, . PDF Download
e DIGITAL -)
o.) ACM . pswdtione acmopen };\3 3772181.3772185.pdf
Cinrany O S pend : 17 January 2026
Check for P
updates Total Citations: 0

Total Downloads: 31

¢ Latest updates: https://dl.acm.org/doi/10.14778/3772181.3772185

RESEARCH-ARTICLE

RayDB: Building Databases with Ray Tracing Cores published: 01 September 2025
XIAOYANGSEAN WANG, Fudan University, Shanghai, China Citation in BibTeX format
XIAODONG ZHANG, The Ohio State University, Columbus, OH, United States

RUBAO LEE

Open Access Support provided by:
The Ohio State University

Fudan University

Proceedings of the VLDB Endowment, Volume 19, Issue 1 (September 2025)
https://doi.org/10.14778/3772181.3772185

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.14778/3772181.3772185
https://dl.acm.org/doi/10.14778/3772181.3772185
https://dl.acm.org/doi/10.1145/contrib-81551265556
https://dl.acm.org/doi/10.1145/institution-60009860
https://dl.acm.org/doi/10.1145/contrib-81351603801
https://dl.acm.org/doi/10.1145/institution-60003500
https://dl.acm.org/doi/10.1145/contrib-81350597744
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60003500
https://dl.acm.org/doi/10.1145/institution-60009860
https://dl.acm.org/action/exportCiteProcCitation?dois=10.14778%2F3772181.3772185&targetFile=custom-bibtex&format=bibtex
http://crossmark.crossref.org/dialog/?doi=10.14778%2F3772181.3772185&domain=pdf&date_stamp=2026-01-08

RayDB: Building Databases with Ray Tracing Cores

Xuri Shi Kai Zhang” X. Sean Wang
Fudan University Fudan University Fudan University
xrshi23@m.fudan.edu.cn zhangk@fudan.edu.cn xywangCS@fudan.edu.cn

Xiaodong Zhang
The Ohio State University
zhang@cse.ohio-state.edu

ABSTRACT

Ray tracing (RT) cores are a new type of hardware that have been
actively integrated into modern GPUs. Recent studies have demon-
strated that RT cores can deliver much higher performance than
GPU CUDA cores and CPUs for general-purpose data processing
tasks like table scan. In this paper, we propose RayDB, the first
query engine that leverages RT cores to accelerate database query
processing. RayDB transforms the core part of the query execu-
tion that involves multiple operators into one single ray tracing
job. With a set of proposed encoding and ray launching techniques,
RayDB effectively exploits RT cores to accelerate diverse workloads.
Experimental results show that RayDB outperforms the state-of-
the-art GPU-based query engine by up to 18.3X.

PVLDB Reference Format:

Xuri Shi, Kai Zhang, X. Sean Wang, Xiaodong Zhang, and Rubao Lee.
RayDB: Building Databases with Ray Tracing Cores. PVLDB, 19(1): 43 - 55,
2025.

doi:10.14778/3772181.3772185

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/LonelySlim/myOptixDB/tree/fin.

1 INTRODUCTION

With the ever-increasing data volume from applications, modern
processors have been intensively studied to enhance the perfor-
mance of database engines. Representative processors for which
database systems have been designed include GPU CUDA cores [4,
13, 32], Tensor cores [12, 15], and FPGAs [26, 33]. Specifically, GPUs
were originally designed to accelerate computer graphics. After they
were found useful in general-purpose computing for the massive
number of cores, the programming model evolved from OpenGL to
CUDA/OpenCL, and GPUs are used to accelerate a broad class of
data processing tasks. Crystal [32] is the state-of-the-art implemen-
tation of GPU databases, which has made a notable advancement
in utilizing CUDA cores. Experimental results show that Crystal is
16X faster than the GPU-based HeavyDB and 61X faster than the
CPU-based MonetDB. However, Crystal saturates more than 97% of

“Dr. Kai Zhang is the corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 19, No. 1 ISSN 2150-8097.
doi:10.14778/3772181.3772185

43

Rubao Lee
Freelance Researcher
lee.rubao@ieee.org

the GPU memory bandwidth for queries in the Star Schema Bench-
mark (SSB). Since the approach has already tried to minimize the
amount of data accessed, it has become difficult to further improve
the query performance on CUDA cores.

Recently, commodity GPUs have incorporated ray tracing (RT)
cores to boost the real-time rendering of 3D scenes. As an important
type of computing resource, RT cores have been adopted in mobile,
desktop, and workstation processors, which are under fast develop-
ment. RT cores efficiently trace rays through a 3D space to identify
intersected objects. With user-defined functions (a.k.a., shaders),
RT cores can perform customizable operations upon ray-object
intersections, providing versatility for various tasks. RT cores have
been used to accelerate data processing tasks such as K-nearest
neighbor search [25, 38], scan operator [14, 21], and range mini-
mum queries [22]. Specifically, existing work like RTScan [21] has
shown that RT cores can bring up to 4.6X higher performance than
CUDA cores and CPU for database operators. Therefore, we be-
lieve that RT cores have the potential to become another critical
computing resource for general-purpose data processing tasks.

Unlike database implementations on CUDA cores, accelerating a
data processing program with RT cores requires the program to be
transformed into an efficient RT job. In an RT job, data records are
transformed into primitives, such as triangles or spheres, positioned
in a three-dimensional space with a bounding volume hierarchy
(BVH), while a query is converted into rays in a specified region. If
the task does not fit such a job transformation, or the mapping is
inefficient (e.g., lack of parallelism with a limited number of rays),
it may result in even lower performance than CPUs and CUDA
cores [14, 21]. Due to the above reason, exploring RT cores to
accelerate database queries is quite challenging because an operator
like Join or GroupBy is hard to transform into an independent RT
job. Moreover, since the execution of an operator depends on the
output of its previous operator in the query plan, the BVHs for
the following operators have to be built during query execution,
which is very time-consuming. Therefore, simply implementing
independent RT-based operators like CUDA-based databases cannot
exploit the performance advantage of RT cores.

In this paper, we propose RayDB, a query engine that utilizes
ray tracing cores to achieve unprecedented performance. Instead
of implementing an RT job for each operator, the main idea of
RayDB is to map the core query execution containing multiple
operators into a single RT job. To be specific, RayDB maps and
encodes the data attributes involved in the core operators, i.e.,
Aggregation, GroupBy, and Scan, to the coordinates x, y, z in the
3D space, respectively. RayDB pre-builds a set of BVHs for query
execution to select from. When building a BVH, the attributes

https://doi.org/10.14778/3772181.3772185
https://github.com/LonelySlim/myOptixDB/tree/fin
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3772181.3772185
https://www.acm.org/publications/policies/artifact-review-and-badging-current

I device memory [shared memory

Read Write: | Read Write Read Read
entries count: count prefix entries prefix
E sum again sum
thread 0 l pr:‘?jl‘uate \ thread 0] Write out
and c::;cjti \ " matched entries
thread 1 n thread 1 at appropriate offset
Matcheg Compute pprop
" prefix sum — 1 0 ..
thread N thread N
o o
Input Count Prefix Input Prefix

column sum column sum

(a) Running Scan on traditional CUDA-based database systems

Load Evaluate
tile predicate Compute
threadblock 0 and count E prefix sum
=< l matched
f
| Write oyt
threadblock 1 Shuffle ,ﬁ contiguouys
__f entries
—— at right offset
threadblockmM f§ 77
—
Result Input Result Global
column counter

array array

(b) Running Scan on Crystal

Figure 1: Running Scan on CUDA-based database systems

involved are extracted and encoded as the primitive coordinates of
each data record. With a selected BVH for a query, rays in RayDB are
launched in the region specified by Scan so that they intersect only
with primitives that satisfy the predicates, significantly reducing
the amount of data accessed. For each primitive, the data attributes
involved in Aggregation and GroupBy are encoded in their 3D
coordinates, which can be accessed directly in query processing.
Therefore, another main advantage of RayDB is that it can retrieve
all the attributes of a data record needed for the three operators with
only one memory access, i.e., access to the coordinates of a primitive,
dramatically reducing the number of random memory accesses.
Moreover, the entire process is accelerated by ray tracing cores,
which are designed to perform tasks like this efficiently. After RT
processing, RayDB uses CUDA cores to execute other operators like
Having and OrderBy if any. In addition, RayDB natively supports
parallel execution on multiple GPUs by partitioning the 3D space
into independent regions. It enables flexible scaling out to support
workloads of any size.
The contributions of this paper are as follows.

e We propose RayDB, a query engine that leverages RT cores for
acceleration by effectively transforming the core part of a query
into a ray tracing job.

e We propose a set of encoding and ray-launching mechanisms
to enable efficient query execution across diverse workloads.

o We implement the prototype of RayDB, evaluate its performance,
and quantitatively analyze the advantages of RT cores.

Experimental results show that RayDB can significantly enhance
query performance. Compared with the state-of-the-art CUDA-
based method, RayDB improves the query performance by up to
18.3%. In addition to the substantial speedup, the usage of the mem-
ory bandwidth drops from 97.4% to only 36.7% on average, which
proves that RayDB has broken the limitation of memory bandwidth
in GPU-based query execution. To our knowledge, it is the first
work that demonstrates that RT cores can be effectively used in
building a database engine with unprecedented performance.

2 BACKGROUND AND MOTIVATION

2.1 An Analysis of GPU-based Databases

As a general-purpose computing device, GPU CUDA cores have
been intensively studied to build high-performance query engines,

44

such as Crystal [32], HeavyDB [13], BlazingSQL [4], etc. Among
them, Crystal is the state-of-the-art. Figure 2 compares the query
runtime of Crystal with HeavyDB and MonetDB [5] on SSB flat.
The GPU used in the comparison is NVIDIA GeForce RTX 4090,
and the CPU used is Intel Xeon Gold 5318Y. The results show that
Crystal is, on average, 16X faster than HeavyDB and 61X faster
than MonetDB.

The key to Crystal’s high performance is that its tile-based exe-
cution model aims at efficiently utilizing the GPU shared memory,
which has an order of magnitude higher bandwidth than the device
memory (36618 GB/sec versus 1008 GB/sec in the RTX 4090). Tak-
ing the Scan operator as an example, the traditional CUDA-based
database systems execute the operator in three steps, as shown
in Figure 1a. First, multiple CUDA threads are launched to scan
their assigned entries and count the matches, storing the results
in the count array. Then, prefix sums are computed over the count
array to produce the prefix sum array, which provides write offsets.
Finally, the same number of threads are launched to read the allo-
cated entries again and write matched entries to the result array
using the offsets. There are three main performance issues with
this approach, including 1) reading the input column twice from
the device memory, 2) reading and writing intermediate structures
like count array and prefix sum array in the device memory, 3) each
thread writes to a different location in the result array, resulting in
uncoalesced memory accesses.

Figure 1b demonstrates how Crystal works. Crystal uses a thread
block as the basic execution unit, with each block processing a tile
of entries. It first loads the tile from device memory into shared
memory. Threads then evaluate the predicate in parallel and record
match counts of each thread in the count array in shared memory.
A prefix sum is computed over the count array, and a global counter
is atomically updated to get the block’s output offset. Matched
entries are shuffled to form a contiguous array in shared memory,
enabling coalesced writes to the result array in device memory. By
leveraging shared memory, Crystal 1) avoids repeatedly reading
input columns from the device memory, 2) eliminates accesses to
intermediate structures in device memory, and 3) enables coalesced
memory access when writing the result array back to the device
memory, leading to significant performance improvements.

It is worth noting that existing CUDA-based database systems
generally do not use traditional indexes. This design choice is driven

---- Memory Bandwidth

[ZZ1 Crystal Query Area —— Sieving Area — —
Ray —> DataRecord =

5 (5

=1 Data Sieving rE-7 s

PR [EQuiry P2 Lo
/4 - Matrix RT Refine > ~—X7

rz7] Crystal E=— HeavyDB MonetDB =
Tg @ 1000 -~
=102] ’
g 2 750 ’
F 2 %
c ° 500 ’
£ 10! £ ’
! > 250
% o
i] o A e R R R EE R PR PR g 0

NSV DAYV DD >N O DO = "
PP FIIF PP &
Queries

Figure 2: Comparison of query runtime for

Crystal, MonetDB, and HeavyDB on SSB flat tal on SSB flat

by the architectural and performance characteristics of GPUs: 1)
Avoid thread divergence. On GPUs, the SIMT (Single Instruction,
Multiple Threads) architecture requires all threads in a warp (typi-
cally 32) to execute the same instruction each cycle. When threads
diverge due to conditional branches (e.g., if), execution becomes
serialized, and inactive threads idle, reducing efficiency [3, 6, 31].
Traditional index structures like B+ trees cause severe divergence
because each thread follows a different search path based on its
key. As a result, threads within a warp execute different code paths,
making indexes poorly suited for efficient execution on GPUs. 2)
Avoid uncoalesced memory accesses. To amortize memory access
latency and improve bandwidth utilization, GPU hardware employs
memory access coalescing, which combines memory accesses from
multiple threads within a warp into one or a few large memory
transactions when the accessed addresses are contiguous. However,
in traditional index structures (such as B+ trees and hash indexes),
data and index nodes are typically scattered across memory. Each
thread accesses different paths and nodes depending on its query
key, resulting in highly irregular and non-contiguous memory ac-
cesses across threads. In such scenarios, memory access coalescing
fails, leading to a large number of small and fragmented memory
transactions. This causes severe memory bandwidth underutiliza-
tion and a significant drop in performance [6, 31]. As a result, full
table scans are generally preferred over indexes in CUDA-based
database systems.

Figure 3 shows the memory throughput of Crystal on the 13
queries of SSB flat. It can be observed that its memory throughput
is very close (an average of 97.4%) to the GPU device memory
bandwidth. As Crystal already makes highly efficient use of memory
bandwidth, the potential for further optimization is minimal.

2.2 Background of Ray Tracing

Ray tracing is a rendering technique used in computer graphics to
simulate the way rays interact with objects in a scene. It works by
tracing the paths of rays as they travel through a 3D space. Objects
in the three-dimensional space are represented as primitives, whose
types include triangles, spheres, and even custom primitives. All
primitives in the space are wrapped by bounding volumes, which
are usually Axis-Aligned Bounding Boxes (AABBs). AABBs are then
organized hierarchically as a tree known as the Bounding Volume
Hierarchy (BVH). A ray tracing job utilizes a BVH to traverse the
space and find intersected primitives with the rays.

ANN

(3% NANANANNANNNY

(CN N\NNANANNRNNNY
A\N

<
e

45

Y

\\N

LS NNNNNNANNNNNN

LS NANANNARNNNNY
X

Queries

Figure 3: Query memory throughput of Crys- Figure 4: The execution of RTScan

Although BVH avoids a large number of potential ray-primitive
intersection tests, the BVH traversal and intersection tests are still
time-consuming. Since the Turing architecture [27], NVIDIA GPUs
are equipped with dedicated hardware, i.e., RT cores, to speed up
BVH traversal and intersection tests. Taking the classic Turing
architecture as an example, each Streaming Multiprocessor (SM)
integrates one RT core, which operates alongside CUDA cores and
Tensor cores [27]. The RT core essentially adds a dedicated pipeline
(ASIC) to the SM. It can access the BVH and configure some L0
buffers to reduce the delay of BVH and triangle data access. The
request is made by SM. The instruction is issued, and the result
is returned to the SM’s local register. The interleaved instruction
and other arithmetic or memory I/O instructions can be concur-
rent. Because it is an ASIC-specific circuit logic, per formance /mm?
can be increased by an order of magnitude compared to the use
of shader code!. Besides the mainstream desktop and workstation
GPUs like NVIDIAs RTX 40 series and AMDs RX 7000, data center
GPUs like NVIDIA A40 and T4 also support ray tracing. Specifi-
cally, the NVIDIA RTX 4090 GPU integrates 128 RT cores. OptiX
programming model [29] is an application framework for building
ray tracing jobs. In OptiX, each ray is mapped to a CUDA thread.
CUDA threads generate rays with the specified ray origins and
directions. Then, the control is transferred to RT cores, which accel-
erate BVH traversal and ray-triangle intersection tests. For NVIDIA
GPUgs, triangles are the built-in primitives, which allows RT cores
to accelerate intersection tests when the primitives are triangles.
When other types of primitives are used, control is transferred to
CUDA threads to perform intersection tests defined in the Inter-
section Shader. Overall, OptiX leverages both CUDA threads and
RT cores to achieve efficient ray tracing jobs. RT cores specialize in
accelerating BVH traversal/ray-triangle intersections, while CUDA
threads provide flexibility for custom intersection logic through
the Intersection Shader. This enables extensibility for complex ray
tracing scenarios.

2.3 Expedite Data Processing with RT Cores

RT cores have been utilized to accelerate various data processing
tasks like K-nearest neighbor search [25, 38] and range minimum

!https://www.reddit.com/r/nvidia/comments/97qogl/former_nvidia_gpu_architect_
what_is_rt_core_in (last accessed 2025/10/6)

https://www.reddit.com/r/nvidia/comments/97qogl/former_nvidia_gpu_architect_what_is_rt_core_in
https://www.reddit.com/r/nvidia/comments/97qogl/former_nvidia_gpu_architect_what_is_rt_core_in

queries [22]. RTScan [21] and RTIndex [14] are pioneering imple-
mentations that leverage RT cores to accelerate the Scan oper-
ator. Specifically, RTScan [21] achieves significant performance
improvement by mapping the evaluation of entire conjunctive pred-
icates into a ray tracing process. Experiments show that RTScan
achieves up to 4.6x higher performance than BinDex [20], which
is the state-of-the-art scan approach on CPUs. Figure 4 demon-
strates the approach of RTScan when evaluating a query with
three predicates. For each data record, the three data attributes
involved in the predicates are used as the coordinates of the corre-
sponding primitive. Assuming that the conjunctive predicates are
(0<x<aAn0<y<bAO0<z<c),then the query area is a cuboid
with the origin as a vertex and three edges of length a, b, and ¢ as
shown in the figure. The data records satisfying the conjunctive
predicates are all in the query area. To reduce the computation
overheads on intersection tests, RTScan adopts Data Sieving, which
uses pre-stored results to filter most data records (the dashed area).
Then, RTScan launches rays in the remaining region to intersect
primitives with enhanced parallelism. These techniques add up to
form the performance improvement over CUDA cores and CPUs.
In addition, RTScan adopts Uniform Encoding to evenly distribute
data records in space, enabling it to achieve good performance even
under skewed data distributions.

After analyzing RTScan and other RT-based implementations,
we summarize three key aspects of efficiently mapping a data pro-
cessing task to a high-performance RT job. 1) Evaluating multiple
operators in one job: RTScan utilizes the 3D feature to evaluate three
predicates simultaneously within one RT job, whose execution time
is even lower than that of evaluating one predicate. 2) Reducing the
amount of data accesses: The evaluation of conjunctive predicates
and the Data Sieving technique dramatically shrink the querying
region, leading to a significantly smaller number of primitives for
intersections. 3) Enhancing the parallelism: RTScan segments a long
ray into several small rays with spacing, which aims at maximizing
the utilization of RT cores while balancing their load.

2.4 Challenges of Accelerating Query
Processing with RT Cores

For GPU acceleration with CUDA cores, operators are generally
implemented as separate CUDA kernels and executed sequentially.
RTScan demonstrates a standalone implementation of accelerating
Scan with RT cores. However, accelerating database queries with
each operator implemented as a separate RT job faces several critical
issues that are hard to address.

Difficulties in the three-dimensional mapping of operators:
In order to improve performance, a database operator needs to be ef-
fectively converted into a ray tracing job, or the performance advan-
tage of RT hardware cannot be effectively exploited. For instance,
a naive scan implementation on RT cores can be 2.3 x 10* times
slower than the state-of-the-art CPU-based implementation [21].
However, the natures of some database operators make it hard to
map the data in the 3D space and hard to convert operations into
ray intersections. Therefore, except Scan, other operators like Join
and GroupBy have not demonstrated superior performance on RT
cores so far.

46

Inefficiency of the execution of multiple operators: A ray
tracing job uses a BVH as its index, but building a BVH is a time-
consuming process that takes orders of magnitude longer time
than the RT job itself. For a dataset with 120 million tuples, the
average time to build a BVH is 227.84 ms, while the average time
to launch rays is only 0.75 ms. When the operators of a query are
executed sequentially on RT cores, the BVHs for the second to the
last operator can only be built online, resulting in an ultra-high
query processing latency.

A: SELECT AVG(Math)
FROM Score
WHERE English >= 60
GROUP BY Hometown;

We take the query A as an example, which executes the oper-
ators in the following order: Scan — GroupBy — Aggregation.
For Scan, the BVH it traverses can be pre-built from the English
column directly. However, for GroupBy, the BVH it traversed is
built from the Hometown column filtered by the execution results
of Scan. Therefore, it can only start building the BVH after the
execution of Scan is complete and the results are obtained. The
above process is shown in Figure 5a. As a result, the BVH building
process for GroupBy has to be taken as part of the query execution,
which results in ultra-low performance. An alternative scheme is
shown in Figure 5b, where the BVHs for all operators have been
pre-built from their corresponding attributes. In this case, GroupBy
cannot get the filtered results from Scan and has to group all data
in the column. Moreover, the results of GroupBy have to be fur-
ther filtered according to the results of Scan. Consequently, this
scheme completely negates the performance benefit of RT cores
and is severely inefficient.

To conclude, due to the aforementioned issues, accelerating data-
base queries with RT cores to outperform CUDA cores and CPUs is
particularly challenging.

3 THE DESIGN OF RAYDB
3.1 Overview of RayDB

We propose RayDB, a high-performance query engine accelerated
by RT cores. Specifically, RayDB leverages RT cores to accelerate
three core operatorsAggregation, GroupBy, and Scanwhile dele-
gating the remaining parts of the query to CUDA cores. Instead of
implementing each operator as a separate RT job, RayDB maps the
execution of these three operators to one ray tracing job. The basic
idea is to use the attributes involved in these three operators as the
coordinates for a data record, i.e., the attributes in Aggregation,
GroupBy, and Scan are used as the X-coordinate, Y-coordinate, and
Z-coordinate, respectively.

The workflow of RayDB is illustrated in Figure 7. As denormal-
ization is widely adopted in data warehouses and favored by many
technology companies [1, 2, 11], RayDB is designed to accelerate
data warehouse queries on denormalized tables. During the offline
phase, it performs denormalization in initialization by joining all
relevant tables into a single flat table, thereby eliminating the need
for Join during query execution. Next, a set of BVHs is built of-
fline based on different combinations of attributes in the wide table.
For a given query, RayDB parses the attribute composition of its
three core operators and selects a pre-built BVH from the BVH

X (Math

must build in real time] A tion)
ggregation

[[could build in advance

X (Math
[Aggregation])

X (Math
[Aggregation])

Scan filter GroupBy
traversal traversal l } /”I_/"‘I
Ene. (90,2,81) | ARVl
I v e e e o,
] build vl 7 | |
BVH BVH (72,7,100) Z (English %’SI‘I o oo
(a) Build BVHs in real time [Scan) \le | 7 772 (Englioh
Scan GroupBy Math | Eng | WT | Year I =7 Isan)
traversall traversal l 72 100 7 4 717
Eng. ¥ (Hometown | 90 81 2 1 - Y(HometowlnL—V e s ‘?’ Y (Hometown
B I%I__I_I] % o [Group by]) [Group byl) Y [Group by)
[| build -| [| build Tfilter (a) Table Score and the corresponding (b) The rays corresponding to (c) The rays corresponding to
BVH BVH] primitives of its data records in space query A (3D) query A (XY plane)

(b) Build BVHs in advance

Figure 5: Two strategies of query execution

with RT cores
Online
e o o o o T
I
[Q$ry Adgregation Other Operators |,
I
I
| Query
i OrderBy I
| Parsing =N Having |
: 2 Scan I
BVH I
[on 2
|| Selection RT GroupBy CUDA J
,:K Offline
e -,
I I
1| CUDA 1

Figure 7: The workflow of RayDB

set that covers all the required attributes. It is worth noting that
when a query involves excessive number of attributes such that
no BVH can fully cover all of them, RayDB can utilize a BVH that
includes only part of the required attributes to enable the query to
still benefit from the acceleration provided by RT cores (introduced
in Section 4.5). With the selected BVH, the RT cores are responsi-
ble for accelerating the execution of Aggregation, GroupBy, and
Scan, which are fused into a single RT job. The design is based on
the observation that these three operators appear consecutively in
the query plan after denormalization. It is worth noting that this
approach offers sufficient flexibility to remain effective even when
certain core operators are absent from the query. For example, in
queries without GroupBy, all records can be treated as belonging to
the same group. RayDB determines the corresponding query area
in the space based on Scan and launches a set of rays to intersect
all primitives in the area. By only accessing data records in the
query area defined by Scan, there is a significant reduction in the
amount of data accessed for a query. Based on the coordinates of
an intersected primitive, RayDB can obtain its data attributes for
GroupBy and Aggregation and then perform the corresponding
operations. For each data record, the data attributes involved in the
three operators are stored together as coordinates, which can be
retrieved by a single memory access. It dramatically reduces the
number of random accesses to the device memory. Once the RT
cores complete execution, the remaining operatorssuch as OrderBy

47

Figure 6: The design of RayDB

and Havingare handled by CUDA cores in a manner similar to
existing CUDA-based database systems.

Instead of building a BVH for every query, RayDB maintains a
few BVHs to support a wide range of queries. The encoding scheme
allows multiple attributes to be compressed into a single coordinate
(introduced in Section 4), where a query may use one or an arbitrary
combination of the encoded attributes, enabling each BVH to sup-
port more queries. Furthermore, based on our observation of real-
world queries, we find that certain columns tend to be used with
specific types of operators. For example, in TPC-H, 1_shipdate
is predominantly used in Scan, while 1_extendedprice is typi-
cally used in Aggregation. By pre-constructing BVHs for semanti-
cally meaningful combinations of attributes, RayDB is able to cover
common OLAP queries using a few BVHs. For queries with sub-
queries, RayDB can accelerate them if the optimizer rewrites them
into equivalent queries without subqueries through techniques like
unnesting or decorrelation. If such rewriting isnt possible, RayDB
currently does not support their execution.

3.2 The Mechanism of RayDB: An Example

In this subsection, we demonstrate how a BVH is constructed and
how an RT job is executed. Suppose there is a denormalized ta-
ble named Score, as shown in Figure 6a, that stores information
about students’ scores. Each row of the table corresponds to a stu-
dent, and the table has many attributes, among which the Math,
English, Hometown, and Year are used to store students’ math
scores, English scores, hometowns, and academic years, respec-
tively. The course scores are in the range [0, 100] and are integers.
For each column, there must exist a data range that can be known
in advance (e.g., maintained as metadata). We use the execution of
query A (Section 2.4) as an example. The query obtains the average
math score of students in each hometown who have passed English.
Building the BVH: First, it should be clarified that the BVH con-
structed in this example is the most suitable one from the pre-built
BVH set for executing Query A. The key step in building a BVH
lies in mapping data records to primitives. Based on the idea of rep-
resenting data attributes involved in Aggregation, GroupBy, and
Scan by the coordinates in three-dimensional space, RayDB makes
the X-axis, Y-axis, and Z-axis represent the data attributes involved
in Aggregation, GroupBy, and Scan, respectively. In this way, each

data record in the table corresponds to a primitive in space. For ex-
ample, row 0 of the table corresponds to (72,7, 100) in space. Then,
using the point as its vertex, RayDB creates a right triangle as the
primitive. The reason why we choose triangles as primitives is that
only the ray-triangle intersection test is hardware-supported by RT
cores, while the intersection tests for other types of primitives are
software-based and offloaded to CUDA cores. Therefore, the use
of triangles allows RayDB to enhance performance by exploiting
hardware acceleration from RT cores. Specifically, if the coordinate
of a data record is (a, b, ¢), then the three vertex coordinates of the
right triangle we create are (a, b, c), (a + Sy, b,c), and (a,b + Sy, c),
where S and S are the two leg lengths of the right triangle. There-
fore, the projections of a primitive on the XZ-plane and YZ-plane
are a line segment S, and a line segment S, respectively. In this
case, each data record in the table is mapped to a triangle in three-
dimensional space, as shown in Figure 6a. Once all primitives in
the space are determined, the BVH can be built.

Executing the RT job: With the selected BVH, RayDB initiates
the execution of the RT job by launching a set of rays. For query A,
RayDB launches a set of parallel rays starting from the Z = 60 plane
to the Z = 100 plane, along the positive direction of the Z-axis, as
shown in Figure 6b. The rays launched should be dense enough
to intersect all triangles in the region. Rays are launched as a two-
dimensional array from the view of the XY-plane (Z = 60 plane),
which have an interval of %Sx along the X-axis and an interval of
%Sy along the Y-axis. Recall that when mapping data to primitives,
the two legs of right triangles have lengths Sy and Sy, respectively.
The design guarantees that a triangle can be intersected by at least
one ray. As shown in Figure 6c, primitives may intersect one ray
(triangle A) or three rays (triangle B), and in the limiting case
primitives intersect at most three rays (triangle C)?. If the interval
grows, there may be triangles that fail to intersect any ray. In turn, if
the interval gets smaller, it increases the probability that a triangle is
intersected by more than one ray, which degrades the performance.
Rays entirely cover the query area 60 < Z < 100, and triangles in
the query area are bound to intersect rays, while triangles not in
the query area are bound not to intersect any ray.

For students who pass the English examination, their triangles
are in the query area 60 < Z < 100. Thus, the set of triangles
intersecting a ray is the set of students that satisfy the predicate of
Scan. For each triangle that is intersected by a ray, the Y-coordinate
of its right-angle vertex is used to find the group to which it belongs,
while the X-coordinate is read to compute the aggregate function,
respectively. The aggregate function is AVG in Query A, so we
maintain two arrays in the Any Hit Shader function, whose pseudo-
code is shown in Algorithm 1. The sum array is to store the sum
of Math for all students in each group, and the count array is to
store the number of students in each group. Indexing by the Y-axis
coordinate, RayDB appends the X-coordinate to the corresponding
element of the sum array and increments the corresponding element
of the count array by 1. The Any Hit Shader, which is executed
on the SM as part of the shader pipeline, will be called each time
a ray finds an intersection with a triangle. Therefore, the flag bit

Zhttps://forums.developer.nvidia.com/t/what-is-the-limiting-case-of-ray-triangle-
intersection/309730/2 (last accessed 2025/10/6)

48

array Vyjqg (line 3) is used to ensure that triangles are not double-
counted, and the atomic operation atomic_add (lines 5 and 6) is
used to avoid synchronization issues when tracing multiple rays in
parallel. After the BVH traversal is complete, the sum of the Math
(Vsum) is divided by the number of students (Veoun:) to obtain the
average score of Math in each group. Since aggregate functions
share the common characteristic of operating on a group of values
to return a single scalar result, their implementations are generally
similar. As a result, RayDB supports all commonly used aggregate
functions, including AVG, SUM, COUNT, MAX, and MIN.

Algorithm 1 Pseudo-code of Any Hit Shader

Input: flag bit array Vyi,g, result arrays Vsum, Veount
Output: result arrays Vsum, Veount

1: primldx « get_prim_index()

2: [a,b,c] « get_prim_right_vertex_coord(primIdx)
3: flag « atomic_bit_exch(Vyiqy[primldx], 1)

4 if flag = 0 then

5. atomic_add(Vy,m[b], a)

6: atomic_add(V,ouns[b], 1)

7: end if

4 ENCODING OF MULTIPLE DATA
ATTRIBUTES

4.1 Challenges from Processing Multiple
Attributes

Query A is a simple query where each operator involves only one
data attribute. However, in real-world queries, it is common for an
operator to involve multiple data attributes. When mapping Query
A in the space, a primitive directly uses the value in the correspond-
ing attribute as the coordinate on an axis. For instance, English
is used as the coordinate on the Z-axis. However, when multiple
data attributes are evaluated by one operator, the coordinate on
one dimension needs to represent all data attributes involved. For
instance, with the Where clause WHERE English > 60 and Math
> 60, both English score and Math score should be represented by
the Z-axis. To address this issue, in RayDB, we propose to encode
multiple data attributes as the coordinate on each axis. In addition,
the encoding scheme brings an extra benefit: it compresses multiple
attributes into a single coordinate, allowing a query to utilize one
or an arbitrary combination of the encoded attributes. This enables
a single BVH to support a wider range of queries, thereby reducing
the number of pre-built BVHs required. However, since different
operators have different functionalities, an appropriate encoding
scheme needs to be chosen for each one. In this section, we study
how to encode attributes for Scan, GroupBy, and Aggregation.

4.2 Scan with Conjunctive Predicates

The encoding scheme for Scan needs to maintain the relative order
of the encoded data and specify the ray launching area to ensure
correct execution. A query generally contains multiple conjunctive
predicates, like p; A p2 A -+ A pp, and the attributes involved in
the predicates can be encoded in the same attribute.

https://forums.developer.nvidia.com/t/what-is-the-limiting-case-of-ray-triangle-intersection/309730/2
https://forums.developer.nvidia.com/t/what-is-the-limiting-case-of-ray-triangle-intersection/309730/2

Enél\ish | . [Query Area " X(Matt‘h) A Year | HT. | collecting
! ! (- ggregation " - tuples (4,7) (1,2) (1,3) tuple
100 |- - - - set
I _T Pr— S 1 2 /Y) /‘f\,)
i ik 7 ,// l// ,// | L 2 = dictionary encoding
|.‘ 1 4 9 J'
Y N T L AF) .
o iy SV a I
[[N . .
IR I 61 ot 1502 Figure 9: Encoding for GroupBy
A | oot e [IS
o PE 5! v > Year Y (Hometown 7Lz 70 77 Z(index, build Scorel Score2 Score4 | ... | attr.
i co T Hb" [Scan]) h ! | encode | !
. R [Group by]) / I phase | 32 bits
3> Index, L7777 : I decode § i)
0 161 201 262 302 Any Hit [@] [@ [@]
N . Shad
(a) Bijective encoding (b) Query area ader funcl) \func2) \func3) \func4))

Figure 8: Processing for conjunctive predicates

Data Encoding: RayDB adopts Bijection Encoding to encode mul-
tiple attributes in Scan as a coordinate. It treats all data attributes
involved in conjunctive predicates as n-tuples, where each n-tuple
is uniquely mapped to a natural number, and each natural number
uniquely corresponds to an n-tuple. Assume that conjunctive pred-
icates involves n attributes Ay, A,, - - - , Ap, where A; € [0, k;) and
A; € Z (i € [0,n]), then the encoding rule is as follows:

5

i=1 | \j=i+1

Index, = A;

If the data type of an attribute is not INTEGER, for fixed-point data
types like DECIMAL (p, s) & NUMERIC(p, s),where p is the total
number of digits and s is the number of fractional digits, RayDB
uses Fixed-Point Encoding, which multiplies the decimal value by
a fixed scaling factortypically 10°to convert it into an integer; for
data types such as DATE, TIME, CHAR, VARCHAR, and ENUM, RayDB
adopts dictionary encoding, where each distinct value is placed into
a sorted dictionary and assigned an integer identifier representing
its position in the sorted set of values. Therefore, it supports a wide
range of data types. If the data range of an attribute is not of the
form [0, k), a dictionary encoding is used to convert it to the above
form. Taking the query B as an example:

B: SELECT AVG(Math)
FROM Score
WHERE Year between 1 and 2 AND English >= 60
GROUP BY Hometown;

For simplicity, it is assumed that the attributes involved in Scan
are already encoded. Query B contains conjunctive predicates as
its filtering conditions, which not only require students to have a
passing score in English but also require students to be from either
the first or second grade. RayDB assigns each (Year, English) tuple
with a natural number by the following rule:

Index, = 101 - Year + English

Here, 101 represents the range of English. Figure 8a depicts the
above process.

Ray Launching: After Bijective Encoding, the Z-axis represents
Index, generated by Bijective Encoding as an alternative. As a result,
the query area changes as well. In the example, the query area is
split into two parts, 161 < Index, < 201 and 262 < Index, < 302, as

49

Figure 10: Encoding for Aggregation

shown in Figure 8a. Correspondingly, as shown in Figure 8b, RayDB
launches parallel rays from the Z = 161 plane to the Z = 201 plane
and from the Z = 262 plane to the Z = 302 plane along the positive
direction of the Z-axis to cover the entire query area.

4.3 GroupBy with Multiple Attributes

For data attributes involved in GroupBy, RayDB treats the n data
attributes as n-tuples, where each distinct n-tuple represents a
different group. Take query C as an example, which groups students
according to two data attributes Year and Hometown.

C: SELECT AVG(Math)
FROM Score
WHERE English >= 60
GROUP BY Year, Hometown;

For all distinct n-tuples appearing in the table, RayDB maps
them to natural numbers Index, via dictionary encoding. The cor-
respondence between Index, and n-tuples is maintained by a map-
ping table that allows efficient lookup. After dictionary encoding,
each natural number in Index, represents a group, which serves
as the Y-coordinate. Taking query C as an example, table Score
is searched to find all distinct (Year, Hometown) tuples. Figure 9
illustrates the above process. For simplicity of presentation, there
are only 4 data records in the table. In the table, there are three
different (Year, Hometown) tuples (4,7), (1,2), and (1, 3), making
up a group set of size K = 3. Then, RayDB performs dictionary
encoding to the group set, producing a coordinate Index, ranging
from 0 to K — 1. As shown in the figure, (1, 2) is assigned to 0,
(1,3) is assigned to 1, and (4,7) is assigned to 2. This encoding
scheme facilitates the implementation of aggregation because the
Y-coordinate can be directly used as the index to the array that
stores aggregate results for each group.

4.4 Aggregation with Multiple Attributes

For Aggregation, we choose to pack the bits of the attribute values
in a 32-bit float coordinate so that they can be directly used for
the aggregate function. For example, assume that there is a query
containing two aggregate functions AVG(Math) and SUM(English).
Considering that the data range of course scores is [0, 100], we
store Math and English with 7 bits each in the X-coordinate. In

Any Hit Shader, we obtain Math and English by decoding the X-
coordinate and computing the two aggregate functions separately.
Given that the coordinates have 32 bits and 7 bits are sufficient
to store a single score, the X-coordinate can hold up to 4 scores.
Therefore, the encoding can support queries with up to 4 aggregate
functions, as shown in Figure 10.

For cases where an aggregate function contains multiple data
attributes, e.g., SUM(Math + English), the calculated result Math
+ English is directly encoded in the coordinate if the result does
not exceed the expression range of a float. Multiple queries in SSB
have such forms of aggregations. This scheme may help make
further compressions. In this example, the range of Math + English
is [0, 200], which only needs 8 bits instead of 14 bits when being
separately stored. RayDB adopts this optimization when possible
to store more attributes in a coordinate.

4.5 Breaking through the Encoding Limitation

RayDB converts all data types to INTEGER for encoding, while BVH
coordinates can only be represented using Float, which can ac-
curately represent integers only within the range of [—2%4,2%4].
Under this limitation, the maximum number of attributes that can
be encoded into a single coordinate depends on the value range
of each attribute involved in the encoding. Taking attributes from
the SSB as an example, RayDB can encode up to four LO_QUANTITY
(with a value range of 150) or six LO_DISCOUNT (with a value range
of 010) into a single coordinate.

Although a coordinate can only encode a limited number of
attributes, RayDB can support queries with more attributes. From a
high-level perspective, when a BVH that covers all attributes in the
query is unavailable in the pre-constructed BVH set, RayDB can
utilize a BVH that encodes only part of the attributes to enable the
query to still benefit from the acceleration provided by the RT cores.
RayDB performs the RT job on the BVH, and upon detecting a ray-
primitive intersection, the Any-Hit Shader that is called uses the
primitive ID (i.e., row ID) to access the remaining uncoded attributes
from the denormalized table in the GPU memory and perform
the corresponding operations. Since reading attributes from the
GPU memory incurs extra memory accesses, RayDB selects the
optimal BVH by maximizing the attribute coveragei.e., choosing
the BVH that encodes the largest number of attributes involved in
the query. In particular, attributes in Scan are given higher weight,
as the presence of Scan can significantly reduce memory access
overhead. This selection process is formalized as max{ x+y+a-z },
where x, y, and z represent the number of the matched attributes in
Aggregation, GroupBy, and Scan, respectively, and « is the weight
assigned to Scan.

5 SCALING OUT WITH MULTIPLE GPUS

In RayDB, we store multiple BVHs in the device memory to support
various queries. When BVHs exceed the device memory size of a
single GPU, RayDB can only discard some BVHs. This results in
more queries failing to find a BVH that encodes all of their attributes
and instead choosing a BVH that covers only a part of the attributes,
as described in Section 4.5. This incurs additional memory accesses,
leading to performance degradation.

50

i .
1 X Offline i

| , -

1 PU

| O ¢ o
| Lol

| Y] z |

| X X 1

1 |

! £ Partition 1. dlcru Merge

} = .ll I —_ 1 —_ e
[T 11 == >

I TR 1% w7 |

; ,|._"—___—_—_‘- Z2 N R

1Y, !

| x |

| ! Final result
I [\

| B

| v z A

! Y, - i Partial result

Figure 11: The workflow of parallel execution on multiple
GPUs

To cope with this dilemma, we design a parallel execution scheme
for RayDB on multiple GPUs, which can not only utilize the de-
vice memory of multiple GPUs to accommodate larger data sizes
but also utilize the RT cores of multiple GPUs to improve query
performance. The key idea is that the 3D space in RayDB can be
naturally partitioned into any number of independent regions for
parallel execution. First, all primitives can be divided into several
sets according to the X-axis (Aggregation), Y-axis (GroupBy), or
Z-axis (Scan) coordinates. After that, each set can be assigned to a
GPU and used to build a specific BVH, which can be viewed as a
sub-BVH. In this way, each GPU is supposed to intersect primitives
to get partial results for the query. After all GPUs have completed
processing, the final query result can be obtained by merging the
results from all GPUs.

Figure 11 shows the parallel execution workflow when partition-
ing the data space along the Y-axis (GroupBy). We evenly divide the
range of Y-axis coordinates into N segments, and the primitives
located in the same segment are divided into the same group and
assigned to the same GPU to build the BVH. Spatially, the entire
data space is partitioned into a number of equal-sized subspaces
along the Y-axis, and each subspace is assigned to a GPU, and each
GPU launches rays in this subspace according to the same prin-
ciples as a single GPU. Since we are partitioning the space along
the Y-axis, the result obtained by each GPU is the query result for
the groups involved within the corresponding segment. The final
merge process is as simple as concatenating the results of each
GPU in order to obtain the final query result. Since each primitive
belongs to only one subspace, it is neither repeatedly accessed by
multiple GPUs nor omitted, which ensures the correctness of the
parallel execution result. In this way, all GPUs can be executed in
parallel without any dependency. This approach can not only solve
the problem of insufficient device memory but also accelerate the
execution of queries.

The obvious benefit of partitioning the data space along the Y-
axis is the simplification of merging. If we partition the space along
the X-axis (Aggregation) according to a similar principle and the
aggregate function is SUM as an example, the result obtained by
each GPU is not the sum of some groups but the partial sum of all
groups in the subspace. During the merge process, we need to sum

the result arrays of all GPUs together to get the query result, which
is more time-consuming. In addition, if the data space is partitioned
along the Z-axis (Scan), the query region may only be in a small
number of subspaces, which will cause a serious load imbalance. In
summary, we believe that partitioning along the Y-axis is a good
choice for most cases.

The denormalized table can also be partitionedsplit by attributes
and distributed across multiple GPUs. Unlike BVHs, each GPU may
need to access attributes stored on other GPUs during query exe-
cution. With technologies like NVLink and RDMA enabling direct
memory access between GPUs, RayDB can still support queries
involving an arbitrary number of attributes in a multi-GPU parallel
execution environment.

6 EXPERIMENTAL ANALYSIS
6.1 Experiment Setup

Hardware and Software We run most experiments on a machine
equipped with two Intel(R) Xeon(R) Silver 4316 CPU @ 2.30GHz,
128GB DDR4 DRAM, and an NVIDIA GeForce RTX 4090 with 128
RT cores, 16384 CUDA cores, and 24GB VRAM. The operating
system is 64-bit Ubuntu Server 20.04 with Linux Kernel 5.4.0-42-
generic. The GPU programming interface uses CUDA 10.1 and
OptiX 7.1.

In Section 6.3, we also compare the performance between RayDB
and Crystal on NVIDIA TITAN X (PASCAL), where OptiX 5.1 is
used for programming. The GPU was launched in 2015 and does
not have RT cores. Therefore, ray tracing jobs are only executed
on CUDA cores. The experiment aims to analyze the performance
benefits from RT core acceleration. In Section 6.8, to evaluate the
scalability of RayDB on multiple GPUs, the experiment was run on
a machine with four NVIDIA GeForce RTX 4080 SUPER.
Workloads Throughout the experiments, we adopt the Star Schema
Benchmark (SSB) [28]. There are a total of 13 queries in the bench-
mark, divided into 4 query flights. The industry usually flattens
SSB into a wide table model (SSB flat) to test the performance of
query engines. In our experiments, we run the SSB flat with a scale
factor of 1, 10, and 20 to evaluate the performance with different
data set sizes. When the scale factor equals 20, it will generate a
flat table with 120 million tuples.

Baseline We compare RayDB with Crystal [32]. Crystal is a re-
cently proposed state-of-the-art GPU database system that delivers
superior query execution performance compared to other systems.
It currently supports only queries from the Star Schema Bench-
mark (SSB). Specifically, Crystal implements a custom operator-
invocation program for each query in the SSB. For a fair compari-
son, we modify these programs by removing all Join. Besides, since
Cyrstal does not implement the OrderBy, we also remove it from
all queries.

Encoding In SSB, we adopt different encoding schemes for the
Aggregation operator. Three queries in Flight Q4 have the ag-
gregate function: sum(lo_revenue - lo_supplycost), and we
adopt the encoding optimization in Section 4.4 to make further
compression. The aggregate function of queries in Flight Q1 is
sum(lo_extendedprice * lo_discount). However, the range of
lo_extendedprice * lo_discount is too large to be precisely repre-
sented as an integer by a 32-bit float. Therefore, in experiments, we

51

Table 1: Selectivity of queries in SSB

Query | q11 q12 q13 q21 q22 q23
Sel.(%) | 1.99 0.07 0.02 0.80 0.16 0.02
Query | g31 q32 33 Q34 g4l q42 q43
Sel.(%) | 3.67 0.14 5.76E-3 7.33E-5 159 038 0.04

use the approach in Section 4.5 to handle this situation. In evaluat-
ing Flight Q1, the X-coordinate only represents lo_extendedprice
while lo_discount is stored in the GPU device memory.

6.2 Evaluation of Query Performance

Figure 12 illustrates the performance comparison between RayDB
and Crystal. In order to ensure the fairness of the comparison
between systems, the query execution time in the experiment is
unified as starting after loading all input data into GPU memory
and ending after the results are calculated. RayDB shows excellent
performance on the SSB flat. At SF=1, RayDB is faster than Crystal
on all queries, on average, by 82.08%. At SF=10, RayDB is faster
than Crystal on 12 out of 13 queries and 5.4x faster on average.
At SF=20, the situation is similar to that at SF=10. RayDB is faster
than Crystal on 12 out of 13 queries, at least 1.0x faster and at
most 18.3x faster. Over the entire SSB flat, RayDB is on average
8.5% faster than Crystal. It can be seen that RayDB maintains its
performance advantage over Crystal in all SF cases. Considering
that Crystal is by far the state-of-the-art GPU database system
delivering superior query execution performance compared to other
systems, the performance improvement is reasonably satisfactory.

Table 1 records the selectivity of each query in the SSB flat.
Referring to Figure 12, it is observed that the query execution time
of RayDB has a certain positive correlation with the selectivity of
the query. The selectivity of q11, q31, and g41 is significantly higher
than the other queries, and their execution time is also longer. The
fundamental reason for the positive correlation between query
execution time and query selectivity under certain conditions is
that a lower selectivity implies a smaller number of data records
in the query area, that is, a smaller amount of data to be accessed.
Among the above queries, although q11 does not have the highest
selectivity (1.99%, the maximum selectivity is 3.67% of q31), its
execution time is particularly long, and it is even the only query
for which RayDB has a longer execution time than Crystal. The
reason is the particularity of Flight q1. The queries in Flight q1
do not include the GroupBy operator. In our implementation, we
treat such queries as if all data records belong to the same unique
group. Recall that atomic operations are used in Any Hit Shader
to avoid synchronization issues, but they also limit parallelism,
which affects performance. In the presence of only one group, all
atomic operations target the same scalar value, further preventing
the parallelism advantage of RT cores from being fully exploited
and slowing down the execution of q11. This is also confirmed by
the shift of the execution time of q11 from SF=1 to SF=20: when the
dataset is small (SF=1), there are also fewer atomic operations, and
the restriction of parallelism is not obvious. Therefore, RayDB is
faster than Crystal. When the dataset becomes larger (SF=20), the

[Z71 Crystal [~ RayDB 772 Crystal [RayDB (pure CUDA)

10°

Execution Time (ms)

Execution Time (ms)
10t 102

10°

[ZZ1 Crystal [RayDB z7] Crystal 7 RayDB
I m
£ E
[e
E £3 Eh
- [
c i=
2 S
t=] =]
3 3
o 9]
Q 19
X, X
ey w
L
— NV DAY AV AP YAV D X S VD O
S LYY RRRE XXX
Queries Queries
(@)SF=1 (b) SF = 10

Figure 12: Query execution time of RayDB and Crystal

atomic operations increase accordingly, and the disadvantage of
limited parallelism is further highlighted. At this time, RayDB is
inferior to Crystal.

6.3 The Performance Gains from RT Cores and
BVHs in RayDB

In order to disentangle the gains obtained from RT cores and BVHs,
we implement a pure CUDA version of RayDB where the entire
ray tracing process is computed by CUDA cores on the GPU. By
comparing it with Crystal, we can evaluate the performance impact
of the BVH index in the absence of RT cores, and then verify the
contribution of RT cores. To achieve this, we switch to OptiX 5.1,
which uses CUDA cores to compute BVH traversal and ray-triangle
intersection tests. Since OptiX 5.1 is an old version, it does not
support NVIDIA RTX 4090. Therefore, the experiments in this
subsection are performed on an NVIDIA TITAN X (Pascal). Limited
by the device memory size of TITAN X, we conduct experiments
with a scale factor of 1. The performance results are shown in
Figure 13.

On the 13 queries of SSB, RayDB (pure CUDA) is 258X-588%
slower than Crystal, and 423X slower on average. Recall that RayDB
is faster than Crystal on all queries with the same scale factor
as in Section 6.2. This demonstrates that the BVH index alone
does not work well due to the features of CUDA, and performance
gains can only be achieved by cooperating with RT cores. With
the application of hardware-accelerated ray tracing technology, the
BVH traversal and ray-triangle intersection tests that originally
needed to be computed by CUDA cores during the ray tracing
process are offloaded to the RT core, which is specialized hardware
designed for this purpose, freeing CUDA cores from thousands
of instructions per ray, which could be an enormous amount of
instructions for an entire ray tracing process. The presence of RT
cores considerably accelerates the ray tracing process and makes
the ray-tracing-based database possible.

6.4 GPU Memory Bandwidth Occupancy

Figure 14 presents a comparison of the memory throughput of
Crystal and RayDB on 13 queries of SSB flat. At SF=20, Crystal
achieves a memory throughput of 97.11% to 97.51% of the memory
bandwidth, with an average of 97.41%. The situation is rather similar
in other SF cases. It can be argued that Crystal saturates the memory
bandwidth. In contrast, at SF=20, RayDB’s memory throughput is
only 7.72% to 73.53% of the memory bandwidth, with an average of

52

Queries

Figure 13: Performance com-
parison of RayDB (pure CUDA)
and Crystal

36.74%. This ratio is even smaller in other SF cases. It can be seen that
the memory bandwidth occupied by RayDB is considerably smaller
than that of Crystal in all SF cases. This is due to the fact that RayDB
drastically reduces the amount of data that needs to be accessed and
the number of random memory accesses, freeing its performance
from the memory bandwidth constraints. Based on this, we identify
that the limiting factor for the performance of RayDB is the number
of RT cores. The latest RTX 4090 is equipped with 128 RT cores
versus 16384 CUDA cores. More RT cores mean that we can launch
more rays to expedite intersection tests, and the performance is
expected to be further enhanced. With the fast development of
the ray tracing technique, the number of RT cores has also been
increasing. The RTX 2080 Ti has only 68 RT cores, while this number
grows to 84 on the RTX 3090 Ti and 128 on the RTX 4090. Therefore,
since the memory bandwidth is no longer a limitation, RayDB is
expected to benefit from the evolving architecture and achieve
higher performance on future GPUs.

It is worth noting that there is no clear positive correlation
between query memory throughput and query selectivity, which
seems to contradict the conclusions we obtained. While RayDB
reduces the amount of data that needs to be accessed with the help
of ray tracing, it also increases the overhead of BVH traversal and
ray-triangle intersection tests. Since the BVH is stored in the de-
vice memory, BVH traversal and ray-triangle intersection tests also
require access to the memory, and this partial memory access is
closely related to the BVH structure. The BVH structures corre-
sponding to different queries show great differences, and their effect
on the memory throughput shows strong stochasticity, ultimately
shaping the results shown in Figure 14. Nevertheless, overall, the
query memory throughput is still significantly degraded.

6.5 BVH Construction Overhead

Figure 15 shows the time of building the BVH in RayDB on each
query of SSB flat for scale factors 1, 10, and 20. Experimental results
show that the BVH building time scales linearly with the dataset
size. From SF=1 to SF=10, the dataset size increases by about 9X,
and the average building time increases by 9.95xX. The dataset size
roughly doubles from SF=10 to SF=20, while the average building
time also grows by 1.01x. At a certain dataset size, the BVH building
time is relatively stable, and the difference in building time between
different queries does not exceed 11%.

In the three cases of SF=1, SF=10, and SF=20, the average BVH
building time is 10.30 ms, 112.85 ms, and 227.84 ms, respectively,

- ---- Bandwidth 74 Crystal 5 RayDB — ---- Bandwidth FZA Crystal K3 RayDB ---- Bandwidth FZ4 Crystal &3 RayDB
& 1000 G 1000 EIOOO
3 750 3 750 2 750
)))
3 500 3 500 g 500
£ £ <
= = =
> 250 > 250 > 250
o o o
-y AR SRR PRI AEAAIAL
= FIPPILIPPILELL = FIPPILIIPILELL = FIFPFPEF ST FEE
Queries Queries Queries
(a)SF=1 (b) SF = 10 () SF = 20
Figure 14: Query memory throughput of RayDB and Crystal
BEEH SF=1 [z SF=10 XXX SF=20 the entire query is shown in Figure 16. The performance of ray
— — tracing for individual operators exhibits a noticeable decrease when
= ¥ X ¥ compared to ray tracing for the entire query. On the 13 queries of
El ol o I o o B e B & G R S o B ol o I SSB flat, ray tracing for the entire query is 13.3X - 555.1X faster
g 5o T T o 5 0, 5 2 R R g 5 X than ray tracing for individual operators and 194.9X faster on av-
e 20 o N 2 o g TR B O S X 2 O X 9 R O erage. The reason for this staggering performance gap is that ray
£ 120 N o N 0 N R X S X (0 R X ¢ [OB tracing is used to accelerate Scan and other operators separately,
3 o T T o oY o o, o o o o R R o0 3 S X which means that RayDB (disable Scan) requires access to the en-
10! BN B] e i a N N K N e ek gl J tire dataset, taking away the benefit of ray tracing. Overall, this
TR T S N VA N N, VAR N VR VR SN CY result is sufficient to demonstrate the inefficiency of ray tracing for
PP Yoy aeng

Queries

Figure 15: BVH building time of RayDB

while the average query execution time is 0.26 ms, 1.58 ms, and 2.85
ms, respectively. Therefore, the average execution time is 2.50%,
1.40%, and 1.25% of the average BVH building time, respectively.
Due to the huge gap between the building time and the execution
time, it is imperative to construct the BVH in advance. In RayDB, we
build BVHs offline, which can be viewed as indexes or materialized
views. For a given query, RayDB chooses a BVH that covers the
attributes in the three operators.

6.6 Comparison between Query-Level and
Operator-Level Ray Tracing

In Section 2.4, we explain why we choose to use ray tracing to accel-
erate the entire query rather than each operator. In the following,
we conduct experiments to verify our conclusions. In view of the
fact that there have been few studies on accelerating a single oper-
ator using ray tracing, which mainly focuses on the Scan operator
(e.g., RTScan), we implement the Scan operator of the query by
RTScan and the other operators by RayDB. RTScan transmits its
execution result to RayDB in the form of a bit vector, where each bit
records whether the corresponding data record satisfies predicates.
RayDB enforces the Z-coordinate to be 0 for all primitives. Accord-
ingly, rays are launched at the Z = 0 plane as the query area. In this
way, all primitives will be intersected by rays, and RayDB needs
to use the bit vector to determine whether a data record satisfies
the predicates and should continue to participate in the follow-
ing computation. Since RTScan suffers from out-of-memory issues
when SF=20, we down-regulate SF to 16 in this experiment. The
performance comparison with the case where RayDB implements

53

individual operators and the necessity of choosing ray tracing for
the entire query.

6.7 Comparison between Encoding and Splitting

In Section 4, faced with the case where a single Scan and GroupBy
operator involves multiple data attributes, we give a solution that is
encoding. However, there is a more intuitive way, which is to split
the data attributes involved in the operator into two parts. The first
part contains only one data attribute, which is still used for RayDB.
The data attributes in the other part are stored in device memory
in the form of arrays that can be accessed according to primitive
indices. We refer to this approach as splitting.

Figure 17 is a plot of the performance comparison between split-
ting and encoding on the Scan operator when SF=20. In the experi-
ments, splitting on Scan uniformly selects the first data attribute
involved in the Scan operator for RayDB and stores the remain-
ing data attributes in the device memory. When RT cores detect a
primitive that intersects a ray, the corresponding Any Hit Shader
reads from the device memory the remaining data attributes of
the corresponding primitive and determines whether they satisfy
the conjunctive predicates contained in Scan. Experimental results
show that encoding on Scan performs significantly better than split-
ting on Scan. on the 13 queries of SSB flat, encoding on Scan is 3.3x
to 176.9% faster than splitting on Scan, with an average of 31.1x.
The reason for such a large performance difference is the difference
in the amount of data that needs to be accessed. For example, if
the conjunctive predicates are p; A p,, p; has a selectivity of 50%
and p, has a selectivity of 20%, then encoding on Scan will access
50%x20%=10% of the data records, and splitting on Scan will access
50% of the data records. In this case, the amount of data they need
to access differs by a factor of 5. Due to the different selectivity
of each predicate in the conjunctive predicates, the performance
difference between encoding on Scan and splitting on Scan on each

772 RayDB(disable Scan) 7 RayDB 772 splitting on Scan

771 Multiple GPUs

772 splitting on GroupBy [~ Single GPU

Execution Time (ms)

[0 RTScan ~1 encoding on Scan ~1 encoding on GroupBy i
_ _] —
G n i 7
z 2 ©3
2 3 E 0
L)) S "
£ E 100 £2 7’
=] =] b M
= - Y 7
S 10° s g 2|
‘ ; ; Ef 3 %» T:
Q 1 5 5
“““““ JLRAL | & LA v AN o VL BN AL | & IZRENANAL go AN PIY
5D A DA A o g DO DDAV DD DO D & v N D D O
Y YFLREE TR NESINE USRI I S KR PPFPSIFES S P
Queries Queries Queries Queries

Figure 16: Performance com-Figure 17: Performance im-Figure 18: Performance im-Figure 19: Scalability on multi-
parison between RayDB and provement with encoding on provement with encoding on ple GPUs
GroupBy

RayDB+RTScan Scan

query of SSB flat also shows a large difference. Overall, however,
encoding on Scan outperforms splitting on Scan by a wide margin.

Figure 18 illustrates the performance comparison of splitting
and encoding on the GroupBy operator when SF=20. Splitting on
GroupBy is analogous to splitting on Scan. Since the queries in
Flight q1 do not involve the GroupBy operator, the experiment is
performed only on the remaining 10 queries of SSB flat. It can be
observed that the difference in performance between splitting on
GroupBy and encoding on GroupBy is smaller, 74.61% on average,
compared to the difference between splitting on Scan and encoding
on Scan, which is 31.1X on average. This is because splitting on
GroupBy does not change the amount of data records accessed
compared to encoding on GroupBy but only increases the overhead
of accessing the remaining data attributes stored in the device
memory. However, only the remaining data attributes of primitives
that intersect rays will be accessed, so this overhead is not apparent
in most SSB queries with generally low selectivity. Regardless, given
the slight performance benefit, encoding on GroupBy remains the
better option.

6.8 Scalability on Multiple GPUs

We evaluate the performance of RayDB on a single RTX 4080 SU-
PER and four RTX 4080 SUPER with a scale factor (SF) of 20, and
the experimental result is shown in Figure 19. In this section, we
only adopt the parallel execution strategy where the data space
is equally partitioned along the Y-axis as an example of parallel
execution. For the same reasons as in Section 6.7, we exclude Flight
ql from our experiments. The experimental result indicates that
the performance of four GPUs working in parallel is 2.1 than that
of a single GPU on average and can reach 3.3X at most.

While parallel execution on multiple GPUs significantly en-
hances performance, further improvements are constrained by the
following two main factors: Firstly, the preparatory work before
launching rays (e.g., determining the query region) needs to be
performed on each GPU and cannot be parallelized. The time spent
in this part has small differences between queries and is relatively
fixed, approximately 0.07 ms in this experiment. As a result, for
queries with long execution times, the performance improvement
is large because the time taken for preparatory work is a small pro-
portion of the execution time and vice versa. Secondly, the simple
strategy of partitioning the space equally leads to a certain load
imbalance between each GPU, which ultimately affects the perfor-
mance. It is our future study to explore a more reasonable way of
partitioning to achieve load balancing among GPUs.

54

7 RELATED WORK

Applications of RT cores Since RT cores are originally designed to
render physically correct reflections, refractions, shadows, and indi-
rect lighting in real time [27], there are numerous studies that lever-
age it to accelerate rendering workloads, including graphic render-
ing [8, 16], ambient occlusion [7], and simulation in physics [10, 37].
In addition, there are also many studies that creatively use RT cores
to accelerate non-rendering workloads such as data processing,
including K-nearest neighbor search [25, 38], database scan [14, 21],
range minimum queries [22], point location search [24, 34], and ren-
dering of unstructured meshes [23]. In summary, RT cores demon-
strate significant potential for accelerating both rendering and non-
rendering tasks.

Accelerating queries with GPUs GPUs offer strong parallelism
and high-bandwidth memory, making them an attractive candidate
for accelerating database queries. Therefore, GPU-accelerated data-
base systems have been widely and deeply studied for more than 10
years [9, 17-19, 30, 35, 36]. There are three types of computational
cores on the GPU: CUDA cores, Tensor cores, and RT cores. CUDA
cores are responsible for integer and floating-point operations, so
most GPU database systems are based on CUDA cores. Among
them, Crystal [32] is the state-of-the-art CUDA-based GPU data-
base that provides superior query execution performance compared
to other systems. Tensor cores provide significant speedups to ma-
trix operations. To leverage the computational power of Tensor
cores, TCUDB [15] maps query operators to efficient matrix op-
erators and implements a Tensor-based GPU database. RT cores
accelerate Bounding Volume Hierarchy (BVH) traversal and ray-
triangle intersection tests in ray tracing, and RayDB is the first
study to make use of them to accelerate database queries, filling
the gap in related directions.

8 CONCLUSION

In this paper, we propose RayDB, a query engine that accelerates
database queries with ray tracing cores. Instead of implementing
each operator independently like CUDA-based implementations,
RayDB maps the core operators in a query as one RT job. The
approach brings several performance advantages, including access-
ing data with an optimized sequential access pattern, reducing
the amount of data to be accessed, and exploiting the parallelism
of RT cores. RayDB breaks the memory bandwidth restriction on
query performance and significantly outperforms the state-of-the-
art CUDA-based GPU and CPU query engines.

REFERENCES

(1]

(2]

=

=

[16]
[17]

[18]

[19]

[20

Analytics at Meta. 2022. Using LogTime Denormalization for Data Wrangling at
Meta. https://medium.com/meta-analytics/using-log-time-denormalization-for-
data-wrangling-at-meta-3b6fc050268a.

Burak Bacioglu and Meenakshi Jindal. 2021. Elasticsearch Indexing Strategy in
Asset Management Platform (AMP). https://netflixtechblog.com/elasticsearch-
indexing-strategy-in-asset-management-platform-amp-99332231e541

Piotr Bialas and Adam Strzelecki. 2016. Benchmarking the cost of thread diver-
gence in CUDA. In Parallel Processing and Applied Mathematics: 11th International
Conference, PPAM 2015, Krakow, Poland, September 6-9, 2015. Revised Selected
Papers, Part I 11. Springer, 570-579.

BlazingSQL. 2021. BlazingSQL. https://github.com/BlazingDB/blazingsql.
Peter A Boncz et al. 2002. Monet: A next-generation DBMS kernel for query-
intensive applications. Ph.D. Dissertation. Ph. d. thesis, Universiteit van Amster-
dam, Amsterdam, The Netherlands.

Niladrish Chatterjee, Mike O’Connor, Gabriel H Loh, Nuwan Jayasena, and
Rajeev Balasubramonia. 2014. Managing DRAM latency divergence in irregular
GPGPU applications. In SC’14: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. IEEE, 128-139.
Kevin Egan, Frédo Durand, and Ravi Ramamoorthi. 2011. Practical filtering for
efficient ray-traced directional occlusion. In Proceedings of the 2011 SSGGRAPH
Asia Conference. 1-10.

Heiko Friedrich, Johannes Giinther, Andreas Dietrich, Michael Scherbaum, Hans-
Peter Seidel, and Philipp Slusallek. 2006. Exploring the use of ray tracing for fu-
ture games. In Proceedings of the 2006 ACM SIGGRAPH Symposium on Videogames.
41-50.

Henning Funke, Sebastian Bref3, Stefan Noll, Volker Markl, and Jens Teubner.
2018. Pipelined query processing in coprocessor environments. In Proceedings of
the 2018 International Conference on Management of Data. 1603-1618.

Franco Fuschini, Hassan El-Sallabi, Vittorio Degli-Esposti, Lasse Vuokko, Doriana
Guiducci, and Pertti Vainikainen. 2008. Analysis of multipath propagation in
urban environment through multidimensional measurements and advanced ray
tracing simulation. IEEE Transactions on Antennas and Propagation 56, 3 (2008),
848-857.

Google Cloud. 2025. Use nested and repeated fields. Google LLC.

] Dong He, Supun Nakandala, Dalitso Banda, Rathijit Sen, Karla Saur, Kwanghyun

Park, Carlo Curino, Jesus Camacho-Rodriguez, Konstantinos Karanasos, and
Matteo Interlandi. 2022. Query processing on tensor computation runtimes.
arXiv preprint arXiv:2203.01877 (2022).

HeavyDB. 2022. HeavyDB. https://github.com/heavyai/heavydb.

Justus Henneberg and Felix Schuhknecht. 2023. RTIndeX: Exploiting
Hardware-Accelerated GPU Raytracing for Database Indexing. arXiv preprint
arXiv:2303.01139 (2023).

Yu-Ching Hu, Yuliang Li, and Hung-Wei Tseng. 2022. Tcudb: Accelerating data-
base with tensor processors. In Proceedings of the 2022 International Conference
on Management of Data. 1360-1374.

Henrik Wann Jensen and Per Christensen. 2007. High quality rendering using
ray tracing and photon mapping. In ACM SIGGRAPH 2007 courses. 1-es.
Alexandros Koliousis, Matthias Weidlich, Raul Castro Fernandez, Alexander L
Wolf, Paolo Costa, and Peter Pietzuch. 2016. Saber: Window-based hybrid stream
processing for heterogeneous architectures. In Proceedings of the 2016 Interna-
tional Conference on Management of Data. 555-569.

Rubao Lee, Minghong Zhou, Chi Li, Shenggang Hu, Jianping Teng, Dongyang Li,
and Xiaodong Zhang. 2021. The art of balance: a RateupDB experience of building
a CPU/GPU hybrid database product. Proceedings of the VLDB Endowment 14, 12
(2021), 2999-3013.

Jing Li, Hung-Wei Tseng, Chunbin Lin, Yannis Papakonstantinou, and Steven
Swanson. 2016. Hippogriffdb: Balancing i/o and gpu bandwidth in big data
analytics. Proceedings of the VLDB Endowment 9, 14 (2016), 1647-1658.

Linwei Li, Kai Zhang, Jiading Guo, Wen He, Zhenying He, Yinan Jing, Weili Han,
and X Sean Wang. 2020. Bindex: A two-layered index for fast and robust scans.

55

[22]

(23]

[25]

[26]

[27]

(28]

(30]

(31]

(32]

(33]

(34]

In Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data. 909-923.

Yangming Lv, Kai Zhang, Ziming Wang, Xiaodong Zhang, Rubao Lee, Zhenying
He, Yinan Jing, and X Sean Wang. 2024. RTScan: Efficient Scan with Ray Tracing
Cores. Proceedings of the VLDB Endowment 17, 6 (2024), 1460-1472.

Enzo Meneses, Cristobal A Navarro, Héctor Ferrada, and Felipe A Quezada. 2024.
Accelerating range minimum queries with ray tracing cores. Future Generation
Computer Systems 157 (2024), 98-111.

Nate Morrical, Will Usher, Ingo Wald, and Valerio Pascucci. 2019. Efficient space
skipping and adaptive sampling of unstructured volumes using hardware accel-
erated ray tracing. In 2019 IEEE Visualization Conference (VIS). IEEE, 256—-260.
Nate Morrical, Ingo Wald, Will Usher, and Valerio Pascucci. 2020. Accelerating
unstructured mesh point location with RT cores. IEEE transactions on visualiza-
tion and computer graphics 28, 8 (2020), 2852-2866.

Vani Nagarajan, Durga Mandarapu, and Milind Kulkarni. 2023. Rt-knns unbound:

Using rt cores to accelerate unrestricted neighbor search. In Proceedings of the
37th International Conference on Supercomputing. 289-300.

Xuan-Thuan Nguyen, Hong-Thu Nguyen, Trong-Thuc Hoang, Katsumi Inoue,
Osamu Shimojo, Toshio Murayama, Kenji Tominaga, and Cong-Kha Pham. 2016.
An efficient FPGA-based database processor for fast database analytics. In 2016
IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 1758-1761.
NVIDIA. 2018. NVIDIA TURING GPU ARCHITECTURE. https://images.
nvidia.cn/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-
architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf.

Patrick ONeil, Elizabeth ONeil, Xuedong Chen, and Stephen Revilak. 2009. The
star schema benchmark and augmented fact table indexing. In Performance
Evaluation and Benchmarking: First TPC Technology Conference, TPCTC 2009,
Lyon, France, August 24-28, 2009, Revised Selected Papers 1. Springer, 237-252.
Steven G Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared Hoberock,
David Luebke, David McAllister, Morgan McGuire, Keith Morley, Austin Robison,
et al. 2010. Optix: a general purpose ray tracing engine. Acm transactions on
graphics (tog) 29, 4 (2010), 1-13.

Viktor Rosenfeld, Sebastian Bref3, and Volker Markl. 2022. Query processing on
heterogeneous CPU/GPU systems. ACM Computing Surveys (CSUR) 55, 1 (2022),
1-38.

Charitha Saumya, Kirshanthan Sundararajah, and Milind Kulkarni. 2021. CFM:
SIMT Thread Divergence Reduction by Melding Similar Control-Flow Regions
in GPGPU Programs. CoRR (2021).

Anil Shanbhag, Samuel Madden, and Xiangyao Yu. 2020. A study of the funda-
mental performance characteristics of GPUs and CPUs for database analytics. In
Proceedings of the 2020 ACM SIGMOD international conference on Management of
data. 1617-1632.

Bharat Sukhwani, Hong Min, Mathew Thoennes, Parijat Dube, Balakrishna Iyer,
Bernard Brezzo, Donna Dillenberger, and Sameh Asaad. 2012. Database analytics
acceleration using FPGAs. In Proceedings of the 21st international conference on
Parallel architectures and compilation techniques. 411-420.

Ingo Wald, Will Usher, Nathan Morrical, Laura Lediaev, and Valerio Pascucci.
2019. RTX Beyond Ray Tracing: Exploring the Use of Hardware Ray Tracing
Cores for Tet-Mesh Point Location. High Performance Graphics (Short Papers) 7
(2019), 13.

Kaibo Wang, Kai Zhang, Yuan Yuan, Siyuan Ma, Rubao Lee, Xiaoning Ding,
and Xiaodong Zhang. 2014. Concurrent analytical query processing with GPUs.
Proceedings of the VLDB Endowment 7, 11 (2014), 1011-1022.

Yuan Yuan, Rubao Lee, and Xiaodong Zhang. 2013. The Yin and Yang of pro-
cessing data warehousing queries on GPU devices. Proceedings of the VLDB
Endowment 6, 10 (2013), 817-828.

Zhengqing Yun and Magdy F Iskander. 2015. Ray tracing for radio propagation
modeling: Principles and applications. IEEE access 3 (2015), 1089-1100.

Yuhao Zhu. 2022. RTNN: accelerating neighbor search using hardware ray
tracing. In Proceedings of the 27th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. 76-89.

https://medium.com/meta-analytics/using-log-time-denormalization-for-data-wrangling-at-meta-3b6fc050268a
https://medium.com/meta-analytics/using-log-time-denormalization-for-data-wrangling-at-meta-3b6fc050268a
https://netflixtechblog.com/elasticsearch-indexing-strategy-in-asset-management-platform-amp-99332231e541
https://netflixtechblog.com/elasticsearch-indexing-strategy-in-asset-management-platform-amp-99332231e541
https://github.com/BlazingDB/blazingsql
https://github.com/heavyai/heavydb
https://images.nvidia.cn/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.cn/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.cn/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 An Analysis of GPU-based Databases
	2.2 Background of Ray Tracing
	2.3 Expedite Data Processing with RT Cores
	2.4 Challenges of Accelerating Query Processing with RT Cores

	3 The Design of RayDB
	3.1 Overview of RayDB
	3.2 The Mechanism of RayDB: An Example

	4 Encoding of Multiple Data Attributes
	4.1 Challenges from Processing Multiple Attributes
	4.2 Scan with Conjunctive Predicates
	4.3 GroupBy with Multiple Attributes
	4.4 Aggregation with Multiple Attributes
	4.5 Breaking through the Encoding Limitation

	5 Scaling Out with Multiple GPUs
	6 Experimental Analysis
	6.1 Experiment Setup
	6.2 Evaluation of Query Performance
	6.3 The Performance Gains from RT Cores and BVHs in RayDB
	6.4 GPU Memory Bandwidth Occupancy
	6.5 BVH Construction Overhead
	6.6 Comparison between Query-Level and Operator-Level Ray Tracing
	6.7 Comparison between Encoding and Splitting
	6.8 Scalability on Multiple GPUs

	7 Related Work
	8 Conclusion
	References

