
Multiprocessor Scalability Predictions

Through Detailed Program Execution Analysis *

Xiaodong Zhang Zhichen Xu

High Performance Computing and Software Laboratory

The University of Texas at San Antonio

San Antonio, Texas 78249

Abstract

Scalability measures the ability of a parallel system to im-

prove performance as the size of an application problem and

the number of processors involved increase. There are some

limits to existing scalability studies. First, the problem size

in a computation is not well-defined. Second, the meth-

ods used to differentiate algorithmic and architectural scal-

abilities are not effective enough. Thh-dly, most approaches

to scalability study are either highly time-consuming or re-

stricted to simple problem/architecture structures. A major

effort of this work is to address these limits. We have ex-

tended the latency metric [11] for more complex scaling of

problems, and to possibly isolate the scalability of an algo-

rithm from a parallel system. The scalability y prediction is

based on a semi-empirical approach [10] that significantly

reduces the time and cost of measurements and simulation.

Our prediction results were validated on the KSR- 1 and on

the CM-5.

1 Introduction

There are some limits to existing scalability y studies. First,

most scalability studies consider the input data size of a

problem, or the number of floating point operations in the

computation as the problem size. In practice, the growth

and scaling of an application problem is more complex. In

many large scientific simulations of physical phenomena,

more than one parameter is used to change the input data

size and the number of floating point operations of the pro-

grams. The ways of changing multiple input parameters

can significantly change the communication and synchro-

nization structure and parallelism of a program even though

“ This work IS supported in part by the National Science Founda-
tion under research grants CCR.9102854, CCIV9400719, and under
instrumentation grant DUE 9250265, and by the U.S. Air Force under
research agreement FD-204092- 64157, and by a grant from the San
Antonio Area Foundation Part of the experiments were conducted
on the CM-5 machines in Los Alamos National Laboratory and in the
National Center for Supercomputmg Apphcat,on. at the University
of lllinois, and on the KS R- 1 machmes at Cornell University and at
the University of Washington

Permission to make digital/hard copies of all or part of this tnaterial with-
wt fee is granted provided that the copies are not made or distributed

or profit or commercial advantage, the ACM copyrightlserver
Iotice, the title of the publication and its date appear, and notice is given
hat copyright is by permission of the Association for Computing Machinery,
nc. (ACM). To GOPYotherwke, to rePuLlkh, to pod on sewers or to

edistribute to lists, requires specific permission and/or fee.
CS ’95 Barcelona, Spain o 1995 ACM O-89791-726-6/95/0007. .$3.50

the resulting data size or the number of floating point op-

erations are the same. This means the scaling behavior of

an application will depend on the way the input parame-

ters are scaled. Second, it is important to study program

scalability and architecture scalability as independently as

possible. Several proposals have been made to separate the

two scalabilities. In [5], algorithm scalability y is defined as

the maximum achievable speedup on an architecture with

an idealized communication structure. This speedup mea-

sures the inherent parallelism and overhead patterns of a

program for a given size. To isolate architectural effects,

architecture scalability for a program is definedl as the ratio

of the speedup of the program on a real machine and the

asymptotic speedup of the program on an EREW PRAM.

An analytical model of a program structure may not pre-

cisely and completely describe overhead patterns of the pro-

gram. The architectural scalability is still, to a great ex-

tent, dependent on the application program executed. In

[12], the execution overhead latency is further divided into

the memory reference latency, the processor idle time, and

the parallel primitive execution overhead time, which com-

prehensively cover the major sources of system jarchitecture

overheads. However, the same type of latency in this clas-

sification may also come from both the program and the

machine. It is still difficult to identify and distinguish the

performance bottlenecks from the hardware and the algo-

rithm. In [7], parallel computing overheads are classified

into algorithmic overhead and interaction overhead, which

isolates the overhead from the application program. How-

ever, it does not provide dkect information about how per-

formance changes when the size of the application and size

of the machine changes. In addition, the simulation-based

approach could be highly computation intensive. The third

limit is the lack of effective evaluation methodologies to ob-

tain scalabilities analytically and experimentally. Experi-

mental and simulation methods are highly time consuming.

Both simulation and analytical methods are based on some

assumptions of the architecture and application. Analytical

approaches usually describe some asymptotic behavior of a
parallel system, and they may only be applicable to simple

problemiarchitecture structures.

To address these limits, we make some extensions to the

latency metric in [11], and use a semi-empirical approach for

scalability study. The first extension to the latency metric is

to isolate the scalability of the algorithm from an algorithm-

machine combination. We deiine the algorithmic scalability

of a program based on the defiltion of algorithm efficiency

of the program, which is defined as the ratio of the par-

allel execution times of the program on two idealized ma-

97

chines: a MIRACLE machine that always exhibits linear

speedup regardless of the characteristic of the program, and

an idealized PRAM machine with an ideal communication

structure. The second extension to the latency metric is re-

lated to scaling methods. In this study, we explicitly keep

track how the parameters are scaled. To effectively measure

and study the various scalabilities, we use a semi-empirical

approach that relies on both analytical and experimental

methods [10]. This approach has been used to predict the

execution times of large application programs on large ar-

chitectures based on small sample data [9]. There are sev-

eral advantages of the semi-empirical approach in scalability

evaluation. First, execution times on real parallel machines

and on simulators used for latency measurements are signif-

icantly reduced, because analytical modeling is partially ap-

plied, and scalability predictions are based on measurement

results of small-scale executions of the programs. Second, a

graphical representation of a program enables computation

demands of the program to be expressed as functions of ap-

plication parameters, and all explicit communications to be

isolated and classified. Therefore, program overhead pat-

terns are studied according to their underlying semantics

and communication structures. Thirdly, the architecture

model in our semi-empirical approach is relatively high-level

and is less dependent on real architectures. Thus it is more

flexible for evaluation on different architectures. Finally,

because important and implicit system effects are obtained

through experimental measurements, the semi-empirical ap-

proach should be more precise than pure analytical models

and simulations.

The organization of the paper is as follows. In section

2, we extend the latency metric by quantifying algorith-

mic scalability of parallel programs and define various scal-

abilities. Section 3 describes in detail the semi-empirical

approach to scalability study. Section 4 presents several

case studies on how to use the semi-empirical approach to

study the algorithmic scalabilities of various programs and

the combination scalabilities on various architectures. The

experiments were performed on the KSR- 1 and the CM-5.

Section 5 concludes the paper.

2 Extensions to the Latency Metric

The latency metric [11] defines algorithm-machine combina-

tion scalability as an average increase of the overhead la-

tency (L) needed to keep its computation efficiency equal to

a constant (E) when the size of a parallel program increases

from W to W’, and the size of the parallel architecture in-

creases from P processors to P’ processors. It is expressed

as

(1)

Using (1), an upper triangular table is generated, where each

element represents the scalabiiit y measurement of (1) be-

tween a meaningful pair of procewors. There are three ma-

jor limitations of the latency metric. First, the experimen-

tal measurements are highly time-consuming. Second, the

latency measurements require special tools, such as hard-

ware/software monitors, or intensive software instrumenta-

tion. Instrumentation overhead can further slow down pro-

gram execution. Finally, like other scalability metrics, the

latency metric gives a single data size as the problem size. To

address these limits, we extend the latency metric to quan-

tify algorithmic scalabilities, and to include multiple input

parameters to scale programs. Furthermore, scalability mea-

surement time is significantly reduced by our semi-empirical

approach.

2.1 Problem Size

The existing definitions of problem size represent the amount

of meaningful computation that must be carried out to solve

a problem, and the input data size [1, 6, 11], which express

computation demand and memory requirement as seen by

a conventional serial machine. For a large category of ap-

plications that have multiple input parameters, an undesir-

able phenomenon is that, when we scale the multiple input

parameters of an algorithm differently, the resulted perfor-

mance can be dramatically different. For example, the fol-

lowing program consists of two loops.

REAL A (MAX) , B (MAX) ;

Aii:mi”=A(I:M) + B(l:M) ;
DO j = l,N

B(j) = B(j-1) + A(j) ;

Assume that MAX is a large integer number. We set M=O,

and N= MAX in the fist case, and M= MAX and N=O in

the second case. The numbers of floating point operations

and the memory requirements in both cases are equivalent,

which means the programs in these two cases have the same

problem size. However, the parallel computing performance

would be significantly different between the two cases. In

the first case, vector A(l:M) will be updated simultaneously

by multiprocessors without involving communications. In

the second case, the loop to update vector B(l:N) cannot

be performed simultaneously because of the dependency in

the loop. Thk example indicates that a program with the

same problem size may have different degrees of parallelism

which would behave differently in parallel.

To avoid this undesirable situation, we define the size

of a problem as the set of all its relevant parameters, and

explicitly keep track how the multiple parameters are scaled.

2.2 Algorithm Latency and Efficiency

Factors that limit algorithm scalability are synchronization

and communication structures and imbalance workload of

the algorithm. However, remote memory accesses, cache

coherence activities and cent ention for hardware resources

will affect the program/machine combination scalability y. An

ideal machine that excludes all the non-algorithmic factors

can be used to isolate the algorithmic latency. Here we de-

fine an ideal PRAM in which the cost of a memory access

is independent of its access distance, and no contention for

hardware resources is presented. To facilitate our presenta-

tion, another ideal machine, MIRACLE, is introduced. A

MIRACLE machine always exhibits linear speedup regard-

less of the characteristics of the program being executed. In
order to make fair comparisons, the real machine, the MIR-

ACLE machine and the PRAM machine are assumed to be

made of the same type of processors.

Let II denote a parallel program, x denote the param-

eters of II, P denote the number of processors involved in

executing the program II, TPW (II, x, P) denote the parallel

execution time of the program on the MIRACLE machine,

T: (II, x, P) denote the parallel execution time of II on the

PRAM machine, and TP(II, x, P) denote the parallel execu-

tion time of II on the real machine. We define the average

98

1600.0

14000

1200.0

1WO.o
%
E.
j

800.0

~
G ~o,o

400.0

200.0

0.0<

m ,xedian,,ine on red m,,,,”e

m Exection time on PRAM

= Execulion time on MIRACLE

= Algortihm,c latency

~ Parallel Latency

5.0 10.0
Number of Processors

Figure 1: Algorithmic and parallel latencies.

algorithmic latency of fI as

.C.(fI, x,P) = T:(fI, x,l’) – ~pM(fLx?O

and the average parallel latency as

,C(ff, x, P) = Tp(rf, x, P) – TpM(fI, x).

(2)

(3)

Figure 1 illustrates a distribution of algorithmic and parallel

latencies of a program. Based on the definition of the various

latencies, we define algorithmic efficiency as

T“M(H,X,P)
E.(ff, x,l’) = ~~(~,x,p) ‘

and parallel efficiency as

Tpff(rI, x, P)
E(I-I,X, p) = T@, x, p) “

(4)

(5)

In (4), E. measures the percentage of execution time that

is dedicated to meanful computation on an ideal machine

— hence the efficiency of the algorithm. Since the execu-

tion times on a single processor of an ideal communication

PRAM, on a single processor of MIRACLE and on a single

processor of a real machine are equivalent, we have

q“(mx,
T:(rf, x)

P)= ~ ,

Ts(fI, x)
TPM(II, x, P) = ~ ,

(6)

(7)

where T~P (II, x) and T. (II, x) are the sequential execution

times of II on one node of the PRAM machine and on one

node of the real machine, respectively. Substituting Equa-

tions (6) and (7) into Equations (4) and (5), we obtain

and

T:(H, x)
Ea(fI, x, P) = PT~(~,x, P) “

E(II, x, P) =
T,(fI, x)

PTP(lI, x, P) “

The definition of efficiencies in this paper coincides with the

conventional definition of parallel efficiency. Note that in

Equations (2), (3), (4) and (5), the problem size of a program

is no longer defined as the number of floating point opera-

tions or the input data size but is represented by parameters
of the program, x. The representation of the problem size

of a program as application parameters of the problem is

more precise and provides more information in our subse-

quent study of various scalabilities.

2.3 Scalabilities of Parallel Programs and Systems

To extract the scalability of the program from a problem-

machine combination, we extend the latency metric by defim

ing algorithmic scalability as the amount of the increase in

algorithmic latency to keep a desired algorithmic efficiency,

Eo c [0, 1],that is

Scale.(E., (P, P’)) = ‘a(H’x”)
La(fI, x’, P’) ‘

(8)

where P’ is a larger number of processors than P, x’ is the

scaled application parameter to keep Ea = EG(H, x’, P’) =

E. (fI, x, P). The larger the increase of the algorithmic la-

tency to keep a desired algorithmic efficiency, the smaller

the algorithmic scalability will be. Smaller algorithmic scal-

ability indicates more extra work involved to parallelize the

algorithm. Similarly, we restate the combination scalability y

of a program-machine combination as

Scale(E, (P, P’)) =
L(fr, x, P)

‘C(rI, X’, P’) ‘
(9)

where P’ and X’ are the same as in Equation (8), and

E = E(II, x’, P’) = E(fI, x, P).

To compare the scalabilities of different algorithms imple-

menting the same problem, we can compare their scalabili-

ties by scaling the application parameters in the same way.

Property 1. The algorithmic scalability defined in this

section is independent of the processor speed of the machines,

and thus reflects only the inherent parallelism and workload

imba!ance of the program.

Explanation:

According to the definition of the MIRACLE and PRAM

Machines: there will be no communication andl contention

latencies in the execution of any program. For any program

II, TPM (II, x, P) will be proportional to ~ of the computa-

tion demand of II with parameter X, that is

TPM(II, x, P) = c$~(~,x),

where C is a processor-related constant, and El @I, x) is the

computation demand of fI. Similarly, when we represent

the program as a thread graph [9], T: (II, x, P) will be pro-

portional to the computation demand of one critical path,

II~(P), in H , that is

TPM(Lx, P) = C@(fI’(P), x).

Thus,

G(li, x, q = c(qfI~(P), x) – ;e(II, x))

For the same reason,

.L(II, X’, P’) = c(E@=(P’),x’) – +@(H,x’)).
Then we have

+6)(II, x)
Ea(n,x, p) = @(~k(p), x) ‘

and

Scalea(Ea, (P, P’)) =
qrI~(P), x) – +@(II, x)

e(fI~(P’), x’) – +e~”

99

Message Thread Creation
Thread Join

Synchronization

Send and Receive (fork) Barrier
inside a loop

Figure 2: Use of thread graphs to model different commu-

nicant ion pat t ems.

3 A Methodology for Scalability Prediction

The key to predict algorithmic and combination scalabilities

is to effectively predict the parallel execution times of an

application on the real machine, on the PRAM machine and
on the MIRACLE machine. In this section, we fist briefly

introduce a semi-empirical methodology that we have used

to predict the parallel execution times of applications on a

real machine. Then we will introduce how this methodology

can be adapted to predict parallel performances on the ideal

machines.

3.1 Performance Prediction on Real Machines

In [9], a fairly complete model is developed to represent both

explicit and implicit communications and synchronizations

of a parallel program. This approach has achieved a good

balance between using analytical techniques and experimen-

tal measurements in predicting multiprocessor performance.

Our methodology is based on a two-level hierarchical model.

In the higher-level, a proposed graphical model called the

thread gr-a@ is used to characterize parallel applications. In

a thread graph, threads are used to model logical threads

of control, events are used to model explicit communication

and synchronization events in the threads of control, and

cornmunicatio n edges are used to correlate relevant events

and to express the cooperation among multiple threads of

control. Figure 2 gives some examples of how thread graphs

can be used to model different communication patterns. In

Figure 2, a pointed line stands for a thread, a dark dot

stands for an event, an oval stands for a communication,

and a pointed arc stands for a loop. The examples in Fig-

ure 2, from left to right, depict how a communication edge

and events are used to express separated message send and

receive, t bread fork, thread join, and synchronization bar-

rier, respectively. Another key component of the higher-level

model is a graph traversal algorithm. Once the elapsed times

of all individual segments and events in the thread graph are

estimated through the lower-level model, the graphical al-

gorithm traverses a thread graph to estimate the parallel

execution time of an application. At the same time, it takes

into account the effects of various communication events and

processor allocation strategies. The effects of the communi-

cation and synchronization events are handled according to

their underlying semantics.

In the lower-level, the elapsed times of individual seg-

mente and events in the thread graph are determined with

both analytic and experimental methods. In order to make

our performance prediction methodology applicable to as

many real architectures as possible, we construct the lower-

level model according to the overhead patterns in different

programming models. The basic idea to predict the elapsed

times of the eegments in a thread graph is based on the exe-

cution behavior of loop construct. Because loops are repe-

titions of somewhat similar sequences of code blocks, in our

study, we measure the elapsed times of the loop constructs

with a small number of iterations to project the elapsed

times of the loop constructs with a larger number of iter-

ations. We refer to the measured data as empirical data.

We obtain the empirical data by (1) modeling the compu-

tational complexity of all the segments in a thread graph in

term of the application program parameters, x, the number

of processors, P, and the overhead pat t ems of the program-

ming model used, (2) running a small number of instances

of the problem on the real machine, and (3) solving the

unknowns in the model by the measured elapsed times of

the segments of the sample runs. Several factors will affect

the accuracy of this method: (1) data-dependent computa-

tions inside a loop construct, so that different iterations of

the loop are not identical, (2) dynamic system effects such

as network latency, and (3) the effecte of the memory hi-

erarchy for memory-bound applications. According to our

study, if the sizes of the sample runs are carefully chosen,

the dynamic application and system effects can be partially

captured in the empirical data.

Another important part of the lower-level performance

model is the estimation of the elapsed times of all explicit

communication events. At m-esent. we use direct measure-.
ment to obtain the elapsed times of the explicit communi-

cation events involving different numbers of processors. We

construct a dedicated execution environment for each tv~e of

communication event and measure its elapsed time di~~ctly.

The reason for constructing such running environment is

to eliminate the effects of load imbalance (for barrier) and

contention (for lock), which have been partially taken care

of by the graph traversal algorithm in the higher-level per-

formance model.

3.2 Performance Prediction on Ideal Machines

To predict the parallel execution time of an application on

the MIRACLE machine with P nodes, we first predict the

elapsed time of an application on one node of the real ma-

chine, then divide the predicted elapsed time by the number

of nodes of the MIRACLE machine, P. Because a MIRA-

CLE machine will always exhibit linear speedup regardless

of the characteristics of the program executed, the execu-

tion times of an application on one node of the MIRACLE

machine and on one node of a real machine are the same.

To eetimate the elapsed times of the segments on the

PRAM machine that hae no remote memory accesses, net-

work latency and contention, we first serialize the thread

graph and execute the program on one node of the real

machine, and use the empirical data obtained on one node

of the real machine for subsequent performance prediction.

This will exclude the effects of any implicit communications.

To eliminate the effects of network latency and contention,

we assume the communication latency to be zero when us-
ing the graph algorithm to eetimate the parallel execution

times of the application on a PRAM machine.

4 Semi-Empirical Scalability Studies

In this section, we study the algorithmic scalability and the

program-machine combination scalability y of three applica-

tions implemented on two different machines. The algorith-

mic scalability evaluates the effects caused by the overhead

patterns inherent in the program, which is independent of

architecture. In practice, the algorithmic scalability can also

100

Thread fork

Barrier

Bamer

Bamer

Thread pm

Figure 3: The thread graph representation of the GE pro-

gram on the KSR-1.

be used to examine the effects of programming models on

algorithms. Because different programming model repre-

sentations of an algorithm may present overhead patterns

in different forms, the combination scalability reflects the

effects caused by overhead patterns in both the program

and the architecture. Combining both scalabilities, we can

indirectly study the overhead patterns inherent in the ar-

chitecture and its effects on the scalability of a program’s

execution.

The parallel architectures we used are the KSR-1 [3]

that supports the shared-memory programming model and

the CM-5 [8] that supports both message-passing and data-

parallel programming models. The problems we used for

scalability study are All Pairs Shortest Path, Gauss E&n-

ination and a large Electromagnetic Simulation application

[4].

4.1 Architectural Characteristics

The KSR- 1 [3], introduced by Kendall Square Research, is

a ring-based, cache coherent, shared-memory multiproces-

sor system with up to 1088 64-bit custom superscalar RISC

processors (20MHz). A basic ring unit in the KSR-1 has 32

processors. The system uses a two-level hierarchy to inter-

connect 34 of these rings(1088 processors). Each processor

has a 32 MByte cache and a 0.5 MByte subcache.

The CM-5 [8] is the newest member of the Thinking Ma-

chine’s Connection Machine familv. It is a distributed mem-

ory multiprocessor system which” can be scaled up to 16K

processors and supports both SIMD and MIMD program-

ming models. Each CM-5 node consists of a SPARC pro-

cessor operating at either 32 MHz or 40 MHz, 32 M-bytes

of memory, and an interface to the control and data inter-

connection networks. The SPARC processor is augmented

with four vector units, each with direct parallel access to

the node’s main memory. This yields an aggregated mem-

ory bandwidth of 256 MB/see per processing node and a

128 MFLOPS peak floating-point rate per processing node.

4.2 Application Characteristics

The Gaussian Elimination (GE) algorithm mainly consists

of an iteration of two parts: (1) determination of the pivot

row and computation of the pivot column, and (2) elimi-

nation of the remaining columns by using the values in the

pivot column. The shared-memory version of GE mainly

parallelizes the elimination process by employing multiple

threads, where multiple columns are eliminated simultane-

ously. In each iteration, all of the threads must wait at a

(3
N

@
.(, :
(

LOOPextt

WN

o

(’ ‘

LCQPex,t

f#N.N

o <:+”? q$f) lmPllcN synch,omat,m

c

(N. N+N)IP ; ; iii!~ ,,, ,
; ;::;

@ +:+i :$~~+>

(“ -

Imp!lclt synchron,zat,m
,,[w{

N.N<N /P (] !!;!

@ ‘“’g w:!4 lknPlldt ,ynch,cmzatlm

Figure 4: The thread graph representation of the GE pro-

gram on the CM-5. - - -

N

@

Figure 5: A thread graph representation

gram on the KSR-1.

Thread fork

Barrier

LOOP exit

Thread join

of the APSP pro-

synchronization point for the main thread to (do the pivot.

To fully make use of the multiple threads, the initialization

of the matrix is also parallelized. The thread graph repre-

sentation of the shared-memory version of the GE program

is shown in Figure 3, where, the thread in the left is the main

thread, and the threads in the right form a thread cluster.

P is the number of processors employed, and N is the size of

the linear system. Edge (2, 3) is the initialization, edge (3,5)

is pivoting, and edge (5, 7) is the elimination part. The ex-

pressions beside the pointed arcs are the estimated number

of iterations of the loops in terms of P and lV.

The data parallel version of GE is different from the

shared-memory version. The initialization of the matrix is

not parallelized. While the shared-memory version paral-

lelizes the elimination of multiple columns, the data-parallel

version parallelizes the elimination of the elements in each

row(see Figure 4).

The All Pairs Shortest Path (APSP) problem calculates

the shortest paths between all pairs of nodes in a weighted

dh-ected graph. The parallel algorithm of All F’airs Shortest

Path is based on Dijkstra’s sequential algorithm. Here we

only implemented the shared-memory version of APSP on

the KSR-1. It uses a path matrix to store the connections

among nodes. For a given number of threads, the partition

of the shortest path searching among threads can be done

statically. Each thread is responsible for its shortest path.

The program structure of the shared-memory version of the

APSP program is as shown in Figore 5, which is mainly a

thread cluster. In Figure 5, P is the number of processors

employed and N is the size of the matrix.

The Electromagnetic (EM) simulation program simulates

101

@ m Bamer
lI+JYP [1

CnlCal Seth”

Figure 6: A thread graph representation of the EM simula-

tion program structure on the KSR-I.

electromagnetic scat tering from a conducting plane body [4].

In the simulation model, a plane wave from free space, de-

fined as region “A” in the application, is incident on the

conducting plane. The conducting plane contains two slots

which are connected to a microwave network behind the

plane. Connected by the microwave network, the electro-

magnetic fields in the two slots interact with each other,

creating two equivalent magnetic current sources in the slots

so that a new scattered EM field is formed above the slots.

The shared-memory implementation of the EM program is

mainly constructed by a thread cluster (see Figure 6). All

edges except edge (5, 6) are loops. Edge (5, 6) corresponds

to a critical section. At the end of each segment, there is a

pair of events ‘barrier-check-out’ and ‘barrier-check-in’. The

input parameters of the EM simulation are 1, J, M and N,

which determine the problem size of the simulation.

For the data parallel version of the EM application, in-

stead of employing multiple threads, large data sets are de-

clared as parallel shaped data to be physically distributed

across the processing nodes. Each processing node will per-

form operations simultaneously on its assigned section of the

data sets. Repeated operations in different iterations in the

sequential program are carried out concurrently by virtual

processors in the system.

4.3 Validation of the Prediction Methodology

Here we give a brief summary of our validation results. In

[10], we use simple metrics to study the effectiveness of the

semi-empirical approach in predicting the parallel execution

times. Our vahdation results indicate that:

●

●

If the program abstraction is sufficiently detailed, the

predicted results can be very precise. According to

our experiments, the average error is less than 10% in

most cases.

The time reduction, which is defined as the ratio of the

actual parallel execution time to the time to collect the

sample data plus the time to estimate the parallel ex-

ecution time, can be as high as hundreds for moderate

problem sizes. It is expected to be much higher for

larger problems.

Figures 7-9 compare the predicted and measured par-

allel execution times on the two machines when moderate

number of processors were involved.

Figure 7: Predicted and measured parallel execution

of the GE program on the KS R- 1 of 24 processors.

times

Size d the graph, N

F@re 8: Predicted and measured parallel execution times

of the APSP program on the KSR- 1 of 24 processors.

S1,. of the matrix. N

Figure 9: Predicted and measured parallel execution

of the GE program on the CM-5 of 128 processors.

times

102

P, P’12 14 IS 116 124 132 148

~’
32 1.00 0.67
48 1.00
N 115 244 414 665 871 1055 1382

Table 1: The algorithmic scalability of the GE program with

an algorithmic efficiency of 70% on the KSR- 1.

P,P’12 14 IS 116 124]32 [48 I
2 1.00 I 0.41 I 0.20 I 0.11 I 0.07 I 0.06 I 0.04

4 1.00 0.50 0.26 0.18 0.14 0.09
8 1.00 0.52 0.36 0.27 0.19
16 1.00 0.68 0.52 0.36
24 1.00 0.76 0.52
32 1.00 0.68
48 1.00
N 130 160 100 158 207 249 I 325

Table 2: The algorithmic scalability of the APSP program

with an algorithmic efficiency of 70% on the KSR-1.

4.4 Performance Results on the KSR-1

The algorithmic scalabilities of the GE, APSP, and EM pro-

grams on the KSR-1 are summarized in Tables 1-3. The

last row of each table gives the problem size (application

parameters) needed to keep the efficiencies. In Table 3, the

application parameters are given in the order 1, J, M and

N.

In Tables 1-3, the algorithmic efficiencies of all three pro-

grams are kept at a constant of 7070. Tables 1-3 indicate

that all three programs are highly scalable in terms of their

algorithm structures. Specifically, EM is the more scalable

than APSP which is in turn more scalable than GE.

Tables 4-6 report the combination scalabilities of the

shared memory implementations of the GE, APSP and EM

programs on the KSR-1. In Tables 4-6, the parallel efficien-

cies for the three program machine combinations are all kept

to 25~o. (A higher efficiency than this was not possible for

some programs.) Tables 4-6 show that the order of the com-

bination scalabilities of the three m-omams on the KSR-1
.“

are the same as the order of their algorithmic scalabilities.

However, the difference among the combination scalabilities

P, P’ 5 10 20 40 60

5 1.00 0.67 0.40 0.20 0.13
10 1.00 0.59 0,30 0.20
20 1.00 0.50 0.33
40 1.00 0.66
60 1.00

I, J 20, 20 20, 20 20, 20 20, 20 20, 20
M, N 1, 1 1, 1 80, 80 240, 240 384, 384

IP,P’12 14 IS 116 124 I 32 ~]

2 1.0 / 0.14 I 0.02 I 0.01 I 0.001 I 0.0007 I 0.0001
4 1.00 0.14 0,02 0.007 0.0048 0.()()07
8 1.00 0.16 0.051 0.0330 0.0050
16 1.00 0.313 0.2005 0.0305
24 1.000 0.6396 0.0974
32 1.0000 0.1522
48 1.0000
N 1 35 143] 384] 907 1539 1970 I 4238

Table 4: The combination scalability y of the GE program on

the KSR- 1 with a parallel efficiency 25%.

m

I
2 1.0
4

8
16

24
32
48

N 1

4 IS 16 I 24 132~

0.20 I 0.08 I 0.02 I 0.01 I O.01~

UE
Table 5: The combination scalability y of the AFSP program

on the KSR-1 with a parallel efficiency of 25~0.

IP, P’ 15 10 1 20 1 40 I 6~~

5 1.00 I 0.85 I 0.53 I 0.178 I o~l
10 1.00 0.62 0.209 CI.088
20 1.00 0.335 CI.142
40 1.000 CI.422
60

d

1.000

I, J 20, 20 20, 20 20, 20 20, 20 2!0, 20
M, N 1,1 1, 1 1, 1 16, 16 223, 223

Table 6: The combination scalability of the EM program on

the KSR-1 with a parallel efficiency of 25~0.

Table 3: The algorithmic scalability of the EM program with

an algorithmic efficiency 70~o on the KSR-1.

103

e-e C.mblnwd htew
~ A!ymlhrnb Iatemy

20CUo

@

&

3

j
g

loco 0

100 200 300 400 500
Number .31Pmcessors

Figure 10: Algorithmic and parallel latencies of GE program

on the KSR-1.

vC.mb,.4 Iatefwy
M Algomhmk Iaterw

150

100

50

A

100 200 300 400 500
Number ti Prcc.sws

Figure 11: Algorithmic and parallel latencies of APSP pro-

gr~m on the ~SR-1. “

on the KS R- 1 is much larger than that of the algorithmic

scalabilities. This indicates that a small difference in the

synchronization and communication structures of a program

can result in much larger difference in its performance on a

real machine. In addition, we can see a significant decrease

in scalability when the size of the machine is scaled from less

than 32 nodes to more nodes. This can be further shown

if we compare the algorithmic and parallel latencies when

the parallel efficiencies are kept (see Figures 10-12). This is

because remote memory access latency is higher when two

rings are involved.

The gaps between the curves of algorithmic latency and

parallel latency in Figures 10, 11 and 12 can be used to

Figure 12: Algorithmic and parallel latencies of EM program

on the KSR-1.

P, P’ 32 64 128 512

32 1.000 0.235 0.057 0.0035

64 1.000 0.242 0.0148

128 1.000 0.0611

512 1.0000

N I 14031 I 28717 I 58088 I 234317

Table 7: Algorithmic scalability of the data-parallel GE pro-

gram with an algorithmic efficiency of 70% on the CM-5.

P, P’ I 32 1

= +:’ :F

1.000000 0.062220 0.004804 0.000286

Table & The combination scalability of the data-parallel GE

program and the CM-5 with a parallel efficiency of 5Y0.

quantitatively compare effects of architecture on a program.

The larger the gap, the more significant the overhead effects

of the architecture will be. We will use this gap to make

a further comparison of architecture effects on combination

scalabilities between the KS R-1 and the CM-5.

4.5 Performance Results on the CM-5

We implemented a data-parallel version of the GE and EM

programs on the CM-5. The algorithmic scalability of GE

and its combination scalability are summarized in Tables 7

and 8. The two types of scalabilities for the EM program

are reported in Tables 7 and 8.

The data-parallel version of the GE program exploited

limited parallelism due to the nature of the computation.

[9]. Therefore, both algorithmic scalability and the combi-

nation scalability y are very low (see Tables 7-8). In contrast,

the EM program is well suitable to the data-parallel model.

Thus, both scalabilities are high (see Tables 9 and 10).

Figures 13 and 14 compare the algorithmic and combi-

nation latencies of the GE and EM m-ozrams on the CM-5.

Figure 13 shows a significant differe~ce ~etween algorithmic

and parallel latencies. This is because the only parallel parts

of the data-parallel GE program are the swaps in pivot and

the simultaneous elimination of the elements of each column.

The parallel part is a small portion of the execution of the

program. This resulted in a large percentage of synchro-

P, P’ 32 64 128 256 512

32 1.00 0.2065 0.1148 0.0939 0.086

64 1.0000 0.5559 0.4549 0.416

128 1.0000 0.8183 0.749

256 1.0000 0.915
512 1.0000

I=J 1371 5770 14569 32226
M=N :0 20 20 20 20

Table 9: Algorithmic scalability of the data-parallel EM pro-

gram with an algorithmic efficiency of 90~o on the CM-5.

104

~P, P’ \32 [64 128 256 512

[32 1.00 I 0.19 I 0.11 I 0.087 I 0.080
64

128

256

1.00 0.55 0.448 0.410

1.00 0.816 0.746

1.000 0.914
512 1.000

I=J 1 1371 5770 14569 32226
M=N 20 20 20 20 20

Table 10: Combined scalability y of the data-parallel EM pro-

gram and the CM-5 with a parallel efficiency 90%.

Iccco

103

Figure 13:

1

0

0 lALA A

?0 ICOO 2CQ0 3CO0 4C00 5000 6<
Number d Prccessom

Algorithmic and parallel latencies of GE program

on the CM-5.

nization overhead. The larger the application parameter,

the larger the number of iterations, and hence the larger the

synchronization overhead.

In contrast, Figure 14 shows a very small difference be-

tween algorithmic and parallel latencies in the EM program

on the CM-5. Both latencies are much smaller than the

GE program on the CM-5. This is because the parallelized

portion of the EM program is much larger than that of the

data-parallel GE. (Almost all the computation that is par-

allelizable using the shared-memory model is parallelizable

in the data-parallel version.) The other two factors that

contribute to the high combination scalability are the small

percentage of synchronization overhead of the program and

the highly scalable Fat-tree networks of the CM-5 [9].

In this section, because we can not obtain empirical data

on a single node of the CM-5. the empirical data on 32 nodes

CM-5 were used instead to approximate the execution times

T w Combln6d latency
M Algorntmk latency

Iwo 2W0 3CO0 4W0 5000
Number 0! POXWS.31$

0

Figure 14: Algorithmic and parallel latencies of EM program

on the CM-5.

I I KSR-1 II CM-51
program Gli APSP EM G ‘ ~
experiment 396 53653 2494 60

prediction 1.1
.3

0.76 0.1 1.0 8.0

Table 11: Time comparisons between using the semi-

empirical prediction method and using pure experimental

method to obtain the combination scalabilities of the three

programs on the two machines (in sees).

on one node of the ideal machines. Thus the performance

result in this section could be more optimistic compared

with that on the KSR-1.

4.6 Time Reduction of Scalability Prediction

To show the time reductions of the semi-empirical approach

in predicting the combination scalabilities of the GE, APSP

and EM programs on the KSR- 1 and CM-5, Ti~ble 11 com-

pares the times to obtain the scalabilities by prediction with

the times to obtain the scalabilities by experiments. In Table

11, we assume that the proper problem size can be decided

at once, which is the best case for the experimental method.

In Table 11, the time to measure the empirical data is also

excluded from the prediction times.

4.7 Comparisons

Using different program implementations on the two differ-

ent machines, we are able to compare the effects of the

shared-memory and data-parallel programming models on

a program’s algorithmic scalability, and the effects of the

KSR-1 and the CM-5 on a program’s combination scalabil-

ity. Here, we summarize our comparisons:

● Different programming models can significantly affect

the algorithmic scalability of a program because the

parallelism inherent in the program can be exploited

differently. For instance, to keep the algorithmic ef-

ficiency up to 70%, the algorithmic scalability of the

data-parallel GE program was 0.234951 when the ma-

chine size scales from a small to a moderate number

of processors. The scalability was 0.003481 when the

machine size scales from a small to a large number of

processors (see Table 7). In contrast, the algorithmic

scalability of the shared-memory GE program was 0.45

when the machine size scales from a small to a mod-

erate number of processors. The scalability was 0.08

when the machine size scales from a small to a large

number of processors (see Table 1). We can make an-

other comparison between between Tables 1 and 7. For

32 processors, to keep the same algorithmic efficiency,

the problem size is 1055 for the shared-memory im-

plementation, but it is 14031 for the data-parallel im-

plementation — about 14 times larger. This indicates

that the data-parallel GE program is significantly less

scalable than that of the shared-memory version.

● Even though the differences among algorithmic scala-

bilities can be moderate for the different implementa-

tions of a program, the combination sca~abilities can

be significantly different (see Tables 1, 7, 4 and 8).

Thk indicates that different communication and syn-

chronization pattern and structure, and also different

105

architectural support, can result in significantly differ-

ent performance. By comparing the latency curves and

by analyzing the communication pattern and structure

of the program, we can easily locate any performance

bottlenecks existing in different program implementa-

tions.

c Based on a careful examination of the scalability ta-

bles, the latency curves, and the computation and com-

munication structure of the programs, we conclude

that, (1) the EM application is more suitable to be

implemented in the data-parallel model because of its

large number of parallelizable data sets, and its larger

grain of parallelizable computation. (2) The communi-

cation structure of the CM-5 is highly efficient due to

the Fat-tree data network and the support of a control

network. (Very small differences between algorithmic

and parallel latencies are shown for the EM program

we ran on the CM-5.) (3) For applications with a small

parallelizable data set, the synchronization overhead

can become a bottleneck if the grain of parallel com-

putation is small, as in, for example, the data parallel

GE program on the CM-5. (4) The combination scal-

ability y of a program is highly architecture dependent.

We have shown performance differences of a program

on the two different architectures.

5 Conclusion

Effective use and refinement of scalability metrics and eval-

uation methods is a major issue of parallel performance

evaluation. To address limitations in the scalability study,

we have extended the latency metric in [11] by providing a

more precise definition of problem size, and by quantifying

algorithmic scalability based on algorithmic latency and ef-

ficiency. The algorithmic scalability defined in this paper

is quite independent of the hardware architecture. To ef-

fectively estimate the various scalabilities, a semi-empirical

approach is used. The semi-empirical approach can be used
to estimate the various scalabilities on systems with implicit

communications. The time to estimate the scalabilities is

significantly reduced compared with pure experimental and

simulation methods. For inst ante, it took 395.5 seconds to

obtain the combination scalability of a shared memory im-

plementation of the GE program on the KSR-1, and 53652.7

seconds for the combination scalability of the APSP on the

KSR-1 using the pure experimental method in the best case.

In contrast, it only took 1.08 and 0.76 seconds respectively

using the semi-empirical method (the time to collect the

sample data is excluded) — approximately 366 times faster

for the GE program and 70595 times faster for the APSP

program. The representation of a program as a thread graph

enables the program overhead pattern of the program to be

studied according to its synchronization and communica-

tion structure. Because experimental measurement is used

to estimate the complex system effects, this makes our ar-

chitecture model less dependent on the real architectures.

Thus, it is more flexible for the evaluation of a large variety

of hardware architectures. Because important and implicit

system effects are obtained through experimental measure-

ments, the semi-empirical performance model is more pre-

cise than pure analytical models or simulations. There are

still some limitations of the semi-empirical approach. First,

the communication structure of the program should be as

regular as possible. Second, the number of iterations of

the major loop in terms of application parameters and sys-

tem size should be easily determined by static analysis, or

by program slicing with small overhead. Finally, changing

application parameters should not significantly change the
communication pattern of the program.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

A. Grama, A. Gupta and V. Kumar, “Isoefficiency func-

tion: a scalability metric for parallel algorithms and ar-

chitectures’), IEEE Parallel & Distributed Technology,

vol. 1, No. 3, 1993, pp. 12-21.

J. L. Gustafson, “The consequences of fixed time perfor-

mance measurement”, Proceedings of the 25th Hawaii

International Conference on System Sciences. Vol. III,

1992, pp. 113-124.

Kendall Square Research, KSR-1 Technology back-

ground, 1992.

Y. Lu, et. al., “Implementation of electromagnetic

scattering from conductors containing loaded slots on

the Connection Machine CM-2”, Proceeding of the 6th

SIAM Conference on Parallel Processing for Scientific

Computing, SIAM Press, 1993, pp. 216-220.

D. Nussbaum, A. Agarwal, “Scalability y of parallel ma-

chines”, Communication of the ACM, March 1991, Vol.

34, No. 3, pp. 57-61.

X. Sun and D. T. Rover, “Scalability of parallel

algorithm-machine combinations”, IEEE Transactions

on Parallel and Dzstrzbuted Systems, Vol. 5, No. 6, 1994,

pp.599-613.

A. Sivasubramaniam, A. Singla, U. Ramachandran, H.

Venkateswaran, “An approach to scalability study of

shared memory parallel systems”, Proceedings of the

ACM SIGMETRICS Conference on Measurement and

Modeling of Computer Systems, May 1994, pp. 171-179.

Thinking Machine Corporation, The Connection Ma-

chine CM-5 Technical Summary, 1993.

X. Zhang, Z. Xu, L. Sun, “Performance prediction on

implicit communication systems”, in Proceedings of the

Sixth IEEE Symposium of Parallel and Distributed Pro-

cessing, IEEE Computer Society Press, Oct. 1994, pp.

560-568.

X. Zhang, Z. Xu, L. Sun, “Semi-empirical multiproces-

sor performance predictions”, Tecfilcal Report, High

Performance Computing and Software laboratory, The

University of Texas at San Antonio, March 1995.

X. Zhang, Y. Yan, K. He, “Latency metric: an exper-

imental method for measuring and evaluating parallel

program and architecture scalability”, Journal of Par.

altel and Distributed Gompzsting, Vol. 22, No. 3, 1994,

PP. 392-410.

X. Zhang, Y. Yan and K. He, “Evaluation and measure-

ment of multiprocessor latency patterns”, in Proceed-

ings of the 8th International Paral!el Processing Symp-

osium, IEEE Computer Society Press, April, 1994, pp.

845-852.

106

