JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 22, 392-410 (1994)

Latency Metric: An Experimental Method for Measuring and
Evaluating Parallel Program and Architecture Scalability’

XIAODONG ZHANG, YONG YAN*, AND KEQIANG HET

High Performance Computing and Software Laboratory, The

*Department of Computer Science,

University of Texas at San Antonio,
Huazhong University of Science and Technology,

San Antonio, Texas 78249,

Wuhan, People's Republic of Chinu: and

tCartotech Inc., San Antonio, Texas 78233

Latency measures the delay caused by communication between
processors and memory modules over the network in a parallel
system. Using intensive measurements and simulation, we show
that network latency forms a major obstacle to improving parallel
computing performance and scalability. We present an experi-
mental metric, using network latency to measure and evaluate the
scalability of parallel programs and architectures. This latency
metric is an extension to the isoefficiency function [Grama et al.,
IEEE Parallel Distrib. Technology 1, 3 (1993), 12-21] and iso-
speed metric [Sun and Rover, IEEE Trans. Parallel Distrib. Sys-
tems 5, 6 (1994), 599-613]. We give a measurement method for
using this latency metric, and report the experimental results of
evaluating the scalabilities of several scientific computing algo-
rithms on the KSR-1 shared-memory architecture. Our analysis
and experiments show that the latency metric is a practical
method to effectively predict and evaluate scalability based on
measured latencies inherent in the program and the architec-

ture. © 1994 Academic Press, Inc.

1. INTRODUCTION

Parallel computing scalability does not have a com-
monly accepted definition yet. However, in scientific
computations, people are more interested in knowing if
there is a corresponding increase in performance of a
computation as the size of a parallel machine is in-
creased. The increase of computing performance is pri-
marily affected by overhead patterns inherent to an appli-
cation program and the effects of the architecture’s
interconnection network. Program overhead patterns re-
fer to the synchronization and communication structures
of the program, while the effects of the architecture’s
interconnection network refer to the delays inherent in
communication hardwares. Therefore, parallel comput-
ing scalability consists of architecture scalability which is

! This work is supported in part by the National Science Foundation
under research Grants CCR-9102854 and CCR-9400719, and under in-
strumentation Grant DUE-9250265, by the U.S. Air Force under re-
search agreement FD-204092-64157, by a grant of Cray Research, and
by a Fellowship from the Southwestern Bell Foundation. Part of the
experiments were conducted on the BBN TC2000 at Lawrence Liver-
more National Laboratory, and on the KSR-1 machines at Cornell Uni-
versity, and at the University of Washington.

0743-7315/94 $6.00
Copyright © 1994 by Academic Press, Inc.
All rights of reproduction in any form reserved.

related to bottlenecks inherent in an architecture design,
and algorithm scalability which is related to the parallel-
ism inherent in an algorithm design.

Scalability is aimed at measuring the ability of a paral-
lel architecture where the parallelism of a given algorithm
has already been effectively exploited. Evaluation of the
scalability can also be used to predicate the performance
of large problems on large systems based on the perfor-
mance of small problems on small systems. A rigorous
scalability definition and metric provides an important
guideline for precisely understanding the nature of the
scalability, and for effectively measuring the scalability in
practice. Isoefficiency (3] and isospeed [9] are two useful
scalability metrics. The former evaluates the perfor-
mance of an algorithm-machine combination through
modeling an isoefficiency function. The latter evaluates
the performance of an algorithm-machine combination
through measuring the workload increment with a change
of the machine size under the condition of the isospeed.
Isoefficiency is considered to be an analytical method for
algorithm scalability evaluation. Although isospeed met-
ric is an experimental metric, it may face the difficulty of
measuring some real machine factors in practice.

In this paper, we present an experimental metric using
network latency for measuring and evaluating parallel
program and architecture scalability. We first give the
definitions of latency and scalability. Furthermore we
show the analytical relationships among the latency met-
ric, the isoefficiency function, and the isospeed metric.
Finally we give a measurement method for using the la-
tency metric. We include experimental measurements on
the KSR-1 to show the effectiveness of the latency metric
in predicting and evaluating the scalability.

The organization of this paper is as follows. Section 2
overviews the two current available metrics. We empha-
size the evaluation of the merits and limits of the isospeed
metric. We present our latency metric in Section 3. We
overview the architectures and the application programs
used for the experiments in Section 4. In Section 5, we
present traced and monitored program execution results,
and address the importance of using the latency to ab-
stract various effects from network architectures and
program structures. Both measurement methods and ex-
perimental results of several numerical programs on

392

LATENCY METRIC

KSR-1 are presented in Section 6. Finally we give sum-
maries and conclusions in Section 7.

2. SCALABILITY METRICS FROM EFFICIENCY
AND SPEED

2.1. Overview and Background

The definition of scalability comes from Amdahl’s law
which is tied to efficiency and speedup. There are two
important scalability metrics: the isoefficiency function
based on parallel computing efficiency [3], and the iso-
speed metric based on parallel computing speed [9]. The
isoefficiency function of a parallel system is determined
by abstracting the size of a computing problem as a func-
tion of the number of processors. subject to maintaining a
desired parallel efficiency (between 0 and 1). Specifically,
the efficiency is defined as

|
T+ T, WHItWT

E 2.1)

where T, is the total overhead caused by all processors to
do the computation in parallel, . is the average executing
time per operation in the architecture, W is the problem
size, and n is the number of processors. Here 7. W is the
sequential runtime of an algorithm.

If the efficiency needs to be maintained at a certain
value £(0 < E < 1), then from (2.1)

i (E
W = 1 — E,)TU("‘ W)-

or

W = KT,n, W), (2.2)
where K = (1/t.)(E/1 — E) is a constant. The scalability is
determined by the overhead function T,(n, W). The
larger the T,(n, W), the lower the scalability of the algo-
rithm on the architecture will be. If an analytical form 7,
of a given algorithm on a given architecture is described
as a function of n and W, the isoefficiency (E(n)) curve
using up to n processors can be generated for evaluating
the scalability.

The isoefficiency function (2.2) first captures, in a sin-
gle expression, the effects of characteristics of the paral-
lel algorithm as well as the parallel architecture on which
it is implemented. In addition, the isoefficiency function
shows that it is necessary to vary the size of a problem on
a size changeable parallel architecture so that the pro-
cessing efficiency of each processor can remain constant.
However, there are two limits in this metric to the experi-
mental evaluation of the scalability. First, analytical
forms of the program and architecture overhead patterns
in a shared-memory architecture may not be as easy to
model as in a distributed memory architecture. Because

393

the computing processes involved in a shared-memory
system include process scheduling, cache coherence, and
other low level program and architecture dependent op-
erations which are more complicated than message pass-
ing on a distributed memory system, it would be difficult
to use the isoefficiency metric to precisely evaluate the
scalability for a program running on a shared-memory
system in practice. Second, the metric may not be used
to measure the scalability of the algorithm-architecture
combination through machine measurements. Of course,
experiments can be used to verify the analytical isoeffi-
ciency for the algorithm on a specific architecture. We
believe this metric is more appropriate to evaluate the
scalability of parallel algorithms.

Sun and Rover [9] take an approach to algorithm—ma-
chine combinations. Their metric starts from defining the
average unit speed

w
Yo VeXzd = —— 9
speed N7’ 2.3)

where W is the amount of work quantitatively given by
the number of floating point operations in the program, N
is the number of processors, and ¢ is the execution time.

Scalability is defined as an average increase of the
amount of work on each processor needed to keep its
speed constant when the size of the parallel architecture
increases from N processors to N’ processors. It can be
further expressed as

W/N

Scalability(N, N') = WIN

(2.4)

where W and W' are the amounts of work (or the problem
sizes) for the architecture of size N and for the architec-
ture of size N', respectively. This metric provides more
information about architectures and programs because
the scalability of (2.4) can be well determined through
machine measurements.

2.2. Merits and Limits of the Isospeed Metric

Our experimental metric is along the same line of the
isospeed metric. Here we first study the merits and limits
of this metric. Since the computing speed is used to de-
fine the scalability function, the isospeed metric has the
following merits in theory and practice. First, the speed
comes from two major performance factors: the problem
size and the execution time. While the problem size de-
scribes a property of the application program, the execu-
tion time reflects the effects of the architecture and the
efficiency of the program. Second. the speed is a fair
quantity for comparisons among various architectures.
The execution time includes the pure computing part and
the latency part which is the major performance factor.
Finally, the isospeed is easy to measure because the
problem size is determined by the number of floating

394

point operations performed in the computation. How-
ever, In terms of algorithm-machine combination, the
isospeed metric may not explicitly and completely mea-
sure the architecture effects and the program overhead
patterns, because of the usage of the floating point opera-
tions to measure the work (problem size). We believe
there are two limits in the isospeed metric for precisely
measuring and evaluating the scalabilities of the applica-
tion program and the architecture. First, some nonfloat-
ing point operations can cause major performance
changes. For example, a single assignment to a shared
variable in a cache coherent shared-memory system may
generate a sequence of remote memory/cache accesses
and data invalidations. But this type of operation is ex-
cluded in the measurement of the scalability. Second, the
latency is included in the total execution time in the met-
ric. but is not defined in the amount of work, W, in the
scalability metric (2.4). In practice, the execution over-
head caused by the interconnection network and the pro-
gram structure is a function of the problem size. Since the
execution patterns can be precisely monitored by hard-
ware and/or software in more and more modern parallel
architectures, scalability can be further evaluated at
lower application and system levels to capture more pre-
cise performance factors of architecture effects and pro-
gram overhead patterns. In the next section we propose a
new metric called the latency metric, 10 enhance the abil-
ity of the isospeed metric. Instead of the speed, we use
the latency, the average computing delay, as the major
factor in the metric. We show in Section 5 that latency
includes more precise information of the architecture’s
interconnection network effects and the overhead pat-
terns inherent in application programs.

3. THE LATENCY METRIC

3.1. Definitions and Assumptions of the Metric

We define the latency metric through a series of formal
definitions and theorems.

DerFiniTION 1. The parallel computing time of an al-
gorithm implementation, denoted as T, is the elapse
time between starting the program and ending the pro-
gram on a parallel architecture. The parallel execution
time on the ith processor, denoted as T;, fori = 1, ... N,
is the effective execution time in the processor, where N
is the total number of processors used in the computing.
The effective execution time in each processor includes
the latency time during the execution (see Definition 2 for
latency) but does not include the idle time of waiting for
starting the execution and the idle time of waiting for
ending the program.

DEeFINITION 2. Overhead latency in the ith processor,
denoted as L;for i = 1, ..., N, is the sum of the total idle
time units during the execution in the processor and the
time units spent on the work which is not needed in a

ZHANG. YAN. AND HE

sequential computer, such as synchronization time, com-
munication time, and thread creation time.

DeriniTiON 3. The size of a problem, denoted as W,
is a measure of the number of basic operations needed by
the fastest known sequential algorithm to solve the prob-
lem on a sequential computer. In general, the average
time of a basic machine operation can be considered as a
constant, denoted as t.. For example, we can use the
cycle time of the CPU to be the basic operation time ¢..
Therefore, the total sequential computation time of a
problem with size of W is Wi, .

DEFINITION 4. Average latency, denoted as L(W,
N), is a function of the problem size W and the number of
processors used N, and is defined as an average amount
of overhead time needed for each processor to complete
the assigned work:

21\:' l(Tpara -
N

T, + L)

LW, N) = (3.5)

Figure | provides an example of latency and execution
time distributions given in Definitions 1-4.

In the isoefficiency function and the isospeed metric,
the scalability is defined as an algorithm-machine combi-
nation, and may not be used to measure different parallel
implementations of a given algorithm. However, in paral-
lel programming, different implementations of an algo-
rithm may have very different computing performance.
In contrast, our latency metric defines the scalability of a
parallel algorithm implementation—-machine combina-
tion, simplified as an implementation—-machine combina-
tion. The next definition combines this concept in the
scalability.

DerFiniTION 5. For a given efficiency, FE € [0, 1], of
running a program on N processors, if and only if the
efficiency of an implementation of an algorithm on a
given machine can become equal to or greater than the
given FE by increasing the size of the problem, the imple-
mentation-machine combination is called scalable.

Definition S indicates that an algorithm-machine com-
bination is scalable if and only if we can find an imple-
mentation of the algorithm on the machine that is scal-
able. Recall that a problem-machine combination is
scalable if and only if the algorithm on the machine is
scalable.

Before formally defining the scalability latency metric,
we describe the parallel computing time, 7. based on
Amdahl’s Law, as

Toun = 2 4 1 (W, N),

N (3.6)

where W is the size of a problem, N is the number of the
processors, f. is the average computing time per opera-

LATENCY METRIC

execution time
[

395

pl p2 p3 p4

[: idle time before starting /stopping

FIG. 1.

tion in the system, and L(W, N) is the average latency
time.

DEFINITION 6. For a given algorithm implementation
on a given machine, let L(W, N) be the average latency
when the algorithm is for solving a problem of size W on
N processors, and L(W', N’) be the average latency
when the algorithm is for solving the problem of size of
W’ on N’ > N processors. If the system size changes
from N to N’, and the efficiency is kept to a constant £ €
[0, 1], the scalability latency metric is defined as

LW, N)

LW.NY 3.7)

scale(E, (N, N")) =

We also call the metric in (3.7) an E-conserved scalability
because the efficiency is kept constant. From the defini-
tion of the efficiency in (2.1), (3.7) satisfies the following
E-conserved condition:

Wi, _ W’I(.
NWt/N + L(W,N)) N W't/N + L(W', N"))’

In practice, the value of (3.7) is less than or equal to 1,
A large scalability value of (3.7) means small increments
in latencies inherent in the program and the architecture
for efficient utilization of an increasing number of proces-
sors, and hence the parallel system is considered highly
scalable. On the other hand, a small scalability value
means large increments in latency and therefore a poorly
scalable system.

pS p6 p7

C o

p8 processor number

overheads latency(L i)

the computation time on each processor (T ;)

An example of latency and execution time distributions given in Definitions 1-4.

Furthermore, when a set of scale(E, (N, N')) values is
measured on a system for different given efficiency Es,
an average scalability may be described by an integration
of the latency metric from N to N':

Scale(N, N') = fo' scale(E, (N, N')) dE. (3.8)

3.2. Analytical Relationships among the Three Metrics

Based on the latency metric and the related definitions
in the previous section, we are also able to present ana-
lytical relationships among the isoefficiency function, the
isospeed metric, and the latency metric through the fol-
lowing two theorems.

THEOREM 1. If we assume the average execution
time per operation for solving a problem in an architec-
ture, t., is a constant, then the efficiency E and the speed
S have the following relationship:

E = St.. (3.9)
This theorem indicates that the isoefficiency is equivalent
to the isospeed.

Proof. Let W be the problem size, N be the number
of the processors and T}, be the parallel execution time.
The sequential execution time (7,) for solving the prob-
lem of size W is:

Toeq = We. (3.10)

396

From the definitions of the speed and the efficiency, we
have

W/T arda
S = N 3.1
and
Tseq/ Tpara
E N 3.12)

Substituting (3.10) into (3.12), and combining the result
with the (3.11), we obtain (3.9).

THEOREM 2. Let L (W, N) be the average latency
when an algorithm is for solving a problem of size W on
N processors, and L(W’', N') be the average latency
when the algorithm is for solving the problem is of size
W’ on N' > N processors. If the state of a program
execution changes from (W, N) to (W', N'), and the
speed or the efficiency of the system remains unchanged,
then the E-conserved latency scalability metric is

LW, N) W/N

scale(E, (N, N')) = LW . N “WIN

(3.13)

This theorem indicates that the latency metric is identical
to the isospeed metric (2.4) in theory. However, in prac-
tice we measure the latency L(W, N}, which provides
more precise overhead effects of the architecture and the
program structure.

Proof.

Part 1. Assume that the speed, S, of the system re-
mains unchanged. It can be expressed from the unit
speed definition (2.4) and the paralle! computing time defi-
nition in (3.6) as

W/IN
5= L(W, N) + Wt /IN" 3.14)
From (3.14), the latency becomes
_w (l _)
LW, N) = ~N\3 t(.’ . (3.15)

From (3.15), we get (3.13). This means the latency metric
can be derived from the isospeed metric.

Part 2. Assume that the efficiency E of the system
remains unchanged. It can be expressed from its defini-
tion and (3.6) as

Wi, Wi,

E=RTmi = NWiIN ¥ LW, N (3.16)
From (3.16), the latency becomes
-3 (=)
L(W,N) = N E t.. 3.7

ZHANG, YAN, AND HE

From (3.17), we obtain (3.13). This means the latency
metric can also be derived from the isoefficiency function
(3.17).

Theorem 2 indicates that the latency scalability metric
covers the scalability measures included in both the iso-
speed function and the isoefficiency metric. Again, an-
other important reason for using the latency is related to
the real measurements in computer systems. This metric
more directly and precisely catches the architecture in-
terconnections network effects and the overhead pat-
terns inherent in the algorithm in the program execution.
In general, the average latency defined by Definition 3 is
an increasing function of the machine size and the prob-
lem size. So the scalability scale(N, N') of an implemen-
tation—machine combination is less than 1. When
scale(N, N') = 1, the average latency from the imple-
mentation-machine combination is a constant, and is in-
dependent of the problem size and the machine size. In
this case, by the definition of the efficiency, we have

L(W, N))

poufi MY,
{1+ Wi~)

Here the efficiency E and the latency L(W, N) are con-
stants, so the problem size can be expressed as

W = kN,

where k = (L(W, N)E/(1 — E)) t.. This indicates that the
problem size W increases linearly with the system size N.
This case is the ideal algorithm implementation-machine
combination, and gives an important quantitative refer-
ence for designers of parallel machines, parallel algo-
rithms, and parallel algorithm implementations.

3.3. Using the Latency Metric for Scalability
Prediction

Although the scalability defined in Definition 6 is moti-
vated by architecture and system measurements, we can
also predicate it through a so-called E-conserved latency
function, denoted as f(N), which is an analytical function
of the machine size only. From the efficiency definition,
we have

LW, Ny 618

E = 1/(1 + WINL.

Then the problem size W can be derived from the effi-
ciency definition:

_ ENL(W, N)
W= (3.19)
Substituting this W function to the latency metric (3.7),
we can always get the E-conserved latency function in
the following form:

L = f(N). (3.20)

LATENCY METRIC

Using the E-conserved latency function, the scalabilities
can be predicted by any given machine size.

4. PARALLEL ARCHITECTURES AND APPLICATION
PROGRAMS FOR THE SCALABILITY EXPERIMENTS

The architectures we used for scalability testbeds are
network-based shared-memory systems which use a logi-
cal shared address space, where physical memory is dis-
tributed. This type of system intends to combine the
scalability of network-based architectures with the con-
venience of shared-memory programming. The shared-
memory systems we used were the KSR-1 and the Cer-
berus shared-memory simulator. We tested three
application programs from the Stanford SPLASH set for
latency measurement and scalability evaluation on both
architectures. We also implemented three other standard
numerical algorithms on the KSR-1 for scalability mea-
surement using the latency metric. In this section, we
briefly overview the parallel architectures and the appli-
cation programs for the scalability experiments.

4.1. The KSR-! System

The KSR-1 [5], introduced by Kendall Square Re-
search, is a hierarchical ring-based shared-memory multi-
processor system with up to 1,088 64-bit custom super-
scalar RISC processors (20 MHz). A basic ring unit in the
KSR-1 has 32 processors. The system uses a two-level
hierarchy to interconnect 34 rings (1088 processors).
Each processor has a 32-MB cache.

The basic structure of the KSR-1 is the slotted ring.
where the ring bandwidth is divided into a number of
slots circulating continuously through the ring. The num-
ber of slots in the ring is equal to the number of proces-
sors plus the number of directory/routers connecting to
the upper ring. A standard KSR-1 ring has 34 message
slots, where 32 are constructed for the 32 processors and
the remaining 2 slots are used for the directory/router
cells connecting to level 1 ring. Each slot can be loaded
with a packet, made up of a 16-byte header and 128 bytes
of data which is the basic data unit in the KSR-1, called a
subpage. A processor in the ring ready to transmit a mes-
sage waits until an empty slot is available. which rotates
through a ring interface of the processor.

4.2. The Cerberus Simulator

In order to evaluate cache and cache coherence ef-
fects. we also traced one of the application programs on a

397

cache coherent multistage interconnection network
multiprocessor simulated by the Cerberus [1] on the
TC2000. The simulator constructs a multistage intercon-
nection network architecture similar to the TC2000. Each
processor has a 64-K cache where cache line size is 128
bytes. All processors are connected to a large shared
memory. An interleaved shared-memory scheme is sup-
ported in the memory system. The cache coherence pro-
tocol used is a standard full-map directory cache coher-
ence protocol [(2]. The simulator collects detailed
statistics on execution behaviors including memory ac-
cess patterns, cache invalidation patterns, and network
traffic.

4.3. Three Application Programs from the SPLASH

Three application programs from the SPLLASH parallel
benchmark set of Stanford [8] have been ported to the
KSR-1 and the Cerberus simulator for the latency pattern
and scalability evaluation. These parallel programs are a
molecular dynamics simulation (Water), a rarefied fluid
flow simulation (MP3D), and a Cholesky factorization of
a sparse matrix (Cholesky). The program and synchroni-
zation structure overview of the three application pro-
grams are listed in Table 1.

4.4. Quick Sort (QS)

The basic data structure of the parallel quick sort uses
a task queue to allocate tasks onto each thread dynami-
cally. Since the task queue is globally shared and allo-
cated in a critical section, its size and structure are quite
sensitive to the computing performance. In our imple-
mentation, we used a single queue structure. Initially,
each thread gets a task which is a segment of the data to
be sorted from the task queue. It then divides it into two
smaller segments. The thread puts one of them back into
the queue, and sorts the other segment repeatly until the
resulted data segment becomes a set of individual ele-
ments. Each thread will repeat the same process until the
task queue is empty. For detailed information of the algo-
rithm, the interested reader may refer to [6].

The latency in the parallel quick sort algorithm mainly
comes from the waiting time for entering critical section
of the task queue, and the time for producing the tasks in
the critical section.

4.5. Gauss Elimination (GE)

In this parallel Gauss elimination algorithm, multiple
threads are mainly used to do column element elimina-

TABLE |
The Program and the Synchronization Structures of the Three Applications
Programs Type Size # itns cs-len # lock-acc/itn # barr.
Water Iterative 343 mol 10 Short 76.762 8
MP3D Iterative 50,000 mol 40 Short 101.900 6
Cholesky Direct n = 3938 1 Medium 79,941 4

398

tion simultaneously. Whenever a column element is elim-
inated, all of the threads must wait at a synchronization
point for the main thread to reorder the elements of the
next row. The parallel algorithm performs this operation
from the first row to the last row in the matrix. For de-
tailed information of the algorithm, the interested reader
may refer to {7].

The latency in the Gauss Elimination program mainly
comes from the thread synchronization and the data
movement among memory modules.

4.6. All Pairs Shortest Path (APSP)

The parallel implementation of All Pairs Shortest Path
is based on the Dijkstra’s sequential algorithm. It uses a
path matrix to store the connection relations among
nodes. For a given number of threads, the partition of the
shortest path searching work among threads can be done
statically. Each thread is responsible for finding its short-
est path. For detailed information of the algorithm, the
interested reader may refer to [6].

The latency of this implementation only comes from
the initialization of the program—the creation and join of
the threads.

5. MISS LATENCY AND SCALABILITY PREDICTION

In a large shared-memory multiprocessor, memory
modules are distributed and an interconnection network
is used to connect them together to construct a shared-
memory computing environment. Latency defines a de-
lay in time by any type of nonlocal cache/memory access
through the interconnection network. All the nonlocal
accesses are caused by focal access misses. Thus we call
the latency miss latency. The miss latency in large-scale
shared-memory computing is a major performance bot-
tleneck for parallel processing. The major miss latency
sources are nonlocal cache/memory searching/access,

Time
(sec)
250 A

T

ZHANG, YAN, AND HE

synchronization locks and barriers, cache coherence
overheads, hot spots, and management of cache/memory
localities. These are important program events with
heavy network activities. We quantitatively measure,
evaluate, and analyze the miss latency through an execu-
tion pattern study. The program miss latency is a func-
tion of the number of processors used for computing,
which quantitatively describes the changes of network
delay for an application program as the number of pro-
cessors is increased. By using the execution measure-
ment results, the program miss latency function can also
provide its upper bound for the program to achieve maxi-
mum speedup with the maximum number of processors.
We also use the miss latency as an important factor to
evaluate and predict scalability of application programs
on network-based shared-memory architectures.

5.1. Latency and Locality Analysis on the KSR-1

We ran the three SPLASH programs on the KSR-1 for
latency and locality pattern analysis in order to obtain
further understanding of the communication patterns in-
herent in the programs and the architecture. All the per-
formance data are collected by the hardware monitor
which is built into the KSR-1. Each KSR-1 processor
contains an event monitor unit (EMU) designed to log
various types of local cache events and intervals. The job
of the EMU is to count events and elapsed time related to
cache system activities. The hardware monitored events
provide a set of precise and important data to be used for
evaluating the execution performance on the KSR-1.

Figures 2, 3, and 4 show execution time distributions
for the programs of MP3D, Water, and Cholesky, respec-
tively, on the KSR-1 with different numbers of proces-
sors. There are two time columns for each execution in
these figures, where the first column represents the aver-
age execution time of each processor, and the second
column represents the average idle time of each proces-

[: Execution
Cache Miss
e Page Miss

Instruction Miss

—

2 3
FIG. 2.

8 Number of Processors

Execution time distributions for the MP3D program.

LATENCY METRIC

Time
(sec)

170+

399

[:ij Execution
Cache Miss
Page Miss

Instruction Miss

[= -

8 16

FIG. 3.

sor. The difference between the first column and the sec-
ond column is the average effective computing time of
each processor. The major probiem of the MP3D pro-
gram running on the KSR-1 comes from low processor
locality in execution. The performance of the program
has been significantly improved on the KSR-1 by modify-
ing the program data structures for increasing the locality
{10]. We chose the MP3D program with poor perfor-
mance in order to compare to the other two program with
higher processor localities.

The idle time is called CEU stalls time in the KSR-1
system, where CEU is the cell execution unit. During the
idle time period, the CEU is stalled; therefore the floating
processing unit (FPU) and integer processing unit (IPU)
are also stalled. The CEU stalls because the following
scenarios occur:

* data subcache miss. The CEU requests data from its
subcache, but data are not there. Therefore data sub-

Time
(SCC) A

25 1

48 Number of Processors

Execution time distributions for the Water program.

cache_miss occurs. It takes 23 cycles for subpage to be
transferred from the local cache to the subcache via the
cache control unit (CCU). Additional stall cycles can oc-
cur if write-back occurs, since there is a need to create
block descriptors before the data are transferred. They
can also occur if some other processor is requesting data
from this subcache.

* cache_subpage_miss. Data are not in the subcache or
the local cache; therefore the cell interconnect unit (CIU)
sends a message to the directories at this ring level or
upper ring level requesting the subpage. This operation
takes about 140-150 cycles on the local ring, plus 23
cycles for an original subcache miss. It takes about 600
cycles for the request from a ring of the upper level.

» page_miss. Data are not in the subcache, the subpage
is not in the local cache, nor in the directories on the local
level and upper level. The operating system needs to cre-
ate a new page descriptor. This operation takes 163 cy-
cles.

1 Execution
Cache Miss
) Page Miss
Instruction Miss

2 8 16

FIG. 4.

Number of Processors

Execution time distributions for the Cholesky program.

400

* cache_ins_instruction_time. The operating system in-
serts instructions during program execution for cache in-
struction misses.

* io_ins instruction_time. The 1/0 processor inserts in-
structions during a program execution for [/O instruction
misses.

We divide the idle time into three parts: cache miss
time including the data subcache miss and the cache_
subpage miss, page miss time, and system instruction
miss time including the cache_ins instruction time and
the io ins instruction time. Since system instruction
misses occasionally happen, it only has a very small per-
centage in the idle time. Cache miss time is often a large
part of the idle time. Page miss time also makes a consid-
erable contribution to the idle time. Figure 2 shows that
over 80% total computing time of an MP3D execution is
idle when processors are waiting for replacements of
cache data, page data, and system instruction misses. In
contrast, Figs. 3 and 4 present higher locality patterns in
the executions of the Water and Cholesky programs, re-
spectively. The processor idle times are significantly
lower because the numbers of various misses are low.
Therefore the effective computing times are much higher
than that of the MP3D program.

Another important factor which creates program local-
ities is the frequency of nonlocal data movement through
the rings. This frequency is high when processor locality
of a program is low. Figure 5 presents the three fre-
quency curves of nonlocal data movement in number of
packets per us for the three application programs on dif-
ferent numbers of processors. A communication packet
in the KSR-1 is the size of a subpage (128 bytes). The data
movement frequency of the MP3D program is signifi-
cantly higher than that of the Water and Cholesky pro-
grams. The high frequency of the MP3D program comes
from the result of low processor locality and a large num-
ber of cache and page misses in the executions. Tracings

ZHANG. YAN. AND HE

of both execution time distributions and frequencies of
nonlocal data movement indicate that the Water and
Cholesky programs have high hierarchical localities,
which can be well exploited by the KSR-1 architecture.

Figure 6 presents average program miss latencies for
the three programs, and confirms that the Water and
Cholesky programs have high hierarchical localities. The
miss latencies of the two programs do not necessarily
grow with the number of processors used. Thus, the av-
erage distance between an arbitrarily chosen pair of pro-
cessors does not necessarily grow with the number of
processors. This is because communications in execu-
tions of these two programs are often conducted on
“‘nearby processors’ instead of arbitrary processors,
such as two processors on different rings. In contrast, the
miss latency of the MP3D program is not just significantly
higher, but also grows monotonically with the number of
processors.

5.2. Execution-Driven Simulations and Tracing on
the Cerberus

Performance measurements are limited in their ability
to provide insight into dynamic execution patterns of ap-
plication programs because it may be impossible to cap-
ture execution activities at lower system and architecture
levels. In addition, measurements may only be used for
performance evaluation of an existing system. In order to
provide detailed execution patterns of application pro-
grams, and to study the effects of some important system
modifications, we have conducted execution-driven sim-
ulations and tracings using the application programs on
large-scale shared-memory multiprocessors.

The architecture we used is a simulated cache coher-
ence multistage interconnection network-based architec-
ture provided by the Cerberus simulator. We use the
MP3D as the target parallel program. The size of the
problem input was reduced from 50,000 to 3,000 mole-

30000 T T T | ER—— T T T A
25000 holesky —— |
Water =———
20000 —
Nfps 15000 - |
10000 | .
5000 // .
/
0 4 e T 1 | 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
number of processors
FIG. 5. Frequencies of nonlocal data movement of the three application programs.

LATENCY METRIC

401

140
120

100 -

ps/miss

40

20 +

| 1 1

| |

0 5 10 15 20

25 30 35 40 45 50

number of processors

FIG. 6. Average program miss latencies of the three application programs.

cules in order to obtain an affordable simulation time.
This reduction did not change the program structure be-
cause the structure is independent of the program input
size. Before presenting the detailed execution-driven
simulation results, we present the execution time mea-
surements of the MP3D program run on the simulated
architecture with different numbers of processors. Table
II lists the execution times in CPU cycles, utilizing a
simple lock and simple barrier schemes. The minimum
execution time for the program is printed in boldface. As
the number of processors increased to 16, the execution
time hit its minimum, after which more processors
caused the program to take a longer time to complete. In
the following sections, we present our execution-driven
simulation results to provide insight into the perfor-
mance, by investigating the primary factors affecting the
paralle] scalability of this application program.

5.2.1. Memory Access Patterns and Cache Coherence
Effects. Memory access characteristics of the MP3D
program running on the simulated architecture are
traced. These include shared and private data access,
frequency of access, data movement, data locality effects
of cache coherence, and other related effects. Table 111
shows the general memory access information for the
MP3D program running on the architecture with a differ-
ent number of processors. It lists the total number of
remote cache/memory accesses through the network, the
total number of access-hit rate (read/write), the barrier
access-hit rate and the lock access-hit rate. The simula-

TABLE 1I
Execution Time of the MP3D Program in CPU Cycles on the
Cerberus Simulator

#p 8 16 32 64

sim-lock/sim-barr. 1,007,628 653,326 904,748 2,417,743

tion results in Table III show that the general access-hit
rates and the rates of access-hits caused by barriers and
locks are slightly changed when the number of proces-
sors is increased. However, the number of remote cache/
memory accesses is significantly increased as the number
of processors is increased. This is because the increase of
the number of processors for computing the MP3D pro-
gram generates more tasks, thus the number of remote
cache/memory accesses for task scheduling, data access,
and data invalidation is increased accordingly. In addi-
tion, the increase of the number of processors in the com-
putation generates more processes to be synchronized at
points of barriers and locks; thus the number of remote
cache/memory accesses for the same purpose is also in-
creased accordingly. Figure 7 confirms that the increase
of the number of remote accesses in the MP3D program
almost exclusively comes from the synchronization barri-
ers and locks as the number of processors is increased,
while the number of remote accesses for exclusive com-
puting remains at almost a constant level.

Figure 8 gives the distribution of average access-hit
rates among the four groups of multiprocessor sets for
executing the MP3D program. The traced data show that
the average cache access-hit rate of the system is inde-
pendent of the number of processors used. This perfor-
mance result also indicates that the program structure of
the MP3D for data accesses on this multistage intercon-
nection network based architecture is reasonably regular.

Table 1V gives general cache invalidation information.
The average invalidation width defines the average num-
ber of cache copies to be invalidated in each invalidation.
The invalidation width is only slightly changed as the
number of processors is changed. However, the number
of invalidations is significantly increased as the number
of processors is increased. Table IV also lists the ratio
between the number of invalidations caused by barriers
(barrier invalidations) and the total number of invalida-
tions in the computation (program invalidations), and the

402

ZHANG, YAN, AND HE

TABLE III
The General Cache/Memory Access Patterns for the MP3D Program

proc. # remote accesses access-hit rate (%) barrier hit rate(%) lock hit rate (%)
8 94,409 84.1 97.1 81.7
16 107,584 83.6 93.0 80.0
147,021 85.2 90.9 78.2
64 286,602 92.1 94.2 79.9

ratio between the number of invalidations caused by
locks (lock invalidations) and the program invalidations.
The large increase in the number of program invalida-
tions mainly comes from the large increase in the number
of barrier invalidations as the number of processor is in-
creased. The number of lock invalidations is increased
moderately. The percentage of invalidations caused by
synchronization barriers/locks is increased from 67 to
87% as the number of processors is increased from 8 to
64.

Figure 9 shows the invalidation distributions for the
MP3D program. The distributions are dominated by sin-
gle invalidations. As the number of processors is in-
creased, the invalidation distribution remains essentially
the same. This result is very similar to that of the cache
invalidation distribution pattern reported by Gupta and
Weber [4], where the MP3D program is executed on an-
other simulated shared-memory architecture. This multi-
processor assumes shared memory partitioned among the
processing nodes, infinite caches, and a directory-based
cache coherence protocol.

5.2.2. Miss Latencies in Executions. The simulator
also conducts two exclusive miss latency measurements.
The synchronization miss latency gives the average re-
mote access delay exclusively caused by the synchroni-
zation barriers/locks in the program. The computing miss
latency provides the average remote access delay exclu-
sively caused by computation without any synchroniza-

tion process involved. Figure 10 plots the 3 miss latency
curves of the MP3D program running up to 64 proces-
sors. The major source of network delay comes from the
synchronization barriers/locks in the program.

The average program miss latency curve indicates that
the upper bound latency for the architecture to achieve
maximum speedup of the program is 42 cycles using 16
processors, because 16 is the largest number of proces-
sors used to achieve the maximum speedup. The comput-
ing miss latency curve can be used as an optimistic bound
for the computation, which assumes that there are no
synchronization processes in the computation. In this op-
timistic case, the execution time will hit the minimum
when the 30 processors are used. This is because the miss
latency of 16 processors (about 42 cycles) is equal to the
critical latency of the program (42 cycles). The synchro-
nization miss latency curve can also be used as a pessi-
mistic bound for the computation, which assumes that
the programs are dominated by synchronization barriers/
locks. If this is the case, the execution time will soon
drop to the minimum even when fewer than 8 processors
are used. This is because the miss latency of 8 processors
(56 cycles) is already larger than the critical latency of the
program (42 cycles).

The synchronization effects can be reduced by increas-
ing the input size of the MP3D program. This is because
the number of barriers and locks of the program is inde-
pendent of the size of the problem, and the size of the
local computation in each processor is also increased. As

180 T T T T T

160 F barrier§ — |
cks —
140 computing ——
120 - -
100 - -
N(K)

80 - .
60 + / —
40 L .
2 -

0 1] 1 i
0 10 20 30 40 50 60 70

number of processors

FIG. 7. The numbers of remote accesses caused by barriers, locks, and the normal computing in the MP3D program.

LATENCY METRIC

Cache hit Cache hit
e (%) § (%) 4
100 100
I R Y L E L L L L LR LR) qec-r~mrccccactmm e r s s e e et e e e e,
0 7 Cache Numbers 0 15 Cache Numbers
Cache hit Cache bit
o (%) L rate (%)
100 1 L I
B P 95
90
0 31 Cache Numbers 0 63 Cache Numbecs
FIG. 8. Cache access-hit distribution patterns for the MP3D program.
Number of Number of
Invalidation Invalidation
(in thousand) (in thousand)
45.58] s213 4
l | T | l I | PR RPN
0 7 Cache Numbers 0 15 Cache Numbers
Number of Number of
(lflvalidaﬁm Invalidstion
in thousend) (in thousend)
71.48 t_ 8192 4
II“Iln " a "
0 3 Cache Numbers 0 63 Cache Numbers

FIG. 9. Cache invalidation distribution patterns for the MP3D program.

403

404

ZHANG, YAN, AND HE

TABLE 1V
The General Cache Invalidation Patterns for the MP3D Program

proc. # prog. invalid. # of barrier invalid. # of lock invalid. avg. invalid. width
8 48,858 1,363 (2.8%) 31,132 (62.7%) 1.12
16 57,526 4,961 (8.6%) 35,603 (61.9%) 2.05
32 76,824 20,287 (26.4%) 38,794 (50.5%) 1.47
64 147,134 84,750 (57.6%) 43,241 (29.4%) 1.72

Fig. 7 shows, the number of remote accesses for exclu-
sive computing is independent of the number of proces-
sors used. However, the miss latency of exclusive com-
puting is significantly increased as the number of
processors is increased. For example, Fig. 10 shows that
the miss latency of exclusive computing for the MP3D
program is increased 5 times (from 25 cycles to 124 cy-
cles) as he number of processors is increased from 8 to 64
processors. In other words, no matter how efficient the
paralle! program is, the built-in latency in the architec-
ture, which is a growing function of the number of pro-
cessors, will only let the program scale to a certain point,
for example, up to 30 processors for this MP3D program
in the Cerberus simulator.

5.3. An Experimental Metric of Scalability Prediction

Our execution pattern case studies indicate that the
major source for various overheads on a network-based
shared-memory multiprocessor architecture, such as
synchronization locks/barriers, hot spots, cache invali-
dations, and remote search/access, can be quantitatively
identified by the miss latency. Therefore, the miss la-
tency is a primary factor to measure scalability of a paral-
lel program on a network-based shared-memory architec-
ture. The program miss latency is closely related to the
program structure and the architecture used. Since a syn-
chronization-free program, in general, has low network
activities and minimum effects from the architecture, the

700 r ,

computing miss latency (the latency exclusively caused
by the computing of the program) can be used for com-
paring scalabilities among different architectures. For ex-
ample, the computing miss latencies of the same program
running on different architectures may be used as a factor
to distinguish scalabilities of the architectures—the
higher the miss latency, the lower scalability the architec-
ture has. The factor of program miss latency may also be
used to determine and predict program scalability. By
measuring the program execution time running on an ar-
chitecture with different numbers of processors, and the
program miss latencies, the upper bound miss latency for
gaining minimum execution time can be determined. This
upper bound may be used to determine a justification of
the program structure, such as to increase the input size
of the program, for the purpose of scaling the program to
run on a larger number of processors.

We propose an experimental metric called miss latency
metric for measuring and predicting a program’s capabil-
ity to effectively utilize an increasing number of proces-
sors. The proposed miss latency metric consists of the
following steps for studying scalability of a program on a
shared-memory multiprocessor architecture:

I. The program with a given small size is run on the
multiprocessor system. (The size of the program should
be reasonably small enough to reach its minimum execu-
tion time when a smaller number of available processors
or less are used.) The program miss latency for the maxi-

600

500

400
L (cycs)
300

T

200

100

T T
barriers/locks —

T

|

0]

1

1 I i

10 20

30

40 50 60 70

number of processors

FIG. 10. Miss latencies at different levels of the MP3D program.

LATENCY METRIC

405

TABLE V
The Measured and Predicted Scalability Factors for the MP3D Program on the Cerberus
L sy p (proc.) p (proc.) P (proc.)
Software barrier 42 30 6 16
Hardware barrier 42 62 It 32

mum speedup of the execution is measured. This latency,
denoted as L., is the upper bound for this program to
reach its minimum execution time for any given problem
size on this architecture. We have verified the existence
of L., through intensive experiments on the Cerberus
simulator and the KSR-1.

2. The pure computing miss latency is measured as a
function of the number of processors p, denoted as
Leomp(p). This function can be used for predicting the
optimistic scalability of the program, and it indicates that
program execution time would reach its minimum when p
processors are used for Leomp() = Lyax-

3. The synchronization miss latency is measured as a
function of the number of processors p, denoted as
L.yoc(p). This function can be used for predicting the pes-
simistic scalability of the program, and it indicates that
program execution time would soon reach its minimum
when p processors are used for Loync(P) = Lyax.

4. An average miss latency function can be estimated
based on an average of L omp(p) and Lgync(p), denoted as
L.,.(p), which is a predicted miss latency function for the
program. Our experiment experiences indicate that the
simple average of (Lcomp(P) + Lyyac(p))/2 presents a close
approximation of the program miss latency measured in
executions. The slope of L,.,(p) gets smaller by increas-
ing the size of the problem. The smaller the L,.(p), the
more scalable the parallel system is considered. The
predicted scalability of the program can be determined by
comparing the L,,(p) function and L.... This would
show that program execution time reaches its minimum
when p processors are used for L, (p) = L.

The measured and predicted scalability factors of the
MP3D program on the Cerberus are listed in Table V.

Using the same experimental metric, we can predict
the scalability for each of the three programs. The MP3D
program would scale to, at most, eight processors with

number of processors, provided the sizes of the problems
are also increased on the KSR-1. Table VI lists the mea-
sured and predicted scalability factors of the three pro-
grams on the KSR-1.

6. MEASURING AND EVALUATING THE SCALABILITIES
BY USING THE LATENCY METRIC

In the previous section, we showed by experiments
that various latencies are major factors affecting program
performance and scalabilities. In this section, we mea-
sure and evaluate the scalabilities by using the latency
metric proposed in Section 3.

The latency metric is mainly concerned with the aver-
age latency increment when both the sizes of the problem
and the machine are adjusted to keep the efficiency as a
constant. In this section, we present measurement meth-
odology of the latency metric, and report the scalability
measurements and evaluation on the KSR-1.

6.1. Measuring Methodology of the Latency Metric

Before measuring and evaluating the latency, we need
to experimentally determine both the sizes of the problem
(W and W'), and the system (N and N’) for a given effi-
ciency constant £. Then, the E-conserved latencies L(W,
N) and L(W’, N') can be either calculated or measured
for determining the scalability. Figure 11 gives the basic
testing process to determine the problem size for a given
efficiency running on a given number of processors.

To effectively and precisely determine the average la-
tency L(W, N)is the key to the measurement and evalua-
tion of the scalability. The following three methods can
be used:

Method I. The average latency can be determined by
(3.6) in Section 3.

very limited execution time reduction. We expect that B Tiegl W)
both the Water and Cholesky programs scale to a large L(W, N) = Tyn(N, W) - N
TABLE VI
The Measured and Predicted Scalability Factors for the Three Programs on the KSR-1
Lax (us) p (proc.) p (proc.) p (proc.)
Water 40 very large moderate very large
MP3D 40 14 proc. 2 proc. 8 proc.
Cholesky 40 very large moderate very large

406

input: N: number of processors
W: the initial size of problem P

E: a given efficiency

!

running P(W) on N processors
and measuring its efficiency, El

calculating / measuring the latenc

D R
“¥no =
m___{idjusﬁng the problem size W l

FIG. 11. The testing process to determine the problem size for a
given efficiency constant running a given number of processors.

where Tp.a(N, W) is the measured parallel computing
time for solving the problem of size W on N processors,
and T,.(W) is the measured sequential computing time
for solving the same problem on a single processor. The
relationship between the efficiency and the measured
computing times is

g = LW
NTpara W, N,

which may be used as a reference to adjust the problem
and system sizes under an E-conserved condition. This
method is simple, and does not require any special per-
formance monitor tools to trace program and architecture
latency behaviors. There are two disadvantages to this
method. First, the sequential time T.(W) may not be
obtained for large application programs due to limited
memory space and limited computing power on a single
processor in a parallel system. Second, the average la-
tency determined by the above formula is an approximate
value, and may not be precise enough.

Method 2. The average latency data can be measured
and collected by using software instrumentation which
inserts the trace codes at certain important points, such
as the synchronization, remote accesses, and cache co-
herence operations in the program. The advantage is that
the latency data may be more precisely and flexibly ob-
tained. But if the overhead introduced by the instrumen-
tation is not reasonably small, the program execution
speed may slow down significantly.

Method 3. Hardware monitor can precisely get the
latency data with low overhead costs. We used Pmon, a
hardware monitor on the KSR-1, to collect the latency
data.

The relationship between the efficiency and the parallel
computing time can be determined by

L(W, N)

E=1-7 W,

ZHANG, YAN, AND HE

which may be used as a reference to adjust the problem
and system sizes under an E-conserved condition in
Methods 2 and 3.

6.2. Measurement of the Scalabilities Using the
Latency Metric

We measured and evaluated the scalabilities of the
three application programs using the latency metric on
the KSR-1. The three programs are Quick Sort, Gauss
Elimination, and All Pairs Shortest Path. We show that
the degree of the program scalability is dependent on
program latency which is affected by program structures,
program locality, and program task granuiarity.

A cache/memory miss latency, simplified as miss la-
tency, defines an average time between when a remote
cache/memory access (read/write) is requested and when
the desired access operation is done. As we described in
the previous section, the miss latency covers the over-
heads of synchronization, cache coherence, remote data
accesses, and other events with heavy network activities.
We used Pmon, a hardware monitor on the KSR-1 to
trace the total number of access-miss operations and cal-
culate the average miss latency for running a program on
the architecture with different numbers of processors.
We call this measured latency the program miss latency.
The program latency measurements for the three applica-
tion programs are plotted in Figs. 12—14, which show that
the program miss latency is a function of the number of
processors used for computing. It also quantitatively de-
scribes the changes of network delay for an application
program as the number of processors is increased.

The scalability results are listed in Tables VII-XII,
where the processor numbers listed in the first column in
each table are the N, and the processor numbers listed in
the first row in each table are the N'. (See the latency
metric definition in Section 3).

6.3. Scalability and Program Structures

We implemented two versions of Dijkstra’s APSP algo-
rithms. The first, denoted as APSPI, includes parallel
initialization part in the code, and the second, denoted as
APSP2, does not. In order to keep the efficiency E as a
constant of 0.25, the problem size of the APSPI program
was adjusted from W = 12 on 2 processors up to W = 229
on 60 processors. For the same efficiency constant, the
problem size of the APSP2 program was adjusted from
W = 10 on 2 processors to W = 259 on 60 processors.

The measured program latency curves plotted in Fig.
12 indicate that the program with parallel initialization
becomes effective and has lower average delays when
more than 48 processors are used.

The latency scalability results by measurements on the
KSR-1 in Tables VII and VIII show that the APSP with
parallel initialization is more scalable than that without
parallel initialization in most cases. The measurements

LATENCY METRIC

4.5

T

L (secs)2.5

APSP2 (without parallel init.) —
APSP1 (with parallel init.)

I 1

1 T

- 1

FIG. 12. The latency comparison between the two implementations of APSP by keeping the efficiency as a constant of 0.25.

3000

2500

2000

L/(secs) 1500

1000

500

FIG. 13. The latency comparison between the two implementations of GE by keeping the efficiency as a constant of 0.25.

20 30

40 50

number of processors

60

T

T

10 15

20 25 30

number of processors

35

500
450
400 |
350 |
300 |-
L (secs250 [
200 |
150 |
100 |
50 |

1

QS2 (task size = 2,500)/—

QS1 (task size = 5,00

0
0

FIG. 14. The latency comparison of the two implementations of QS by keeping the efficiency as a constant of 0.25.

10 156 20 25 30

number of processors

35

407

408

ZHANG, YAN, AND HE

TABLE VII

The Scalability of the Initialization Parallelized APSP Program by Keeping the
Efficiency as a Constant of 0.25

Processors 2 4 8 16 24 32 48 60
2 1.0000 0.9769 0.9103 0.6967 0.4958 0.3493 0.1795 0.2042
4 1.0000 0.9381 0.6469 0.4603 0.3243 0.1667 0.1896
8 1.0000 0.6896 0.4907 0.3457 0.1777 0.2021
16 1.0000 0.7116 0.5014 0.2576 0.2930
24 1.0000 0.7045 0.3620 0.4118
32 10000 0.5139 0.5845
48 1.0000 0.9375
60 1.0000
TABLE VIII

The Scalability of the Initialization Nonparallelized APSP Program by Keeping the
Efficiency as a Constant of 0.25

Processors 2 4 8 16 24 32 48 60
2 1.0000 0.9950 0.8902 0.5323 0.4018 0.3069 0.1904 0.1421
4 1.0000 0.8402 0.5024 0.3792 0.2897 0.1797 0.1342
8 1.0000 0.5980 0.4513 0.3448 0.2139 0.1597
16 1.0000 0.7548 0.5766 0.3577 0.2670
32 1.0000 0.7639 0.4739 0.3538
24 1.0000 0.6204 0.4631
48 1.0000 0.7465
60 1.0000
TABLE IX
The Scalability of GE1 by Keeping the Efficiency as a Constant of 0.25
Processors 2 4 8 16 24 32
2 1.0000 0.163387 0.033667 0.005043 0.002237 0.000326
4 1.0000 0.206053 0.03087 0.013693 0.001997
8 1.0000 0.149814 0.066453 0.009692
16 1.0000 0.443575 0.064695
24 1.0000 0.145850
32 1.0000
TABLE X
The Scalability of GE2 by Keeping the Efficiency as a Constant of 0.25
Processors 2 4 8 16 24 32 48 60
2 1.0000 0.2923 0.0551 0.0114 0.0043 0.0021 0.0014 0.0008
4 1.0000 0.1885 0.0389 0.0145 0.0073 0.0049 0.0028
8 1.0000 0.2065 0.0771 0.0390 0.0258 0.0148
16 1.0000 0.3737 0.1887 0.1252 0.0718
24 1.0000 0.5051 0.3350 0.1921
32 1.0000 0.6631 0.3803
48 1.0000 0.5735
60 1.0000

LATENCY METRIC

409

TABLE XI
The Scalability of QS with Task Size of 5000 Elements by Keeping the
Efficiency as a Constant of 0.25

Processors 2 4 8 16 24 32
2 1.06000 0.9419 0.6957 0.2204 0.0329 0.0090
4 1.0000 0.6677 0.2116 0.0316 0.0086
8 1.0000 0.3169 0.0473 0.0129
16 1.0000 0.1493 0.0408
24 1.0000 0.2732
32 1.0000

give an example of how program structures can affect the
computing scalability.

6.4. Scalability and Program Locality

Two versions of Gauss Elimination programs, denoted
as GE1 and GE2, are implemented on the KSR-1. GE2
exploits more processor locality than does GEI. The ba-
sic differences in the two programs are as follows. In an
iteration of GEI, each processor is responsible for the
elimination of a new row which is eliminated by another
processor in the previous iteration. Therefore the proces-
sor must first access the new row remotely, then do the
elimination. However, in GE2, the elimination of a row is
statically scheduled onto a fixed processor, so that the
number of remote accesses is reduced and the locality of
the program is enhanced. In order to keep the efficiency
E as a constant of 0.25, the problem size of the GEI
program was adjusted from W = 59 on 2 processors to
W = 3800 on 32 processors. For the same efficiency con-
stant, the problem size of the GE2 program was adjusted
from W = 55 on 2 processors to W = 1970 on 32 proces-
sors and W = 3317 on 60 processors. Unfortunately GE1
could only be scaled up to 32 processors on the KSR-1.

The measured program latency curves plotted in Fig.
12 indicate that the program with better locality has sig-
nificant lower average network delays.

The calculated scalabilities for GE1 and GE2 based on
the measured program latency are listed in Tables IX and
X, which show the effectiveness of the locality to the
computing scalability.

6.5. The Effects of the Task Size in Dynamically
Scheduling

Two versions of Quick Sort algorithms are imple-
mented: QS1 with a task size of 5000 elements and QS2
with a task size of 2500 elements. In order to keep the
efficiency E as a constant of 0.25, the problem size of the
QS1 program was adjusted from W = 4,866 on 2 proces-
sors to W = 9,753,184 on 32 processors. For the same
efficiency constant, the problem size of the QS2 program
was adjusted from W = 3483 on 2 processors to W =
53,769,503 on 32 processors.

The measured program latency curves plotted in Fig.
14 indicate that the program (QS1) had significantly lower
average network delays by increasing the task size.

The calculated scalabilities of the two programs based
on the measured latencies are listed in Tables XI and XI1.
As we expected, QS1 is more scalable than QS2 due to
the fact that QS1 uses a larger task size to reduce the
network latency.

Comparing the scalabilities among the above three sets
of algorithms, we can get the following scalability rela-
tions among these algorithms on the KSR-1:

APSP1 > APSP2 > QS1 > Q82 > GE2 > GEl.
Here “*>"" represents ‘‘more scalable than.”

7. SUMMARIES AND CONCLUSIONS

We present the latency metric, an experimental
method for measuring and evaluating the program and

TABLE XII
The Scalability of QS with Task Size of 2500 Elements by Keeping the Efficiency as a
Constant of 0.25

Processors 2 4 8 16 24 32
2 1.00000 0.64500 0.15300 0.06170 0.02300 0.000474
4 1.00000 0.23800 0.09580 0.03570 0.000735
8 1.00000 0.40300 0.15000 0.003090
16 1.00000 0.37300 0.007670
24 1.00000 0.020600
32 1.000000

410

architecture scalability. We also address analytical rela-
tionships among the latency metric, and the isoefficiency
function and isospeed metric. Using the latency metric,
and other experimental methods, we have conducted an
intensive experimental study of scalability of application
programs on two network-based shared-memory multi-
processor systems, the Cerberus and the KSR-1. In this
study, we quantitatively identify and evaluate the major
performance bottleneck sources for parallel program sca-
lability—nonlocal cache/memory searching/access, syn-
chronization locks and barriers, cache coherence over-
heads, hot spots, and management of cache/memory
localities. Current work includes developing a software
tool using the latency metric for measuring and evaluat-
ing the program and architecture scalability.

ACKNOWLEDGMENTS

We thank all our colleagues at the High Performance Computing and
Software Laboratory for many interesting and informative discussions
on this research project. Qian Ma implemented and ran a few programs
for part of the scalability measurements. George Butchee carefully read
the paper and made helpful comments.

REFERENCES

1. Brooks, E. D. IiI, Darmohray, G. A., and Axelrod, T. S. The
Cerberus user manual. Technical Report, Lawrence Livermore
National Laboratory, 1991.

2. Chaiken, D., et al. Directory-based cache coherence in large-scale
multiprocessors. IEEE Comput. 23, 6(1990), 49-58.

3. Grama, A., Gupta, A., and Kumar, V. [soefficiency function: a
scalability metric for parallel algorithms and architectures. IEEE
Parallel Distrib. Technology 1, 3(1993), 12-21,

4. Gupta, A., and Weber, W. Cache invalidation patterns in shared-
memory multiprocessors. [EEE Trans. Comput. 41, 7(1992), 794-
810.

5. Kendall Square Research, KSR-/ Technology Background, 1992.

6. Leighton, F. T. Introduction to Parallel Algorithms and Architec-
tures. Morgan Kaufmann, San Mateo, CA, 1992.

Received May 1, 1993; revised February 11, 1994; accepted March 28,
1994

ZHANG, YAN, AND HE

7. Moler, C. Matric computation on distributed memory multiproces-
sors. In Heath, M. T. (Ed). Hypercube Multiprocessors 1986.
SIAM, Philadelphia, 1986, pp. 181-195.

8. Singh, J. P., Weber, W-D., and Gupta, A. SPLASH: Stanford par-
allel applications for shared-memory. Technical Report, Depart-
ment of Computer Science, Stanford University, 1991.

9. Sun, X., and Rover, D. T. Scalability of paralle! algorithm-machine
combinations. /[EEE Trans. Parallel Distrib. Systems 5, 6 (1994)
599-613.

10. Zhang, X., He, K., and Butchee, G. Execution behavior analysis
and performance improvement in shared-memory architectures.
Proceedings of the Fifth IEEE Symposium on Parallel and Distrib-
uted Processing. IEEE Computer Society Press, Silver Spring,
MD, December 1993, pp. 23-26.

XIAODONG ZHANG is an associate professor of computer science
and director of the High Performance Computing and Software Labora-
tory at the University of Texas at San Antonio. He has also been a
visiting faculty member at Rice University and the Texas A & M Uni-
versity. He received his B.S. degree in electrical engineering from Bei-
jing Polytechnic University, China, in 1982, his M.S. degree in Com-
puter Science, and his Ph.D degree in computer science from the Uni-
versity of Colorado at Boulder, in 1985 and 1989, respectively. His
research interest is primarily in the areas of parallel and distributed
computation, parallel system performance evaluation, and numerical
analysis for solving nonlinear equations and optimization problems. He
serves on the Editorial Board of Parallel Computing. He is an ACM
National Lecturer. He is a member of the ACM, the IEEE Computer
Society, and the SIAM.

YONG YAN received his B.S. and M.S. degrees in computer science
from Huazhong University of Science and Technology, Wuhan, China,
in 1984 and 1987, respectively. He has been an associate professor of
computer science there since 1990. Currently he is a visiting scientist at
the High Performance Computing and Software Laboratory at the Uni-
versity of Texas at San Antonio. His research interest is in the areas of
paralle] and distributed computing, performance evaluation, operating
systems, and algorithm analysis.

KEQIANG HE received his B.S. degree in computer science from
Huazhong University of Science and Technology, Wuhan, China, in
1984, and his M.S. degree in computer engineering from Chunqing Uni-
versity, Chunging, China, in 1987. He received his M.S. degree in
computer science at the University of Texas at San Antonio in 1994. He
is a recipient of a Southwestern Bell graduate fellowship in 1992 and
1993. He is currently employed as a system analyst at Cartotech Inc.

