
Evaluating and
Designing Software
Mutual Exclusion
Algorithms on Sharedc
Memory M~ultiprocessors
Xiaodong Zhang, Yong Yan, and Robert Castatieda
High-Performance Computing and Software Laborato,ry, University of Texas at San Antonio

g Performance
evaluations of
software-based mutual
&xclu.sion algorithms
must take into account
the effects of
architectures and
systems. The authors
demonstrate a
framework for such
evaluation, and use
the framework as a
basis for designing
more efficient
algorithms.

Spring 1996

hared-memory multiprocessor systems must provide facilities
called critical sections for programs to share physical and logical
resources. Only one processor at a time can process a CS. This
requires a method to ensure mutually exclusive access to the log-
ically atomic operations of a shared CS.

Two approaches to mutual exclusion are hardware algorithms, which
use primitives, and software algorithms, which require only software read
and write instructions (see the “Hardware primitives versus software algo-
rithms” sidebar).

We previously examined architecture and system effects on spin-locks,
a type of hardware a1gorithm.l Extensive experiments on two different
shared-memory multiprocessor systems-Bolt, Beranek, and Newman’s
TC2OOCl and Kendall Square Research’s KSR-l-showed that the exe-
cution Elehavior of these algorithms, and therefore their performance,
differs significantly. These machines use different types of interconnec-
tion networks and cache/memory systems. This construction produces
different types of nonuniform memory access (NUMA) execution pat-
terns for the mutual exclusion algorithms.

We’ve concluded that architecture and system effects should be seri-
ously considered when developing and implementing mutual exclusion
algorithms. Our experience has motivated us to investigate comprehensive
performance effects on portable software mutual exclusion protocols.

However, standard analyses of mutual exclusion algorithms do not fully
account for these effects. For example, these analyses express the mem-
ory-access complexity of an algorithm as a function of IV, the number of

1063.6552/96/$4.00019961EEE 25

Properties of algorithms
Contention-sensitive 1

Time-bounded Interconnection network structure

Starvation freedom Network contention
Deadlock freedom

Architecture and system effects
Process-response time (scalability)

Execution complexities

We propose a comprehensive per-
formance-evaluation frameworkthat
examines the overhead patterns inher-
ent in the mutual exclusion algorithms
and in the architectures on which the
algorithms run. We used this frame-
work to evaluate several representative
mutual exclusion algorithms one the
BBN TC2000 and KSR-1.

Our research with this framework
has helped us determine characteristics
of efficient software mutual exclusion
algorithms. Based on these character-
istics, we’ve developed three mutual
exclusion algorithms, two of which
combine good features of two of the
representative algorithms. Tests show
that these new algorithms are fast and
can be highly scalable.

Figure I. Performance-evaluation framework for mutual exclusion
algorithms based on the properties of algorithms, execution
complexities, and architecture and system effects.

remote accesses to shared memorv. This notation has a framework /

Our framework is based on three performance factors:

1. properties of algorithms,
2. execution complexities of algorithms, and
3. architecture and system effects on algorithms.

limited ability to represent the algorithm’s complexity,
for two reasons. First, in a modern NUMA shared-
memory system, remote memory accesses can be con-
structed at more than one level, which can cause differ-
ent delays for different accesses. Second, data-access
distribution can strongly affect network contention. For
example, the same number of hot-spot remote accesses
and the same number of distributed remote accesses will
create significantly different network contention over-
heads, which results in much lower performance for the
hot-spot case. Algorithm analyses describing a general
number of remote memory accesses will not fully and
precisely express the overhead patterns in mutual exclu-
sion algorithms or the effects of interconnection net-
work architectures.

Figure 1 gives a 3D view of the framework.

PROPERT~ESOFALG~RITHMS
A mutual exclusion aIgorithm has three basic properties:

a Mu&al exclusion guarantees that only one process exe-
cutes the CS at any time.

0 Deadlockfi-eedom guarantees that processes will not
be blocked forever.

26 IEEE Parallel & Distributed Technology

l Starvation-fi-eedom guarantees that each requesting
process eventually executes the CS.

Some additional properties impose stronger condi-
tions on an algorithm, but are not required for the algo-
rithm’s correctness. (Stronger requirements might actu-
ally significantly increase the management overhead and
slow down the mutual exclusion execution.) Three
major properties are

l FIFO, which guarantees a fair order for each request-
ing process to access the CS. To maintain this prop-
erty, higher overhead is inevitable. Because a shared-
memory system does not have a global clock,
additional software structures must form and main-
tain a FIFO process queue.

l The time-bound condition, which requires placement of
an assumed time bound on the instruction speed or on
the execution time of the CS. Based on this property,
mutual exclusion algorithms fall into two categories,
following Lamport’s two algorithms (see the “Early
mutual exclusion algorithms” sidebar). The first requires
time bounds; the second does not. Algorithms that do
not require time bounds are more useful in practice.

l Contention sensitivity, which relates to process depen-
dence. The performance of a good contention-
sensitive mutual exclusion algorithm should be affected
only by the number of processes contending for the CS,
not by the total number of executing processes.

EXECUTIONCOMPLEXITIESOFALG~RITHMS
Instead of theoretical memory-access complexity, we pro-
pose a set of execution complexities, which cover the
effects of architecture, system, and software implementa-
tion on an algorithm. Execution complexities consist of
four execution measurements and analyses: process-response
time, &a&g deqee, haying distance, and release cost.

Process-response time measures the average delay for
a requesting process to access the CS; this delay indi-
cates the algorithm’s overall execution performance.
The measured response time might not be consistent
with the result of the algorithm’s theoretical complexity
using the total number of remote accesses. The follow-
ing three measures provide further insights into the exe-
cution performance.

Sharing degree (S+) for a shared variable defines the
maximum number of process threads concurrently
accessing the variable. The function Sdeg(v) returns the
sharing degree of variable v. This measure lets us exam-
ine shared-variable access distributions for an algorithm
to detect hot spots (areas of strong contention, which
we’ll discuss in more detail later). The average sharing
degree for an algorithm is

s _ ‘, ” 1 ‘dt&+)
deg - k ’

wherevifor(i= 1, K) represents the shared variables
in the algorithm.

Spring 1996 27

Sharing distance (s&s) for a shared variable defines
the maximum remote-access time to the variable from
a processor. The function Sdis(v) returns the sharing dis-
tance of variable v. This measure lets us evaluate and
compare NUMA effects on the algorithm. The average
sharing distance for an algorithm is

s = ‘i f 1 ‘dis(‘1)
dls k ’

,Release cost (R,,,J measures the required overhead
for an algorithm to release the lock and exit the CS.
Generally, when a process exits the CS, that process
informs another requesting process to enter the CS. The
most efficient way to perform this is to inform only-one
process in the system. However, on a cache-coherent
shared-memory system, the situation is more complex
because all requesting processes might have to be
informed, thus causing cache invalidations. There might
also be some additional software overhead in algorithm
executions, such as changing the spinning status of the
requesting processes when a new process enters the CS.
The release cost might degrade the performance of a
mutual exclusion algorithm significantly.

Parallel-computing performance on scalable shared-
memory architectures depends mainly on the structure
of the interconnection networks linking processors to
memory modules, and on the efficiency of the memory-
and cache-management systems. Different applications
interact with these architectural factors in different ways.
Therefore, designers of architectures and algorithms
can benefit from a comparative performance evaluation
that considers the architecture, the application algo-
rithm, and the relationship between the two. Three
major factors affect mutual exclusion algorithm perfor-
mance in shared-memory systems: memory hierarchies
from interconnection network structures and NUMA
models, cache eficts from NUMA models, and hot spots
causing network and memory contention.

Memory hierarchies
The choice of interconnection networks to link proces-
sors to cache or memory modules can make NUMA
times vary drastically, depending on the access patterns
involved. Examples of interconnection networks for
large-scale shared-memory multiprocessors are the multi-
stage interconnection network (BBN Butterfly systems),
hierarchical ring structure (KSR systems), cluster-based

28

network (the Dash system), hierarchical bus (the Data-
Diffusion Machine (DDM) system), and torus network
(the Cray T3D system).

In large NUMA architectures, the memory-system
organization also affects communication latency.
NUMA memory systems fall into three types in terms
of data migration and coherence:

Cache-coherent iVU&!% (CC-NUI7CIA). Each processor
has an associated cache and a designated portion of
the global shared memory. Cache coherence might
be maintained by a directory-based cache-coherence
protocol. The Dash system is an example.
Non-cache-coherent NUM (Non-CC-NUM). This
architecture either supports no local ‘caches (for
example, the BBN GP10002), or provides a local
cache that disallows caching of shared data, to avoid
the cache-coherence problem (for example, the BBN
TCZOOO’).
Cache-only memoy architectwe (COW). Like CC-
NUMA, in COMA each processor has a cache and a
designated portion of the global shared memory.
However, COMA augments the memory of each
processor to act as a large cache. A write-invalidate
protocol maintains consistency among cache blocks
in the system. A COMA system allows transparent
migration and replication of data items to the proces-
sors where they are referenced. The KSR-1 is a
COMA system.3

Cache effects
Caches let shared-memory systems effectively reduce
average memory-access time by exploiting temporal and
spatial localities. Temporal locality occurs in many pro-
grams: once a location (data or instruction) is referenced;
it is often referenced again very soon. Spatial locali is
the probability that once a location is referenced, a near-
by location will be referenced soon. A local spin in a
mutual exclusion algorithm demonstrates temporal
locality. Data prefetching is another important cache
mechanism, which generally exploits a program’s spatial
locality. Mutual exclusion algorithm implementations
can effectively use prefetching to reduce the number of
memory accesses.

However, false sharing and cache pollution are two side
effects of cache prefetching. False sharing occurs when
a cache miss causes the system to bring back a block of
data containing more information than the required
block. With an invalidation-based coherence protocol,
false sharing will generate unnecessary invalidation

IEEE Parallel & Distributed Technolqgy

Table 1. Additional properties and complexities of several mutual
exclusion algorithms.

ALGORITHM FIFO TIME-BOUND CONTENTION SENSITIVITY #ACCESSES

B-L No No Moderate W
FIFO Yes No Moderate
Lamoort No No Moderate

overheads. A mutual exclusion algo-
rithm can eliminate false sharing by

YA ’ Yes
d-ary No
~~--~

No No/l -sensitive
No Moderate

O~loiin)l
~ --~ I I

Wxb(N

distributing shared variables well.
Cache pollution means that additional
data loaded in a cache for a cache miss are invalidated
before they are referenced. Cache pollution is due to
limited cache size and concurrent writes to the shared
data. Cache pollution degrades system performance by
consuming limited bandwidth between processors and
memory modules. The additional invalidation time
increases the average memory-access delay in a mutual
exclusion algorithm.

Hot spots
Hot-spot contention on a network-based shared-
memory architecture occurs when a large number of
processors try to simultaneously access a globally shared
variable across the network. A mutual exclusion opera-
tion generates a hot spot in a system. Hot-spot effects
might degrade overall network traffic, not just the
traffic to shared variables. However, hot-spot effects
vary on different architectures.

A SCALARILITY METRIC FOR MUTUAL EXCLUSION

ALGORITHMS

A comprehensive performance factor for evaluating and
comparing mutual exclusion algorithms is scalability:
how their performance on parallel machines increases as
the number of processors increases. We have proposed
a latency metric that uses network delay to evaluate par-
allel computing scalability.4 Based on this concept, we
use the following metric to measure and compare the
scalabilities of mutual exclusion algorithms.

For a given mutual exclusion algorithm implementa-
tion on a given machine, let L(N) be the average latency
when the algorithm runs on Nprocessors, and let L(M)
be the average latency when it runs on N’ > N proces-
sors. The average latency time is the process-response
time. This is because we consider the total execution
time of a mutual exclusion primitive to be an important
latency source.

If the system size changes from Nto N’, the point-to-
point scalability is

Jw9 scale(N,N’) = L(N3.

In practice, this equation’s value is less than or equal to 1.
A large value means that the program and the architec-
ture have small increments in latencies, providing effi-

cient utilization of an increasing number of processors.
On the other hand, a small value means large increments
in latency. Because the processor increment in execu-
tion directly affects the scalability measurement, we use
this increment as a weight variable. The weighted average
scalability for a mutual exclusion algorithm running on
a multiprocessor system up top processors is

This metric concerns relative latency increments rather
than absolute cycle times, so it can be used for scalabil-
ity comparisons among different architectures.

Four representatiue mutual
exclusion algorithms
To demonstrate our framework’s usefulness, we chose
these mutual exclusion algorithms:

l The B-L algorithm: an algorithm independently pro-
posed by Burns and Lynch5 and Lamport.(j

l Lamport’s algorithm without the time-bound
requirement.7

l A FIFO-based algorithm proposed by Lycklama and
Hadzilacos.*

l The YA algorithm: a tree-structured algorithm pro-
posed by Yang and Anderson.9

Each algorithm maintains mutual exclusion, deadlock-
freedom, and starvation-freedom. Table 1 lists their
additional properties (the d-ary algorithm is a newly
designed algorithm, which we will discuss later).

THE B-L ALGORITHM

Figure 2 outlines the B-L algorithm. In the first stage of
this algorithm, each process sets its bit to indicate its
request to enter the CS, and tests the bits of the lower-
numbered processes. If it finds other CS requests, it
gives up and restarts. On the other hand, if none of the
lower-numbered processes has its bit set, the request-
ing process proceeds to the second stage, where it tests
the bits of the higher-numbered processes, and waits for
its turn.

Spring 1996 29

Shared int x[N]; /* N is the number of
threads */

Private int t;

' Initial Vj: :x[j]=O:

Process i; /*i=O,l,...,N-l*/
1. noi
2. NOWCS ;
3. L: x[i]=l;
4. for (t=0;t<i-l;t++)
5. if x[t] (
6. x[i]=O:
7. do 0 while(x[tl);
8. goto L;l
9. for(t=i+l;t<N:t++)

10. do while (x[t]):
11. cs ;
12. x[il.=O;l
13. while(l) ;

Figure 2. The B-L algorithm.

-
Shared int b[N],x,y; i+ N is the number of

threads */
private int j;

Initial (~j::b[j]==O)A(y==-1):

Process i; /*i=0,1,2,...,N-l*/
1. Doi
2. Non-CS ;
3. L: b[i]=l;
4. x=i;
5. if(y!=-111
6. b[i]=O:
7. do 0 while (y!=-1):
8. goto L:l
9. y=i;

10. if(x!=i) {
11. b[i]=O;
12. for(j=O;j<N;j++)
13 do 0 while (b[jl):
14. if(y!=i) (
15. do (1 while (y!=-1);
16. goto L:) 1
li. cs :
18. y=-1:
19. b[il=O:l
20. while(l)

L 1
Figure 3. Lamport’s tast mutual exclusion algorithm.

Two loops spin on the elements of shared array x[N],
where Nis the number of requesting processes. For ele-
ment ~[i] (0 I i 5 N- l), the maximum number of shar-
ing degree S,,,,(x[z]) is N. This indicates that the two spin-
ning loops might generate hot variables.

The B-L algorithm is not contention-sensitive. When

only one process contends for the CS, the process must
visit N- 1 shared variables. When process i exits from the
CS and releases the CS, the processes spinning on x[z]
in statements 7 and 10 will be awakened. In addition, all
the processes spinning in statement 7 will go back and
restart after the CS is released. Therefore, all the addi-
tional operations executed because of a release of the CS
are considered as the release cost (R,,,,). However, the
processes detained in the queuing loop (statement 9) will
never restart. Thus, the more processes that can enter
the queuing phase, the more efficient execution will be.

LAMPORT'S AL~RI~M
Figure 3 outlines Lamport’s “fast mutual exclusion algo-
rithm,” which assumes that “contention for a critical
section is rare in a well-designed system; most of the
time, a process will be able to enter without having to
wait.“’ This algorithm minimizes the number of mem-
ory accesses in the absence of contention. It uses two
shared variables, x and y, for a requesting process to
determine if contention for the CS exists. When the sys-
tem has no contention, a process enters the CS by-this
statement sequence: 3 + 4 4 5 + 9 3 10 + 17.

When more than one process is contending for the
CS, the first process executing statement 9 will sety to
its identification so that statement 5 will prevent other
processes from contending for the CS. For those
processes that have passed statement 5, at most one
process can enter the CS directly by passing statement
10, and the other processes turn to execute statements
11 and 12. The for loop in’statement 12 guarantees
that each contending process has set its b[z] label to 0
before a process enters the CS by passing statement 14.

Lamport’s algorithm has three spinning loops: state-
ments 7,13, and 15. Although these loops have the same
average sharing degree (Nin the worst case), the loops
in statements 7 and IS will generate higher contention
than the loop in statement 13. This is because state-
ments 7 and 15 always spin on the single shared variable
y, while statement 13 spins on different elements of array 6.
This algorithm has a higher number of spinning oper-
ations than the B-L algorithm.

Because this algorithm provides two possible execu-
tion paths to the CS for a process, the probability for
each path to be executed determines the average process-
response time. When a high number of processes
are contending to enter the CS, the probability of a
process entering the CS by satisfying (x!=z) in statement
10 is small. In most cases, it enters the CS by satisfying
(y!=i) in statement 14. Further, when a high number of

30 IEEE Parallel & Distributed Technology

Shared int c[Nl ,v[Nl ,turn[Nl [21:
/* N is the number of threads */

Private int j,bit,s[Nl [21:

Process i; /*i=O,l,...,N-l*/
1. Doi
2. Non-CS:
3. c[il=l:
4. for (j=O;j<N-l;j++) 1
5. s[jl [Ol=turn[jl [Ol:s[jl [II=

turn[jl [ll:l
6. bit=l-bit;
7. turn[i] [bit]=l-turn[il [bit] ;
8. v[i]=l;
9. c[i]=O;

10. for(j=O;j<N;j++)
11. do~lwhile(c[j]v~v[jl~s~jl LO]==

turn[jl [Olr\s[jl [ll==
turn[jl [II)):

12. Entry(i) :
13. cs ;
14. Exit(i) :
15. v[il=O; I
16. while(l):

L

Figure 4. A FIFO-based algorithm.

processes contend for the CS, at most two can enter the
CS consecutively: one enters by passing statement 10,
another enters by passing statement 14, and the rest of
them go back and restart. This shows that Lamport’s
algorithm has a potentially high release cost.

THE FIFO-BASED ALGORITHM
To study the cost of a fairness requirement on mutual
exclusion algorithms, we selected a FIFO-based algo-
rithm (see Figure 4).* In this algorithm, a specific seg-
ment of the program, called the doonvay, enacts the FIFO
property. InFigure 4, Entry(i) and Exit (i) are the
entry code and the exit code. The doorway comprises
statements 3 to 10, which are surrounded by a variable c[z]
that is set to 1 on entry to the doorway and to 0 after exit-
ing the doorway. Moreover, in the doorway code, each
process owns a two-bit communication variable tzlm[z]
(tzcmz[z~ [0] and tuyn[z] [l]). The algorithm modifies this
variable’s value in each iteration of the process by alter-
nately complementing the value of one of its bits.

When a process wants to enter the CS, it first saves all
the other communication variables in statements 4 and 5.
It then changes its own communication variable in state-
ments 6 and 7, signals its intention to enter the interior
by setting variable v[z] to 1 in statement 8, exits the door-
way in statement 9, and waits to contend for the CS in
statements 10 and 11. The number of shared-variable
accesses for a process to execute the doorway code is
2N+ 3.

Spring 1996

Shared int c [Nl [WI ,p [Nl [Nl ,t[Nl [Nl ;
I* N is the number of threads */

Private int rival,j,k,l,high,comp:

InitialVi,j:O <j < log2(N)::c[j,il =
-1 A p[j,il = 0:

Process i; /*i=O,l,..., N-l*/
1. j=O;k=i/2;l=i:
2. high=(int) (log(N)/log(Z)):
3. if(log(NPROCESS)/log(2)>high)
4. high++:
5. Do i
6. Non-CS:
7. while(j<high) (
8. c[j] [ll=i:
9. t[j] [kl=i;

10. p[jl [il=O:
11. if(1%2==0) comp=l+l:
12. else comp=l-1;
13. rival=c[jl [compl;
14. if(rival!=-111
15. if(p[jl [kl==i){
16. if(p[j] [rival]==01

p[j] [rivall=l;
17. do while(p[j] [il==O):
18. if(t[jl [kl==i)
19. do while(p[jl [il<=l) ;
20. I
21
22
23
24
25
26

27
28
29
30
31

I
k=k/2;1=1/2;j++;

cs :
while(j>O)i

k=i/power(2,j+2);l=i/power
(Z,j+l);j--:

c[jl [11=-l;
rival=t[jl [kl :
if(rival!=i) p[jl [rivall=2;1

while(l);

THE YA ALGORITHM
This algorithm (see Figure 5) constructs a binary tree-
based structure. To enter the CS, a requesting process
must traverse a path from the leaves up to the root, exe-
cuting the entry section code along the path. Upon exit-
ing the CS, the process traverses this path in reverse,
executing the exit section code.

Along the path for a process to enter the CS, two spin-
ning loops are at statements 17 and 18. Each statement’s
sharing degree is 2 because the spinning variable pb] [i]
is accessed by two concurrent processes at most. No process
in this algorithm has to restart after a release of the CS.
This feature eliminates the release cost. Moreover, each
process has a unique execution path from its entry to
the exit. The process-response time is O(log(N)). The
algorithm is not contention-sensitive. _

Yang and Anderson have proposed another algorithm
that combines Lamport’s fast mutual exclusion algorithm

31

Figure 5. The YA algorithm, which is tree-based.

Critical <rT:) section

Two-process mutual
exclusion algorithm

Localring 1 Local ring 2

Figure 6. The two-level refined mapping structure tor
mutual exclusion algorithms on the KSR-1.

and their tree-based mutual exclusion algorithm.9 This
algorithm’s process-response time is O(N). This algo-
rithm is 1 -sensitive-that is, it performs best if only one
process contends for the CS.

Perfurmance evaluation on the
TC2000 and the KSR-1
The BBNTC2000 supports up to 512 Motorola 88100
processors, each operating at 20 MHz.’ Its networkuses
a butterfly switch composed of 8x8 switches.

The KSR-1 is a hierarchical-ring-based system with
up to 1,088 64-bit custom superscalar RISC processors
(20 MHz).~ A basic ring unit in the KSR-1 has 32
processors. The system uses a two-level hierarchy to
interconnect 34 rings (1,088 processors). Each proces-
sor has a 32-Mbyte cache.

The basic structure of the KSR- 1 is the slotted ring,
which divides the ring bandwidth into a number of mes-
sage slots circulating continuously through the ring.
The number of slots is equal to the number of proces-
sors plus the number of directory/router cells connect-
ing to the upper (level- 1) ring. A standard KSR- 1 ring
has 34 slots: 32 for the processors and two for the ceils.
Each slot can be loaded with a packet consisting of a 16-
byte header and 12 8 bytes of data. This packet, called a
subpage, is the KSR-l’s basic data unit. A processor on
the ring that is ready to transmit a message waits until
an available empty slot rotates through that processor’s
ring interface.

We performed our experiments on a TC2000 with
64 processors and on a two-ring KSR- 1 with 64 proces-
sors. We measured the average time to acquire and
release the lock for different numbers of processors.
Each processor requested lock acquisition 1,000 times
in a loop. Twh additional instructions set the CSs for

32 IEEE Parallel & Distributed Technology

these experiments to make them nonempty and to check
each execution’s correctness. We also ran ail experi-
ments under benchmark mode. Therefore; the systems
were solely used for these measurements.

AFKXITECTLJRE EFFECTS
The following architecture effects can cause differences
in the performance of mutual exclusion algoi-ithms on
the TC2 000 and the KSR-1:

NilLM effects
In both systems, a processor accesses shired-memory and
cache space at different distances with different timing
costs. However, the NUMA models of the two systems
differ.

The TC2000 has only two levels of memory accksses-
local and remote-between which the difference in
access t ime is approximately a factor of 4.7. The average
access time for read/writes is 0.42 ys for local and 1.96
ps for remote.

On the KSR-1, a memory access can have multiple
distances: the subcache, the local cache, a remote cache
in the local ring (remote), and a remote cache in a
remote ring (remote-remote). The access-time differ-
ence can be up to about 2 8.5 times, not considering sub-
cache access. The average access time for read/writes is
0.1 ps for subcache, 2.5 ~1s for local, 9.5 ,LS for remote,
and 28.5 p,s for remote-remote.

Non-CC-NlhX4 versus COMA
The TC2000 avoids the cache-coherence problem by
disallowing caching of shared data, while the KSR- 1 is
a cache-coherence and cache-only system. Because of
this difference in memory systems, a mutual exclusion
algorithm will exhibit different execution patterns on
each machine.

System reactions to hot spots
The TC2000 is much more hot-spot-sensitive than the
KSR- 1, because of different network structures. Our
previous research indicates that ring-network transac-
tions in the KSR-1 decrease no more than SO% in the
presence of memory hot spots.1o This compares with a
300% latency change in the TC2OOCi.

Process sequences
The KSR-l’s rotating slotted-ring network can natur-
ally order CS requests to be sequenced by their locations
on a ring. Although this ordering property does not
provide a FIFO service, it guarantees that any request-

Table 2. Sharing degree (S,,,) and sharing distance (S,,,) of the
naive and refined mutual exclusion algorithms.

NAIVE(ON TC2000 AND KSR-1) REFINEO (ON KM-l)
S dW Sd,S S deg Sdh

B-L
FIFO

ing process will eventually execute its
CS. However, a software structure for
FIFO service might cause additional
overhead because of rearrangement of
the natural ring orders.

Lamport
YA
d-ary

n
n

2”
n/a

global
global
global
global

n/a

n/2
n/2
n/2
2
d

local
local
local
local
local

Locality issues
The KSR-1 system is more locality-sensitive than the
TC2000 because of its hierarchical structure.

this two-level refined mapping structure, which
reduces the average sharing degree and the average
sharing distance.

RESULTS
The KSR-l’s architecture and memory systems are
complex, and the ways of implementing a software-
based algorithm on it can affect the algorithm’s perfor-
mance significantly. To show this, we implemented the
mutual exclusion algorithms on the KSR-1 in two dif-
ferent ways:

Table 2 compares the sharing degree.and sharing dis-
tance for the naive and refined algorithms on the
TC2000 and the KSR-1.

Process-response times

l Naive mapping: We fully used the shared-memory
illusion provided by the KSR-1 for easy program-
ming, without considering detailed structures of the
ring network and the COMA system.

l Refined mapping: We varied the algorithm imple-
mentations to account for the effects of the architec-
ture and memory system. (We did not refine the
FIFO algorithm because its major component is the
refined B-L algorithm.)

Figure 7a presents process-response times for the
mutual exclusion algorithms on the KSR- 1. For naive
mapping, the FIFO algorithm’s process-response time
sharply increased for more than 48 processors because
of the overhead of forming the FIFO queue. Lamport’s
fast algorithm also performed poorly because of high
release costs. The B-L algorithm and YA algorithm per-
formed the best among the four.

The TC2000’s architecture and memory systems are
less complex. So, we used only a naive mapping on the
TC2000.

When refining each base algorithm to improve its
performance on the KSR-1, we had three main con-
cerns. First, program-thread scheduling and execution
should efficiently exploit hierarchical locality by pro-
cessing referenced data in a local cache or in caches in
the local ring as much as possible. Second, the algorithm
designs should consider the structure of the COMA sys-
tem to minimize cache-access misses and cache invali-
dations. This consideration includes the effective use of
the cache subpage, which will bring a group of variables
to a local cache to reduce remote accesses. Finally, we
must explicitly manage processor locality by manually
mapping the data structures among the rings without
using the compiler and system’s mapping options.

The refined mapping improved performance signif-
icantly. The refined B-L algorithm performed better
than the refined YA algorithm, for three reasons. First,
the B-L algorithm’s first stage rules out a large number
of requesting processes. This filtering effectively
reduces the number of restarted threads. Second, the
B-L algorithm does not force the requesting processes
to enter the CS in a certain pattern, such as a tree. So,
the B-L algorithm should have less software delay time
in practice, although it might have higher contention
than the YA algorithm. However, the KSR-l’s ring
structure might effectively handle network con-
tention.lO Finally, in the B-L algorithm, the shared vari-
ables are vectors. This structure lets us use the cache
subpage (128 bytes), which will bring up to 32 integer
variables at a time to a local cache for reduction of
remote accesses.

To exploit the system’s localities, a refined imple-
mentation maps the original algorithm into two local
rings. The process in each local ring selects a leader. A
two-process management in the global ring coordinates
the two leaders contending for the CS. Figure 6 shows

Figure 7b presents process-response time on the
TC2000. The results show that the YA algorithm can be
more effectively implemented on the TC2000 than on
the KSR- 1, for two main reasons.

First, the TC2000’s multistage interconnection net-
work (MIN)-based architecture is much more hot-spot
sensitive than the KSR- 1. lo Except for the YA algorithm,
all the algorithms are hot-spot sensitive. Hot-spot
effects can decrease significantly on the TC2000 if
shared variables in an algorithm are widely distributed
or efficient delays are used to reduce the number of

Spring 1996 33

- Lamport algorithm
+ FIFO algorithm
- Refined Lampott algorithm
+ YA algorithm

30

20
:: FL?
z i IO
8 0 k '0 IO 20 30 40 50 60
(4

Processors

i
70

- Lampoti algorithm
- FIFO algorithm
- B-L algorithm
+ YA algorithm

g 20
cn
$ IO
E e a 0 0 IO 20 30 40 50 60
(b)

Processors

Figure 7. Process-response times for the mutual exclusion algorithms: (a) on the KSR-1, (b) on the TC2000.

15

IO

5

0
0 10 20 30 40 50 60

Processors

Figure 8. Release cost for the mutual exclusion Figure 9. Remote memory accesses for the mutual ex-
algorithms and their refined versions on the KSR-1. clusion algorithms and their refined versions on the KSR-1.

remote accesses to the shared variables. For example, the
YA algorithm uses a tree structure to distribute shared-
variable accesses.

Second, the TC2000’s simple local/remote memory-
access model generates straightforward overhead pat-
terns. In contrast, dynamic data migrations and cache
coherence on the KSR-L complicate algorithm map-
ping, and can seriously degrade performance if the
COMA system is not properly used.

Release costs
We measure the release cost by counting the average
number of restarted processes caused by each release of
the CS in an algorithm. In this study, we conducted exper-
iments only on the KSR-1 because the release cost is
mainly algorithm-dependent, rather than architecture-
dependent.

0 IO 20 30 40 50 60 ;
Processors

;0

Figure 8,presents release costs. The YA algorithm and
its refined version have no release costs. The FIFO algo-
rithm has an insignificant number of restarted threads
because the additional FIFO software filter generates a
limited number of waiting processes for the CS. The
results indicate that the refined implementations reduce
the release costs for the Lamport fast algorithm and the
B-L algorithm. This is because the refined implemen-
tations exploit more localities of the ring architequre
and reduce network contention’. Therefore, the num-
ber of waiting processes decreases, which reduces the
number of restarted threads.

Remote accesses
Besides being the only complexity measure in standard
theoretical analysis, an algorithm’s number of remote
accesses is important to execution evaluation.

34 IEEE Parallel & Distributed Technology

Figure 9 reports the number of remote accesses for each
algorithm and its refined version on the KSR-1 as the
number of processors increases to 64. The number of
remote accesses for each algorithm’s execution is consis-
tent with that algorithm’s theoretical complexity analysis.
The YA algorithm has the fewest remote accesses, fol-
lowed by the B-L, Lamport, and FIFO algorithms. Also,
the number of remote memory accesses for each refined
implementation is significantly lower than the number of
accesses for the corresponding naive version. This further
shows the effectiveness of the refined implementations.

Fairness
As our results have shown, a mutual exclusion algorithm
with FIFO support can have tremendous overhead
caused by execution of the additional software structure.
We ran a group of fairness tests on the KSR- 1 to observe
whether the competing processes in a non-FIFO algo-
rithm can still fairly access the CS in any given period
of execution time. We evaluated fairness by measuring
the variance of the numbers of accesses to the CS from
each processor for each algorithm.

Figure 10 presents the standard deviation results.
The variance of the access sequence is relatively
insignificant. For example, the highest standard devi-
ation measure of the B-L algorithm is 0.35. There-
fore, additional software might not be necessary to
support the FIFO sequence, unless the application
requires it.

Contention sensitivity
We compared the contention sensitivity of the four
algorithms and their refined versions on up to 64 proces-
sors of the KSR- 1, using these conditions:

l When the total number of processes is less than eight,
all processes contend for the CS. Thus, when the
process number increases from one to eight, the con-
tention to the CS increases, which will degrade per-
formance of both contention-sensitive algorithms
and noncontention-sensitive algorithms.

l When the total number of processes is more
than eight, only eight random processes contend
for the CS; all the other processes do the work
without accessing the CS. The contention to the
CS stays unchanged. Thus, the performance of
contention-sensitive algorithms should also stay
unchanged.

l All the processes in an application are randomly dis-
tributed over the hierarchical ring structure.

Spring 1996

s 0.35

g
Ti

0.30

- 2 0.25 Lamport algorithm

8
g
5

0.20

.g 0.15
'5
8 0.10
e
43
2

0.05
tj 0

0 lo 20 30 40 50 60 70
Processors

Figure 10. Fairness of the mutual exclusion algorithms
on the KSR-1.

- YA algorithm - Refined Lampoti algorithm
+ Lampon’ algorithm -+-Refined B-L algorithm

- -FIFO algorithm +~ B-L algorithm

Figure 11. Process-response times for the mutual exclusion
algorithms and their refined versions on the KSR-1.

Figure 11 shows that the B-L, Lamport, and FIFO
algorithms have more stable contention sensitivity than
does the YA algorithm. Except for the YA algorithm,
shared variables/vectors form the basic data structures
of the algorithms. The response time of these algorithms
depends only on the number of processes contending
for the CS. Therefore, after more than eight processors
are used, the response time of the three algorithms
remains roughly constant.

The YA algorithm uses a binary tree. The total num-
ber of processes determine the tree’s height and width.
That is the main reason why this algorithm’s contention
sensitivity differs from that of the other algorithms.
However, the refined YA algorithm’s contention sensi-
tivity becomes more stable, because the new imple-
mentation reduces network contention. Testing con-
tention sensitivity can also reveal the performance

35

- Lamport algorithm
- FFO algon'fhm
- YA algorithm
+ B-L algorithm

% 2
8
$- 1.5
z?
' 2 1

8 0 5
n'

0
0 10 20 30 40 50 60 70

Processors

Figure 12. Execution times for implementation of the
mutual exclusion algorithms in a parallel quicksort
algorithm on the KSR-1.

0.025 r
0.02

Naive implementation on KSR-1
Refined implementation on KSR-I
Implementation on TC-2000

Figure 13. Scalability of the mutual exclusion
algorithms on the KSR-1 and the TCZOOO.

changes of the algorithms with different CS-access pat-
terns in an application program.

Performance in an application program
We implemented the mutual exclusion algorithms in
a parallel quicksort (QS) algorithm to evaluate their
effects on the program. In this algorithm, a queue
stores and allocates tasks. The task queue is a shared
resource. Each process visits the “task queue exclu-
sively when it generates a task and places it into the
queue, or when it requests a new task from the queue.
The efficiency of mutual exclusion in the QS algo-
rithm significantly affects the algorithm’s execution
performance.

We measured the process-response time of each
mutual exclusion algorithm implemented in the QS
algorithm on the KSR-1 (see Figure 12). The Lamport
algorithm performed the slowest. As we expected, the
B-L and YA algorithms performed significantly better.
These results are consistent with the previous perfor-
mance results for these algorithms.

Scalability
Finally, we compared the scalability of the algorithms
on both machines. We used the scalability metric to
compare the algorithms’ access latency in increments
from two to 64 processors. The measurements quanti-
tatively give the scaling characteristics of each algo-
rithm on each machine (see Figure 13).

An interesting result concerns relative-latency incre-
ments. Absolute access-delay times for some algo-
rithms on the KSR-1 are similar to those on the
TC2000 because of the faster ring network. However,
the relative-latency increment for each algorithm is
lower on the KSR-1 because of cache coherence and
fewer hot-spot effects.

The measurements also show that algorithm scala-
bility is architecture-dependent. For example, the YA
algorithm on the KSR is more scalable than the ones
on the TCZOOO. These results further confirm our
analysis of the architectural effects on, and implemen-
tation variations of, these algorithms.

iCEwee new efficient algorithms

We’ll now describe the structure and performance of
the three fast mutual exclusion algorithms we’ve devel-
oped. We have previously prepared correctness proofs
of each aig0rithm.i’

THE d-ARY TREE ALGORITHM
Based on our analyses and experiments, an efficient
mutual exclusion algorithm in a shared-memory system
should have these characteristics:

1. It should use hierarchical data structures to exploit
architectural locality and reduce hot-spot effects.

2. It should use a vector to allocate shared variables to
exploit cache-prefetching for possibly enhancing its
contention sensitivity, and to reduce the number of
remote-memory accesses.

3. Because shared-memory architectures vary, its
structures must be adjustable to adaptively optimize
its performance on different machines.

36 IEEE Parallel& DistributedTechnology

Furthermore, our qualitative and quantitative results
indicate that the binary tree structure in the YA algo-
rithm can effectively distribute network contention and
eliminate the release cost (Characteristic 1). However,
the algorithm is not contention-sensitive. On the other
hand, the B-L algorithm effectively uses the cache-
prefetching function and is more contention-sensitive
(Characteristic 2). It responded faster than the YA algo-
rithm on the KSR- 1.

The d-a y tree algorithm is a hybrid that combines the
good features of the YA and the B-L algorithms. d is an
integer (>I) that can adaptively change to adjust algo-
rithm performance on different architectures (Charac-
teristic 3). (Table 1 lists this algorithm’s additional prop-
erties, and Table 2 lists its sharing degree and sharing
distance on the TC2000 and the KSR-1.)

Figure 14 outlines the algorithm, which constructs a
logical d-ary tree as distributed processes in the system.
Entry and exit sections are associated with each link in
the tree. The two code sections are similar to the B-L
algorithm. To enter the CS, a requesting process must
traverse a path from its leaves up to the root, executing
the entry section of each link along the path. Upon exit-
ing the CS, the process traverses the path in reverse,
executing each link’s exit section.

The tree structure is similar to that of the YA algo-
rithm. However, the tree structure’s adjustable parame-
ter makes this algorithm unique and adaptive. When d
increases, the tree’s height decreases, which means the
traveling distance of accessing the CS decreases, but con-
tention and the release cost might also increase. When
d is larger than the number of processes in the system,
the d-ary tree algorithm is equivalent to the B-L algo-
rithm. When d = 2, the algorithm constructs a binary
tree, but it differs from the YA algorithm, because the
contending process is based on the B-L algorithm.

The d-at-y tree algorithm satisfies the basic require-
ment of mutual exclusion. (It is a straightforward proof
based on the correctness of the B-L algorithm and the
tree structure. The formal proof is beyond the scope of
this article.) This algorithm does not guarantee FIFO
order. The spinning loops of statements 11 and 1.5 in
Figure 14 have the same sharing degree, d. Although
the algorithm’s performance still depends on the total
number of processes, the adaptive tree structure makes
it more contention-sensitive than the YA algorithm,
because it takes advantage of cache prefetching.

We measured the process-response times of the d-ary
tree algorithm running on the KSR- 1 (see Figure 1 Sa) and
the TC2000 (see Figure 1 Sb) for different values of d. On

Spring 1996

Adjustable parameter: d /* the number of

children of a node */

Shared int x[N] [WI ; /* N is the number of

threads */

Private int high,k,i,j,l,len;

InitialVj,i::x[jl [il=O;

Process id: /*id=O,l,...,N-l*/

1. j=O;k=id/d;l=id:

2. len=NPROCESS;

/*len records the number of nodes at

level j*/

3. high=logd(NPROCESS);

4. Do (

5. Non-C's:

6. while (j<high) (

7. yy: xCj1 [11=1:
8. for (i=k*d;i<l;i++)

9. if (x[jl [iI)
10. x[jl [11=0;
11. do 0 while (x[j] [i]);

12. goto yy:
13. I

14. for (i=l+l;i<min((k+l)*d,len);i++)

15. do 0 while (x[jl [ill:

16. l=l/d;k=k/d;j++;

17. len=(len%d==0)?len/d:len/d+l;l

18. cs:

19. j=high:

20. pow2=power(d,high)

21. while (j>O)i

22. j--:
23. powZ/=d;

24. l=id/pow2:

25. x[jl [ll=O:
26. I

27. I

28. while(l) :

Figure 14. The d-ary tree algorithm.

the KSR- 1, the 4-ary algorithm performed best. Com-
pared with the fastest B-L algorithm the 4-at-y algorithm’s
process-response time decreased approximately 40%. On
the TCZOOO, the 2-ary algorithm performed best, close
to the YA algorithm.

A FAST 2-ARY TREE ALGORITHM

As we have shown qualitatively and quantitatively, a non-
cache-coherent, hot-spot-sensitive architecture, such as
the TC2000, might favor execution of a low-order tree
algorithm, while a cache-coherent architecture, such as

37

- Wary tree
- B-L algorithm
- 32.ary tree
+ 2-ary tree
- d-ary tree
+ 3-ary tree

10 20 30 40 50 60 ;
Processors

.E 40

; 30

f 20

g 10
CT

0
0 20 40 60 80 100 120

04 Processors

Figure 15. The process-response times of the d-ary
algorithm for different values of d: (a) on the KSR-1,
(b) on the TCZOOO.

Shared int x[2],c[N];

the KSR- 1, might favor execution of a moderate-order
tree algorithm. We propose a variation of the 2-ary tree
algorithm that includes local spins. Because this algo-
rithm outperforms all the YA and the 2-ary tree
algorithms on the TC2000 and the KSR-1, we call it
the fast 2-ary tree algorithm.

This algorithm’s construction is based on a two-
process mutual exclusion algorithm (see Figure 16).
Our algorithm associates each process i with only two
variables: X[Z] and c[;l. Allocation c[zj is the local place on
which process i spins. Element X[Z~ informs the rival of
process i of its status of contending for the CS and of
its identity number (i). This algorithm’s basic data
structure has a low memory-allocation requirement
compared with other algorithms of the type. For exam-
ple, in the original 2-ary tree algorithm,9 each process
needs three variables, and an additional variable resolves
the contention.

In practice, a mutual exclusion algorithm might not
require fairness. The fast 2-ary tree algorithm resolves
process-request contention by favoring one of the two
contention processes, which eliminates any delay require-
ment. In contrast, the original 2-ary tree algorithm uses
a dynamic contending method to resolve the contention,
which tends to generate extra delay overheads.

In the algorithm in Figure 16, process u has higher
priority than process V, while both contend for the CS
simultaneously. When process u executes, it sets its
identifying number u in x[O] to announce its involve-
ment and sets ~[a] to 1 to prepare for resolving con-

Initialization: V i E [O,N-l]::e[i]= 1; x[O]=x[l]=-1:

Process u;
int rival:
Do 1
ul: Non-CS:

~2: x[O]=u; (R)
u3: c[ul=l;
~4: if ((rival=x[l]) !=-l)((R)
u5 : c[rival]=O; (R)
u6 : do 0 while(c[u]);l

Process v;
int rival:
Do C
VI : Non-CS;
~2: x[l]=v; (R)
v3 : yy: if((rival=x[O])!=-1
v4: c[rival]=O; (R)
vi : do 0 while(c[v]):
X76: c [VI =1;

) (RI

u7: cs;
~8: x[O]=-1; (R)
u9: if(rival!=-1) (R)
while(l).

v7 : goto yy:l
v8 : CS:
v9: x[l]=-1; (R)
~10: c[rival]=O;l (R)
while(l).

Figure 16. The two-process mutual exclusion algorithm for the fast 2,ary tree algorithm.

38 IEEE Parallel & Distributed Technology

Shared int x[Nl [Nl , c[Nl [Nl ;

Initialization:Vi,js [O,N-
l]::(c[il [jl=lorO~~~x~il~jl=-1):

Process id; /*id=O,l,..., N-l*/
int high,i,j,l,rival:

1. j=O; l=id:
2. high=rlog2 (NPRoCESS)~:
3. Do 1
4. Non-CS ;
5. while (j<high) 1
6. if(1%2==0) 1
7. x[j] [ll=id;
8 c[jl [idl=l:
9. if ((rival=x[j][l + 11) !=-1) i

10. c[j][rival] = 0;
11. do i1 while(c[jl [id]):
12. 1
13. I
14. elsei
15. x[jl [ll=id;
16. yy: if ((rival=x[jl [l-11) !=-111
17. c[j] [rival=O;
18. do i1 while (c[j] [id]):
19. c[jl [idl=l:
20. goto yy;
21. 1
22. I
23. l/=2; j++:
24. I
25. cs;
26. j=high;
27. pow2= power(d,high)
28. while (j>O)i
29. j--:
30. pow2/=d;
31. l=id/pow2;
32. x[j] [11=-l;
33. temp=(1%2==0)?1+1:1-1;
34. if((rival=x[jl [ternpI)!=-
35. c[rivall=O:l
36. I
37. while(l) ;

igure 17. The fast 2-ary tree algorithm.

tention. When process u detects its rival’s ambition to
enter the CS in statement 2~4, it cleans the rival’s exe-
cuting path in US to guarantee that its rival will let it pass
the busy waiting loop in ~6 later. Process v can enter the
CS only when process u finishes contending for the CS.

Regarding the algorithm’s memory-access complex-
ity, process u has only four remote-memory accesses in
the presence of contention, and five in the absence of
contention. Process z, will execute four remote accesses
in the absence of contention. In an average situation,
processes u and i/ execute the CS in turns; process v only
needs to test in statement v3 twice in the presence of
contention. Thus, process v has an average of seven
remote-memory accesses (in Figure 16, remote accesses

Spring 1996 39

in‘ in‘
F F
s s - YA algorithm
g 15 g 15 + + Fast 2-ary tree algorithm Fast 2-ary tree algorithm

s. s.
-e- 4-ary tree algorithm -e- 4-ary tree algorithm

E E
.; .; 10 10

E E
=: =:
2 2
ch ch 5 5
E E
2 2

IO IO 20 20 30 30 40 40 50 50 60 60
(a) Processors

- 2-aty tree algorithm

- Fast 2-ary tree algorith

0 10 20 30 40 50 60
(b) Processors

Figure 18. Process-response times of the fast 2-ary tree
algorithm: (a) on the KSR-1, (b) on the TCZOOO.

are marked with (R)). So, for this two-process mutual
exclusion algorithm, the average number of remote
accesses per process is (4 + 4)/2 (= 4) in the absence of
contention, and (5 + 7)/2 (= 6) in the presence of con-
tention. In contrast, for the YA algorithm, the average
number of remote memory accesses per process is five
in the absence of contention and 10 in the presence of
contention.

Figure 17 shows the fast 2-ary tree mutual exclusion
algorithm. To avoid interference among node mutual
exclusion algorithms in the tree, each node employs an
independent set of variables. In each node algorithm,
the process with an even value of 1 has priority over the
process with an odd value of 1 when contending for the
CS. Because the rival of a process changes dynamically,
the process must check whether its rival still exists when
it exits the CS (see statement 34 in Figure 17).

We compared the performance of the fast 2-ary tree
algorithm, the YA algorithm, and the best ones of the
d-ary tree family on the KSR-1 (see Figure 18a) and
TC2000 (see Figure 18b). The fast 2-ary tree algorithm
outperforms the YA algorithm on both machines, which
is consistent with our analyses.

Shared int busy[N],wait[Nl,turn: /* N is

total number of processes */

Shared int gatel,gate2;

Initialization: (Vi E [O,N-l]::(busy[i]=O:

wait[i]=l))A(turn=N:gatel=gate2=0);

Process id: /*id=O,l,...,N-l*/

int I, temp=O:

1. Do (

2. Non-CS;

3. busy[idl=l;

4. do 0 while(gatell Igate2):

5. if(turn!=N)ldoilwhile(wait[id]);

* wait[idl++;l

6. else (

7. gate2=1;

8. for(i=O;i<id:i++)

9. if(busy[il) C

10. temp=l:

11. goto L;l

12. L: if(temp)l

13. gate%=O: temp=O;

14. do 0 while(wait[id]); wait[idl++;l

15. else

16. (turn=id: gate2=0;1

17. I

18. CS:
19. gatel=l; i=(turn+l)%N:

20. while(i!=turn&&busy[i]==O)

21. if(i!=turn)i
22. turn=i;

23. busy[idl=O;

24. wait[turnl=O;l

25. elsei

26. busy[id]=O; wait[id]=l;

27. turn=N;l

28. gatel=O:

29. I.

.=(i+l)%N;

Figure 19. A fast algorithm for a high-contention
environment.

A FAST ALGORITHM FOR HIGH-CONTENTION
ENVIRONMENTS ON CACHE-COHERENCE SYSTEMS
Lamport proposes a fast algorithm for the noncon-
tention environment, which covers a special class of
applications7 On the other hand, another special class
of applications frequently accesses the CS and gener-
ates high contention. We’ve developed a fast algorithm
for this class of applications on cache-coherence shared-
memory systems.

Let PVdenote the average number of processes wait-
ing for access to the CS. In a high-contention environ-

10 20 30 40 50 60 70
Processors

30 40
Processors

60

Figure 20. Performance of the fast algorithm on the
KSR-1: (a) memory-access complexity, (b) process-
response time.

ment, Wis usually greater than 1, which means that
when a process tries to access the CS, another process
always executes the CS. In this case, a fast path direct-
ing the new processes to spin locally would be effective.
When a process releases the CS, many waiting processes
immediately want to enter the CS. So, it would be effi-
cient to directly transfer ownership of the CS to one of
the waiting processes.

Figure 19 shows our algorithm. It allocates each
process i in two shared vector variables: ~UJ-y[i] and
wait[i]. b~y[z] reports whether process i is contending
for the CS. The algorithm allocates this vector in as few
cache blocks as possible to take advantage of cache
prefetching. wait[i] is the spinning variable of process i,
which is local to process i.

Another important shared variable is turn, which
reports whether the CS is occupied. If so, turn records
the process ID number in the CS. All the processes are
queued into a logical ring, according to their process ID.
numbers:pO -+pl +p2 ... +p(N- 1) 4 p0. gate1 and
gate2 are two gate variables: gate2 is used only in a non-
contention situation to protect the selection of the initial

40 IEEE Parallel & Distributed Technology

owner of the CS; gate1 blocks a process from entering
the spinning state when the CS is released.

In a high-contention environment, when a process
begins contending for the CS, it usually enters the spin-
ning state at statement 5 by one write and three reads.
If a process finds that turn is equal to Nat statement 5,
it enters the selection process of the initial owner of the
CS at statement 7. Then it either enters the spinning
state at statement 14 or becomes the initial owner to
enter the CS.

The memory-access complexity of the selection
process is O(N). When a process exits its execution in
the CS, it searches the logical ring to transfer the CS to
the nearest waiting process. So, the memory-access
complexity for release is O(N/J+J. In a high-contention
environment, Wapproaches N, and thus the memory-
access complexity decreases to O(1). Hence, the aver-
age complexity of this algorithm in a high-contention
situation can be as good as O(l), which is independent
of the total number of processes.

To further confirm this, we measured our fast algo-
rithm on the KSR- 1 in a high-contention environment
where all the processes repeatedly request entrance to
the CS. The fast algorithm has an almost flat memory-
access curve (see Figure 20a), which is consistent with
the predicted constant memory-access complexity. Its
process-response time (see Figure 20b) is shorter than
that of the B-L algorithm, but slightly longer than that
of the 4-ary tree algorithm. In addition, this fast algo-
rithm has no release cost.

COMPARING THE NEW ALGORITHMS WITH HARDWARE
PRIMITIVES
To show the efficiency of our software-based algo-
rithms, we compared their performance with that of effi-
cient hardware primitives on the KSR-1 and the
TC2000. 1 The primitives we selected from the KSR- 1
are the g s pwt (get subpage wait), and the g s pnwt (get
subpage no wait) and its variations: access the lock with
no delay, access the lock with a static delay, and access
the lock with an exponential delay. These primitives are
highly effective on the KSR-1. The primitives we selected
on theTC2000 arethe test-and-set anditsvaria-
tions: access the lock with no delay, access the lock with
a static delay, and access the lock with an exponential
delay. For comparison, we also used the performance of
a distributed lock. We compared the process-response
times in a high-contention environment.

Figure 2 1 a shows the process-response time on the
KSR- 1. Our algorithms outperformed g s pwt and rivaled

- gspnwt (static delay)
-0 gspnwt (exponential de

0 10 20 30 40 50 60
(a) Processors

25
g

E g 20 - 2-ary tree algorithm
= z -test-and-set (exponentialde
.!z 15

+ Fast 2-sty tree algorithm

E
+ Distributed lock

.-

g 10

%
t 3 5
E
2 a 0

0 10 20 30 40 50 60
b) Processors

1

70

7

70

Figure 21. The process-response times of our software-
based algorithms and the hardware primitives: (a) on
the KSR-1, and (b) on the TC2000.

the gs pnwt variations. More specifically, the 4-ary algo-
rithm nearly outperformed the g s pnwt with no delay.
This is important because g s p nwt and g s pwt depend
on the KSR-l’s architecture. These results indicate that
software-based algorithms could be viable alternatives.

Figure 2 I b shows the process-response time of the
same algorithms on the TC2000. Our algorithms out-
performed or rivaled allvariations ofthe test-and-set
algorithms. The process-response t ime curve of the best
software algorithm, the fast 2-ary tree algorithm, is rea-
sonably close to that of the distributed lock.

Our results show that the execution performance of
both hardware-based and software-based algorithms is
architecture-dependent. Generally, a hardware-based
algorithm performs more efficiently than a software-
based algorithm in the presence of contention, because
of support from atomic instructions. However, we can
use the flexibility of software-based algorithms to take
advantage of the structure of architectures and systems.
The performance of the proposed algorithms shows
their potential to rival hardware-based algorithms.

Spring 1996 41

ased on our experimental research, we
believe that software mutual exclusion
algorithm studies directed by theoretical
memory-access complexities probably are
reaching a theoretical limit. For example,

the maximum number of remote memory accesses of a
mutual exclusion algorithm would not be lower than
O(log(z)), where n is the number of remote memory
accesses. Algorithms with this complexity have been
developed (for example, the YA and d-ary algorithms).
On the other hand, approaches that combine analyses
and experiments could significantly improve the per-
formance of the algorithms. g

ACKNOWLEDGMENT
We are grateful to the anonymous referees for carefully reading this
article and for their constructive comments and suggestions. This
work has been supported in part by the National Science Foundation
under grants CCR-9102854and CCR-9400719, bytheUSAir Force
under research agreement FD-204092-64157, by the Air Force Oflice
of ScientificResearchunder grantAFOSR-95-Ol-0215,and bvaFel-
lowship from the Southwestern Bell Foundation. We conducted part
of the experiments on the BBN TC2000 at Lawrence Liver-more
National Laboratory, and on the KSR-1 machines at Cornell Um-
versity and at the University of Washington.

1. X. Zhang, R. Castafieda, and E.W. Chan, “Spin-Lock Synchro-
nization on the Butterfly and KSR- 1,” IEEE Parallel & Distrib-
uted Technology, Vol. 2, No. 1, Spring 1994, pp. 51-63.

2. Inside the GPIOOO and the TCZOOO, BBN Advanced Systems and
Technologies, Boston, 1989.

3. KSR-1 Technology BackFozmd, Kendall Square Research, Cam-
bridge, Mass., 1992.

4. X. Zhang, Y. Yan, and K. He, “LatencyMetric: An Experimen-
tal Method for Measurine and Evaluating Program and Archi-
tecture Scalabi&y,“~. P&zZlel and Dix&ted”Computing, Vol.
22, No. 3, Sept. 1994, pp. 392410.

5. J. Burns and N. Lynch, “Mutual Exclusion Using Indivisible
Reads and Writes,” Pvoc. 18th Ann. Allenon Conf Commmica-
tions, Control, and Computing, Allerton House, Monticello, Ill.,
1989, pp. 833-842.

6. L. Lamport, “On Inter-Process Communication-Parts I and
II,” Distributed Computing, Vol. 1, No. 2, 1986, pp. 77-101.

7. L. Lamport, “AFast Mutual Exclusion Algorithm,” ACM Trans.
Computer Systems, Vol. 5, No. 1, 1987, pp. I-11.

E.A. Lycklama and V. Hadzilacos, “A First-Come-First-Served
Mutual Exclusion Algorithm with Smal l Communication Vari-
ables,” ACM Trans Programming Languages and Systems, Vol. 13,
No. 4, Oct. 1991, pp. 558-576.

J.-H. Yang and J. Anderson, “Fast, Scalable Synchronization with
Minimal Hardware Support,” Proc. 12th Ann. ACM Symp. Prin-
ciplesof Dirtribzlted Computing, ACM Press, New York, 1993, pp.
171-182.

X. Zhang, Y. Yan, and R. Castaneda, “Comparative Performance
Evaluation of Hot Spot Contention Between MIN-Based and
Ring-Based Shared-Memory Architectures,” IEEE Tyans. Par-
allel and Distributed Systems, Vol. 6, No., 8, Aug. 1995, pp.
872-886.

Y. Yan and X. Zhang, “Designing Fast Software Mutual Exclu-
sion Algorithms on NUMA Systems,” tech. report, High Per-
formance Computing and Software Laboratory, Univ. of Texas
at San Antonio, 1994.

Xiaodong Zhang is an associate professor of computer science and
director of the High-Performance Computing and Software Labora-
tory at the University ofTexas at San Antonio. His research interests
are parallel and distributed computation, parallel architecture and sys-
tem performance evaluation, and scientific computing. He received his
BS in electrical engineering from Beijing Polytechnic University,
China, in 1982 and his M S and PhD in computer science from the
University ofColorado at Boulder in 1985 and 1989. He can be con-
tacted at the High-Performance Computing and Software Laborato-
ry, Univ. ofTexas, San Antonio, TX 78249; zhang@ringer.cs.utsa.edu.

Yong Yan is a PhD candidate in computer science at the University
of Texas at San Antonio. His research interests are parallel and dis-
tributed computing, performance evaluation, operating systems, and
algorithm analysis. He was a visiting scholar in the High-Performance
Computing and Software Laboratory at UTSA from 1993 to 1995.
He received his BS and M S in computer science from Huazhong
University in 1984 and 1987. He can be contacted at the High-
Performance Computing and Software Laboratory, Univ. of Texas,
San Antonio, TX 78249; yyan@dragon.cs:utsa.edu.

Robert Castaiieda is a PhD student in computer science at the Uni-
versity of Texas at San Antonio. His research interest is in perfor-
mance evaluation of parallel and distributed architectures and sys-
tems. He previously was a research associate at the High-Performance
Computing and Software Laboratory at USTA. He received his BS
and M S in comnuter science from UTSA in 1990 and 1994, and won
the 1994 University Life Award for academic performance. He can
be contacted at the High-Performance Computing and Software Lab-
oratory, Univ. of Texas, San Antonio, TX 78249; rcastaneadragon.
cs.utsa.edu.

42 IEEE Parallel & Distributed Technoloqv

