [11=0; 
11. do 0 while (x[j] [i]); 

12. goto yy: 
13. I 

14. for (i=l+l;i<min((k+l)*d,len);i++) 

15. do 0 while (x[jl [ill: 

16. l=l/d;k=k/d;j++; 

17. len=(len%d==0)?len/d:len/d+l;l 

18. cs: 

19. j=high: 

20. pow2=power(d,high) 

21. while (j>O)i 

22. j--: 
23. powZ/=d; 

24. l=id/pow2: 

25. x[jl [ll=O: 
26. I 

27. I 

28. while(l) : 

Figure 14. The d-ary tree algorithm. 

the KSR- 1, the 4-ary algorithm performed best. Com- 
pared with the fastest B-L algorithm the 4-at-y algorithm’s 
process-response time decreased approximately 40%. On 
the TCZOOO, the 2-ary algorithm performed best, close 
to the YA algorithm. 

A FAST 2-ARY TREE ALGORITHM 

As we have shown qualitatively and quantitatively, a non- 
cache-coherent, hot-spot-sensitive architecture, such as 
the TC2000, might favor execution of a low-order tree 
algorithm, while a cache-coherent architecture, such as 
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Figure 15. The process-response times of the d-ary 
algorithm for different values of d: (a) on the KSR-1, 
(b) on the TCZOOO. 

Shared int x[2],c[N]; 

the KSR- 1, might favor execution of a moderate-order 
tree algorithm. We propose a variation of the 2-ary tree 
algorithm that includes local spins. Because this algo- 
rithm outperforms all the YA and the 2-ary tree 
algorithms on the TC2000 and the KSR-1, we call it 
the fast 2-ary tree algorithm. 

This algorithm’s construction is based on a two- 
process mutual exclusion algorithm (see Figure 16). 
Our algorithm associates each process i with only two 
variables: X[Z] and c[;l. Allocation c[zj is the local place on 
which process i spins. Element X[Z~ informs the rival of 
process i of its status of contending for the CS and of 
its identity number (i). This algorithm’s basic data 
structure has a low memory-allocation requirement 
compared with other algorithms of the type. For exam- 
ple, in the original 2-ary tree algorithm,9 each process 
needs three variables, and an additional variable resolves 
the contention. 

In practice, a mutual exclusion algorithm might not 
require fairness. The fast 2-ary tree algorithm resolves 
process-request contention by favoring one of the two 
contention processes, which eliminates any delay require- 
ment. In contrast, the original 2-ary tree algorithm uses 
a dynamic contending method to resolve the contention, 
which tends to generate extra delay overheads. 

In the algorithm in Figure 16, process u has higher 
priority than process V, while both contend for the CS 
simultaneously. When process u executes, it sets its 
identifying number u in x[O] to announce its involve- 
ment and sets ~[a] to 1 to prepare for resolving con- 

Initialization: V i E [O,N-l]::e[i]= 1; x[O]=x[l]=-1: 

Process u; 
int rival: 
Do 1 
ul: Non-CS: 

~2: x[O]=u; (R) 
u3: c[ul=l; 
~4: if ((rival=x[l]) !=-l)( (R) 
u5 : c[rival]=O; (R) 
u6 : do 0 while(c[u]);l 

Process v; 
int rival: 
Do C 
VI : Non-CS; 
~2: x[l]=v; (R) 
v3 : yy: if((rival=x[O])!=-1 
v4: c[rival]=O; (R) 
vi : do 0 while(c[v]): 
X76: c [VI =1; 

) (RI 

u7: cs; 
~8: x[O]=-1; (R) 
u9: if(rival!=-1) (R) 
while(l). 

v7 : goto yy:l 
v8 : CS: 
v9: x[l]=-1; (R) 
~10: c[rival]=O;l (R) 
while(l). 

Figure 16. The two-process mutual exclusion algorithm for the fast 2,ary tree algorithm. 
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Shared int x[Nl [Nl , c[Nl [Nl ; 

Initialization:Vi,js [O,N- 
l]::(c[il [jl=lorO~~~x~il~jl=-1): 

Process id; /*id=O,l,..., N-l*/ 
int high,i,j,l,rival: 

1. j=O; l=id: 
2. high=rlog2 (NPRoCESS)~: 
3. Do 1 
4. Non-CS ; 
5. while (j<high) 1 
6. if(1%2==0) 1 
7. x[j] [ll=id; 
8 c[jl [idl=l: 
9. if ((rival=x[j][l + 11) !=-1) i 

10. c[j][rival] = 0; 
11. do i1 while(c[jl [id]): 
12. 1 
13. I 
14. elsei 
15. x[jl [ll=id; 
16. yy: if ((rival=x[jl [l-11) !=-111 
17. c[j] [rival=O; 
18. do i1 while (c[j] [id]): 
19. c[jl [idl=l: 
20. goto yy; 
21. 1 
22. I 
23. l/=2; j++: 
24. I 
25. cs; 
26. j=high; 
27. pow2= power(d,high) 
28. while (j>O)i 
29. j--: 
30. pow2/=d; 
31. l=id/pow2; 
32. x[j] [11=-l; 
33. temp=(1%2==0)?1+1:1-1; 
34. if((rival=x[jl [ternpI)!=- 
35. c[rivall=O:l 
36. I 
37. while(l) ; 

igure 17. The fast 2-ary tree algorithm. 

tention. When process u detects its rival’s ambition to 
enter the CS in statement 2~4, it cleans the rival’s exe- 
cuting path in US to guarantee that its rival will let it pass 
the busy waiting loop in ~6 later. Process v can enter the 
CS only when process u finishes contending for the CS. 

Regarding the algorithm’s memory-access complex- 
ity, process u has only four remote-memory accesses in 
the presence of contention, and five in the absence of 
contention. Process z, will execute four remote accesses 
in the absence of contention. In an average situation, 
processes u and i/ execute the CS in turns; process v only 
needs to test in statement v3 twice in the presence of 
contention. Thus, process v has an average of seven 
remote-memory accesses (in Figure 16, remote accesses 
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Figure 18. Process-response times of the fast 2-ary tree 
algorithm: (a) on the KSR-1, (b) on the TCZOOO. 

are marked with (R)). So, for this two-process mutual 
exclusion algorithm, the average number of remote 
accesses per process is (4 + 4)/2 (= 4) in the absence of 
contention, and (5 + 7)/2 (= 6) in the presence of con- 
tention. In contrast, for the YA algorithm, the average 
number of remote memory accesses per process is five 
in the absence of contention and 10 in the presence of 
contention. 

Figure 17 shows the fast 2-ary tree mutual exclusion 
algorithm. To avoid interference among node mutual 
exclusion algorithms in the tree, each node employs an 
independent set of variables. In each node algorithm, 
the process with an even value of 1 has priority over the 
process with an odd value of 1 when contending for the 
CS. Because the rival of a process changes dynamically, 
the process must check whether its rival still exists when 
it exits the CS (see statement 34 in Figure 17). 

We compared the performance of the fast 2-ary tree 
algorithm, the YA algorithm, and the best ones of the 
d-ary tree family on the KSR-1 (see Figure 18a) and 
TC2000 (see Figure 18b). The fast 2-ary tree algorithm 
outperforms the YA algorithm on both machines, which 
is consistent with our analyses. 



Shared int busy[N],wait[Nl,turn: /* N is 

total number of processes */ 

Shared int gatel,gate2; 

Initialization: (Vi E [O,N-l]::(busy[i]=O: 

wait[i]=l))A(turn=N:gatel=gate2=0); 

Process id: /*id=O,l,...,N-l*/ 

int I, temp=O: 

1. Do ( 

2. Non-CS; 

3. busy[idl=l; 

4. do 0 while(gatell Igate2): 

5. if(turn!=N)ldoilwhile(wait[id]); 

* wait[idl++;l 

6. else ( 

7. gate2=1; 

8. for(i=O;i<id:i++) 

9. if(busy[il) C 

10. temp=l: 

11. goto L;l 

12. L: if(temp)l 

13. gate%=O: temp=O; 

14. do 0 while(wait[id]); wait[idl++;l 

15. else 

16. (turn=id: gate2=0;1 

17. I 

18. CS: 
19. gatel=l; i=(turn+l)%N: 

20. while(i!=turn&&busy[i]==O) 

21. if(i!=turn)i 
22. turn=i; 

23. busy[idl=O; 

24. wait[turnl=O;l 

25. elsei 

26. busy[id]=O; wait[id]=l; 

27. turn=N;l 

28. gatel=O: 

29. I. 

.=(i+l)%N; 

Figure 19. A fast algorithm for a high-contention 
environment. 

A FAST ALGORITHM FOR HIGH-CONTENTION 
ENVIRONMENTS ON CACHE-COHERENCE SYSTEMS 
Lamport proposes a fast algorithm for the noncon- 
tention environment, which covers a special class of 
applications7 On the other hand, another special class 
of applications frequently accesses the CS and gener- 
ates high contention. We’ve developed a fast algorithm 
for this class of applications on cache-coherence shared- 
memory systems. 

Let PVdenote the average number of processes wait- 
ing for access to the CS. In a high-contention environ- 
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60 

Figure 20. Performance of the fast algorithm on the 
KSR-1: (a) memory-access complexity, (b) process- 
response time. 

ment, Wis usually greater than 1, which means that 
when a process tries to access the CS, another process 
always executes the CS. In this case, a fast path direct- 
ing the new processes to spin locally would be effective. 
When a process releases the CS, many waiting processes 
immediately want to enter the CS. So, it would be effi- 
cient to directly transfer ownership of the CS to one of 
the waiting processes. 

Figure 19 shows our algorithm. It allocates each 
process i in two shared vector variables: ~UJ-y[i] and 
wait[i]. b~y[z] reports whether process i is contending 
for the CS. The algorithm allocates this vector in as few 
cache blocks as possible to take advantage of cache 
prefetching. wait[i] is the spinning variable of process i, 
which is local to process i. 

Another important shared variable is turn, which 
reports whether the CS is occupied. If so, turn records 
the process ID number in the CS. All the processes are 
queued into a logical ring, according to their process ID. 
numbers:pO -+pl +p2 ... +p(N- 1) 4 p0. gate1 and 
gate2 are two gate variables: gate2 is used only in a non- 
contention situation to protect the selection of the initial 
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owner of the CS; gate1 blocks a process from entering 
the spinning state when the CS is released. 

In a high-contention environment, when a process 
begins contending for the CS, it usually enters the spin- 
ning state at statement 5 by one write and three reads. 
If a process finds that turn is equal to Nat statement 5, 
it enters the selection process of the initial owner of the 
CS at statement 7. Then it either enters the spinning 
state at statement 14 or becomes the initial owner to 
enter the CS. 

The memory-access complexity of the selection 
process is O(N). When a process exits its execution in 
the CS, it searches the logical ring to transfer the CS to 
the nearest waiting process. So, the memory-access 
complexity for release is O(N/J+J. In a high-contention 
environment, Wapproaches N, and thus the memory- 
access complexity decreases to O(1). Hence, the aver- 
age complexity of this algorithm in a high-contention 
situation can be as good as O(l), which is independent 
of the total number of processes. 

To further confirm this, we measured our fast algo- 
rithm on the KSR- 1 in a high-contention environment 
where all the processes repeatedly request entrance to 
the CS. The fast algorithm has an almost flat memory- 
access curve (see Figure 20a), which is consistent with 
the predicted constant memory-access complexity. Its 
process-response time (see Figure 20b) is shorter than 
that of the B-L algorithm, but slightly longer than that 
of the 4-ary tree algorithm. In addition, this fast algo- 
rithm has no release cost. 

COMPARING THE NEW ALGORITHMS WITH HARDWARE 
PRIMITIVES 
To show the efficiency of our software-based algo- 
rithms, we compared their performance with that of effi- 
cient hardware primitives on the KSR-1 and the 
TC2000. 1 The primitives we selected from the KSR- 1 
are the g s pwt (get subpage wait), and the g s pnwt (get 
subpage no wait) and its variations: access the lock with 
no delay, access the lock with a static delay, and access 
the lock with an exponential delay. These primitives are 
highly effective on the KSR-1. The primitives we selected 
on theTC2000 arethe test-and-set anditsvaria- 
tions: access the lock with no delay, access the lock with 
a static delay, and access the lock with an exponential 
delay. For comparison, we also used the performance of 
a distributed lock. We compared the process-response 
times in a high-contention environment. 

Figure 2 1 a shows the process-response time on the 
KSR- 1. Our algorithms outperformed g s pwt and rivaled 
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Figure 21. The process-response times of our software- 
based algorithms and the hardware primitives: (a) on 
the KSR-1, and (b) on the TC2000. 

the gs pnwt variations. More specifically, the 4-ary algo- 
rithm nearly outperformed the g s pnwt with no delay. 
This is important because g s p nwt and g s pwt depend 
on the KSR-l’s architecture. These results indicate that 
software-based algorithms could be viable alternatives. 

Figure 2 I b shows the process-response time of the 
same algorithms on the TC2000. Our algorithms out- 
performed or rivaled allvariations ofthe test-and-set 
algorithms. The process-response t ime curve of the best 
software algorithm, the fast 2-ary tree algorithm, is rea- 
sonably close to that of the distributed lock. 

Our results show that the execution performance of 
both hardware-based and software-based algorithms is 
architecture-dependent. Generally, a hardware-based 
algorithm performs more efficiently than a software- 
based algorithm in the presence of contention, because 
of support from atomic instructions. However, we can 
use the flexibility of software-based algorithms to take 
advantage of the structure of architectures and systems. 
The performance of the proposed algorithms shows 
their potential to rival hardware-based algorithms. 
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ased on our experimental research, we 
believe that software mutual exclusion 
algorithm studies directed by theoretical 
memory-access complexities probably are 
reaching a theoretical limit. For example, 

the maximum number of remote memory accesses of a 
mutual exclusion algorithm would not be lower than 
O(log(z)), where n is the number of remote memory 
accesses. Algorithms with this complexity have been 
developed (for example, the YA and d-ary algorithms). 
On the other hand, approaches that combine analyses 
and experiments could significantly improve the per- 
formance of the algorithms. g 
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