
A Stable Marriage Requires a Shared Residence
with Low Contention and Mutual Complementarity

Jiaxin Liu
The Ohio State University

Columbus, OH, USA
liu.11080@osu.edu

Rubao Lee
Freelance

Columbus, OH, USA
lee.rubao@ieee.org

Cathy H. Xia
The Ohio State University

Columbus, OH, USA
xia.52@osu.edu

Xiaodong Zhang
The Ohio State University

Columbus, OH, USA
zhang@cse.ohio-state.edu

Abstract—The Stable Marriage Problem (SMP) is a combi-
natorial optimization problem aimed at creating stable pairings
between two groups, traditionally referred to as men and women.
SMP has been widely applied across various domains, including
healthcare, education, and cloud computing, to optimize resource
allocation, matching, and utilization. The classical approach to
solving SMP is based on the Gale-Shapley algorithm, which
constructs stable pairings sequentially. However, this algorithm is
both time-consuming and data-intensive, resulting in significant
slowdowns even for a moderate number of participants. Despite
various attempts to parallelize the Gale-Shapley algorithm over
the years, progress has been consistently impeded by three
major bottlenecks: (1) frequent and expensive data movement,
(2) high synchronization overhead, and (3) workload-dependent
and irregular data accessing and parallel processing patterns.

To resolve the above-mentioned bottlenecks, in this paper,
we introduce Bamboo-SMP, a highly efficient parallel SMP
algorithm, and its implementation in a hybrid environment of
GPUs and CPUs. We have made three key development efforts to
achieve high performance for Bamboo-SMP. First, Bamboo-SMP
effectively exploits the data accessing locality with a lightweight
data structure to maximize the ”shared residence space”. Second,
Bamboo-SMP employs an advanced hardware atomic operation
to decrease execution latency with ”low contention”. Third,
Bamboo-SMP is implemented in a hybrid environment of GPU
and CPU, leveraging the high bandwidth of the GPU for massive
parallel operations and the low latency of CPU for fast sequential
tasks. By fostering ”mutual complementarity” between CPU and
GPU, Bamboo-SMP attains superior performance, consistently
exceeding the best existing methods by 6.69x to 21.44x across a
wide range of workloads. Moreover, Bamboo-SMP demonstrates
excellent scalability, efficiently solving large-scale SMP instances
while achieving sustained speedups of 5.6× to 13.8× on 4 GPUs.
To the best of our knowledge, Bamboo-SMP is the fastest and
most scalable solution for SMP data processing.

Index Terms—Stable Marriage Problem, Massively Parallel
Algorithm, Multi-GPUs, Scalability, Hybrid Computing Environ-
ment

I. INTRODUCTION

The Stable Marriage Problem (SMP), introduced by David
Gale and Lloyd Shapley in 1962, seeks to find a stable
matching between two equally sized sets of participants, each
with ranked preferences. These ranked preferences involve
each participant creating a list that orders all members of the
opposite set from most to least preferred. A matching is a
bijection that pairs each participant in one set with a unique
partner in the opposite set. A matching is stable when no pair
of individuals would prefer each other over their assigned

partners. The Gale-Shapley (GS) algorithm, also known as
the Deferred Acceptance (DA) algorithm, guarantees to find a
stable matching for any instance of the SMP. The GS algorithm
operates as follows: each man proposes to his most preferred
woman, each woman then considers all her proposals and
tentatively accepts the one she prefers most, rejecting the
others. A rejected man then proposes to his next preferred
woman, and this process repeats until all men and women are
matched [1].

The SMP has long been a cornerstone of both theoretical
research and practical combinatorial optimization. Its versatil-
ity has not only spurred the development of diverse variants
and new insights in recent years [2], [3], [4], [5], [6], [7],
[8], [9], [10], [11], [12], [13] but also enabled widespread
applications in real-world scenarios [14], [15], [16], [17],
[18], [19], [20], [21], [17], [22], [23]. In healthcare, SMP
optimizes resource distribution by matching organ donors to
patients, patients to cancer treatment centers, and the elderly
to healthcare facilities [24], [25], [26]. The educational sector
benefits from SMP by assigning students to schools and
dormitory rooms, thereby improving student satisfaction and
meeting institutional needs [27], [28], [29], [30]. SMP also
plays a crucial role in the labor market, facilitating mutually
beneficial employment relationships [31], [32], [33], [34], [35],
[36], [37]. In modern technology, SMP is applied for cloud
resource allocation, task offloading for computer networks
and IoT devices, and switch scheduling, leading to enhanced
network performance and resource utilization [38], [39], [40],
[41], [42], [43], [44], [14], [45]. The profound impact of SMP
across diverse fields was recognized to Dr. Alvin Roth and Dr.
Lloyd Shapley by the Nobel Prize in Economics in 2012.

A fundamental bottleneck in computing the SMP arises
from the quadratic time and space complexity of the GS
algorithm, rendering it inherently data-intensive. The scale of
real-world SMP applications is immense: medical residency
matching involves over 47,000 students [46], content delivery
networks handle hundreds of thousands of requests [39], and
some data-intensive matching systems must handle instances
on the order of millions [47]. As the number of participants
grows, the quadratic scaling quickly overwhelms centralized
computational resources with the demands of processing pref-
erence lists and other data structures. However, the increased
input size also exposes substantial data parallelism, as in each

415

2025 34th International Conference on Parallel Architectures and Compilation Techniques (PACT)

979-8-3315-8295-1/25/$31.00 ©2025 IEEE

round of the parallel GS algorithm, all unmatched men can
simultaneously advance along their preference lists and issue
proposals independently of one another. Graphics Processing
Units (GPUs) are throughput-oriented manycore processors
that offer extremely high peak computational throughput
through high memory bandwidth and massive hardware con-
currency [48]. This architectural design aligns naturally with
the massive parallelism inherent in SMP, enabling thousands of
proposals to be processed concurrently. Consequently, GPUs
serve as a powerful platform for accelerating large-scale SMP.

However, accelerating the GS algorithm is difficult due to
several constraints inherent in its execution pattern. First, the
GS algorithm involves frequent access to its data structures.
As the number of participants grows, the volume of data
movement grows rapidly. When the working set exceeds the
cache capacity, cache misses dominate execution time, creating
a bottleneck for both sequential and parallel implementations.
Second, contention arises in a parallel setting when multiple
men propose to the same woman simultaneously. Resolving
these conflicts requires synchronization to update the matching
state consistently, which introduces substantial overhead and
diminishes the benefits of parallelism. Finally, the algorithm
exhibits uneven workload distribution. Once a woman be-
comes matched, she will not become unmatched again [49].
Consequently, the pool of unmatched men decreases over
time, which monotonically reduces the available degree of
parallelism over time. This gradual reduction in available
parallel work creates load imbalance across threads and leads
to underutilized parallel resources.

Research on parallel algorithms for SMP has not been fully
effective, largely because earlier approaches failed to target the
fundamental bottlenecks outlined above. To the best of our
knowledge, only two parallel algorithms moderately outper-
form the sequential GS algorithm: the parallel Gale-Shapley
algorithm and the parallel McVitie-Wilson algorithm [50].
Although these approaches reduce synchronization overhead
by removing global barriers, they are primarily implemented
on CPUs. Prior work has largely overlooked the memory
access behavior of the GS algorithm, leaving the locality
as underutilized opportunities for improving performance in
large-scale SMP computation. Moreover, their performance on
GPUs is limited by severe contention for shared resources and
imbalanced workload distribution, in some cases making them
less efficient than their CPU counterparts.

In this paper, we address three critical research questions
for designing a high-performance parallel GS algorithm.

1) Can GS parallel processing be substantially accelerated by
exploiting locality?

2) Can advanced GPU hardware primitives be leveraged to
improve synchronization efficiency under high contention?

3) Can GPU resources be harnessed for large-scale parallelism
while adaptively relying on the CPU to efficiently handle
inherently sequential tasks?

To answer these questions, we introduce Bamboo-SMP 1,
a high-performance parallel processing framework. Bamboo-
SMP incorporates three key design elements: First, we rec-
ognize a critical access pattern that exposes locality to ex-
ploit. This insight enables the construction of an effective
data structure that colocates related data for a locality-aware
sequential algorithm, thereby fully leveraging spatial locality
and reducing data movements. Second, we parallelize this
locality-aware algorithm on the GPU by employing advanced
hardware synchronization primitives. This considerably re-
duces redundant atomic operations under high contention and
improves synchronization efficiency in parallel GS processing.
Finally, we integrate these techniques into a unified CPU–GPU
framework. Bamboo-SMP uses the GPU’s high bandwidth
and massive thread-level parallelism when a large number of
unmatched men remain. As the pool of unmatched men shrinks
and only limited parallelism persists, Bamboo-SMP transitions
to the CPU, which provides lower latency and effectively
executes the remaining sequential work. This adaptive design
ensures robust efficiency across diverse workload distributions
while fully exploiting the complementary strengths of CPU
and GPU architectures.

Specifically, we make the following contributions:

• We design an effective data structure for the GS algorithm
that explicitly exploits data locality. By colocating all nec-
essary rank references during the proposing procedure, this
locality-aware design minimizes global memory accesses
and substantially reduces execution latency.

• We parallelize the locality-aware GS algorithm by leverag-
ing GPU hardware primitives, minimizing atomic operations
under high memory contention and improving synchroniza-
tion efficiency, particularly for workloads with high conflicts
in proposals between the two participant groups.

• We integrate these techniques into a unified framework,
Bamboo-SMP, for the computation of SMP on both CPUs
and GPUs. Bamboo-SMP adaptively exploits the GPU’s
high bandwidth and massive thread parallelism when ample
parallelism is available, and transitions to the CPU to
efficiently handle the remaining inherently sequential work.
This adaptive execution model ensures robust performance
across diverse workload types.

• Through comprehensive experimental evaluations, we
demonstrate that Bamboo-SMP outperforms all existing
algorithms by 6.69× to 21.44× across a wide range of
workloads. In addition to its superior performance, Bamboo-
SMP also exhibits excellent scalability, efficiently process-
ing SMP instances well beyond the single-GPU memory
limit and sustaining speedups of 5.6× to 13.8× on four
GPUs. These results underscore both the effectiveness of
Bamboo-SMP and its robust ability to adapt to diverse and
large-scale computational demands of SMP.

1Bamboo is a unique plant known for its fast growth and resilience in
challenging environments. This well aligns with our approach to developing
a high-performance SMP solution.

416

Fig. 1: Execution flow of the GS algorithm for an SMP instance of 3 men and 3 women.

II. BACKGROUND

A. The Stable Marriage Problem

The Stable Marriage Problem (SMP) involves two equal-
sized groups of participants, say n men and n women. Each
participant has a ranked preference list of all members from
the opposite group. Figure 1 gives a simple SMP exam-
ple to match three men and three women, where the two
groups are {M1,M2,M3} for men and {W1,W2,W3} for
women. Each member in {M1,M2,M3} ranks all members
in {W1,W2,W3} in a strict order, and vice versa.

Given these two groups, a matching is a one-to-one cor-
respondence from participants in one group to those in the
other. A blocking pair in a given matching is a pair of
participants from opposite groups who would both prefer each
other over their current partners. If such a pair exists, the
matching is unstable because these two participants would be
motivated to leave their assigned partners and pair up with
each other instead. In other words, a matching is stable if no
two participants prefer each other over their current partners.
The goal of the SMP is to find a stable matching, where no
blocking pairs exist.

B. The Gale-Shapley Algorithm

The Gale-Shapley (GS) algorithm, also known as the De-
ferred Acceptance algorithm, is a foundational method for
solving the SMP. We next illustrate the execution flow of the
GS algorithm using an example where the preference lists are
given in Figure 1.

Initially, all participants are free and the GS algorithm
maintains a Queue for all unmatched men. In the first round,
each man from the Queue proposes to his top choice in the
first column of the men’s preference matrix in Figure 1. Thus,
M1 proposes to W2, who tentatively accepts as it is her only
proposal, forming the match (M1,W2). Next, M2 proposes to
W2. Since W2 prefers M2 over M1, she accepts M2’s proposal
and rejects M1, thereby freeing M1, who re-enters the Queue.
This results in (M2,W2) as the tentative match. Similarly, M3

proposes to W2, gets rejected, and re-enters the Queue. The
tentative match remains (M2,W2).

In the second round, as a free (rejected) man, M1 proposes
to W1, the next highest-ranked woman in the second column
in Men’s preference Lists in Figure 1. W1 tentatively accepts,
resulting in a match (M1,W1) alongside (M2,W2). Subse-
quently, free man M3 proposes to W1. Since W1 prefers M3

over M1, she accepts M3’s proposal and rejects M1, putting
M1 back into the Queue for unmatched men. The tentative
matches are now (M3,W1) and (M2,W2).

Becoming a free man again, M1 proposes to W3, the next
woman on his preference list in the third round. W3 accepts
M1’s proposal as her best choice, resulting in the match
(M1,W3) alongside (M3,W1) and (M2,W2). All participants
are now matched, and the algorithm terminates with the
stable matching: (M1,W3), (M2,W2), and (M3,W1), with
no blocking pairs.

Efficient implementation of the GS algorithm requires de-
termining, in constant time, whether woman w prefers m over
her current partner when m proposes to w. This is achieved
using a data structure called rank matrix, where the entry
RankMatrix[w, m] represents the rank r of man m in
woman w’s preference list. As shown in Figure 1, the rank
matrix is constructed from the women’s preference lists prior
to the execution of GS algorithm. Without this precomputation,
each of the O(n2) proposals would require scanning an entire
preference list of length O(n), leading to O(n3) complexity.
By enabling constant-time lookups, the rank matrix reduces
the overall execution complexity to O(n2).

The perfect case occurs when all men are matched after the
first round, resulting in a stable matching with a complexity
of O(n). Such a scenario is rare, however, it represents an
embarrassingly parallel workload, making it the best case for
parallel processing.

C. The Mcvitie-Wilson Algorithm

The McVitie and Wilson (MW) algorithm is another imple-
mentation of the GS algorithm, based on the principle that the
proposal order does not affect the resulting stable matching
[49], [51]. In the GS algorithm, all unmatched men are placed
into a Queue. During each iteration of the main loop, an
unmatched man is taken from the Queue to make proposals,
and any rejected man is added back to the Queue. In the MW
algorithm, however, if a proposer is rejected by the woman he
proposes to, he immediately moves on to propose to the next
woman on his list, instead of being placed back in a Queue.
Similarly, if a woman accepts a new proposal, her previous
partner will continue proposing to his next preference instead
of being added back to the Queue. This streamlined proposal
process eliminates the need for a Queue to manage unmatched
men and lays the foundation of parallel implementation of MW
on GPUs [52].

417

III. BOTTLENECKS IN GS COMPUTATION

We examine three major bottlenecks in GS computation:
frequent data movement (Subsection III-B), excessive syn-
chronization overhead (Subsection III-C), and irregular par-
allelism caused by imbalanced workload distribution (Sub-
section III-D). To ground our analysis, we first design three
synthesized SMP workloads based on real-world application
statistics in Subsection III-A.

A. Our Approach in the Selection of Workloads

Ideally, bottlenecks in GS computation would be evaluated
using real-world data. However, this is infeasible because
most SMP applications involve highly confidential information
subject to strict privacy constraints. Examples include college
admissions, hospital–doctor assignments, organ donation, and
kidney exchange, where institutions cannot disclose complete
preference lists to the public. Although some researchers
have attempted to incorporate real-world data, the missing
preference lists are typically synthesized artificially, often
failing to capture how participants actually rank one another
and thereby reducing their validity as representative workloads
for evaluating GS bottlenecks.

To faithfully capture real ranking behavior and construct
convincing workloads for performance evaluation, we gen-
erate synthetic workloads explicitly informed by real-world
matching statistics. The National Resident Matching Program
(NRMP) is a United States–based private, non-profit orga-
nization established in 1952 to place medical school gradu-
ates into residency training programs. Although the complete
rank-order lists of applicants and institutions from NRMP
are inaccessible due to strict privacy constraints, the NRMP
publishes annual reports containing aggregate statistics that
capture key features of real-world matching outcomes. Guided
by these statistics and representative matching patterns, we
design our workload framework and derive three representative
SMP workloads: the solo, congested, and random cases.

Figure 2 presents an SMP instance and the corresponding
execution flow of the parallel GS algorithm for each syn-
thesized workload type. Independent proposals are executed
round by round until a stable matching is reached. Proposal
rounds are annotated as P for parallel execution and S for
sequential execution, with subscripts indicating the order (e.g.,
P1 for the first parallel round, S2 for the second sequential
step). These annotations are embedded in the men’s preference
lists and the rank matrix to mark the specific entries accessed
in each round.

In the solo case, for example, the final step S17 corresponds
to entry (M5, R5) in the preference list and its associated
entry (W5, M5) in the rank matrix. The solo case exemplifies
a predominantly sequential matching process, in which the
majority of men are paired during the initial round, while only
one or a few continue proposing until the process concludes.
This workload reflects patterns observed in NRMP outcomes,
where a large fraction of applicants secure top matches—65%
in addiction medicine and 53.3% in laryngology obtain their
first choice, more than 80% match within their top three,

Fig. 2: Three types of SMP workloads

and 16.5% remain unmatched [53]. In Figure 2, after the
first parallel round (P1), only M4 is rejected, and subsequent
proposals (S2–S17) proceed sequentially. With n participants
on each side, the total number of proposals is n2− (n−1), of
which only n can be issued concurrently. As n grows, the ratio
of parallel to total proposals diminishes toward zero, leaving
minimal parallelism to exploit.

The congested case exemplifies an extreme level of con-
tention, where all men share identical preference lists and com-
pete for the same choices. This dynamic produces widespread
rejections, resembling residency specialties such as neuro-
surgery, dermatology, and general surgery, which exhibit dis-
proportionately high first-choice ratios relative to available
positions [33]. In this setting, each round of proposals targets
the same woman, so only one can be accepted per step, and
the process repeats until the final unmatched man makes a
sequential proposal. In Figure 2, steps P1–P4 involve five,
four, three, and two men making proposals in parallel, with
men M2, M5, M1, and M4 accepted in sequence. The last
sequential step (S5) by M3 completes the matching process.

The random case captures the clustering behavior observed
in real-world applications, where applicants often rank similar
options consecutively before considering alternatives. NRMP
data, for example, report a median of 12.2 contiguous ranks
[53]. To reflect this pattern, we construct workloads by group-
ing preferences into clusters and shuffling within each group,
with the group size adjustable to analyze how different levels

418

of clustering influence contention. Notably, when the group
size is set to one, the random case degenerates into the
congested case. In Figure 2, the group size is two, producing
clusters W1, W2, W3, W4, and W5. During the first two
parallel rounds (P1, P2), all men propose to W1, W2, with
M1 and M3 accepted. In the next two rounds (P3, P4), the
remaining unmatched men (M2, M4, M5) propose to W3, W4,
leaving one man still unmatched. The final proposals (S5–S8)
then proceed sequentially until a stable matching is achieved.

B. Random Memory Accesses are Harmful

Both GS and MW are memory-bound algorithms, structured
as a stream of proposals in which each step performs minimal
computation but requires two memory lookups: one to traverse
the preference lists and another to query the rank matrix. In
particular, rank matrix accesses are costly because they are
random and unpredictable at runtime. Such irregularity causes
frequent cache misses and high DRAM latency, making these
lookups a persistent bottleneck across all workloads.

To demonstrate the impact, we measured the share of
execution time spent on rank matrix accesses in GS and
MW across multiple workloads. As shown in Figure 3, these
lookups account for up to 75% and at least 55% of the total
execution time, dominating overall performance. Reducing this
overhead is therefore a central optimization goal in Bamboo-
SMP. However, the random nature of these accesses disrupts
traditional techniques such as caching and prefetching [54],
[55], which rely on regular patterns. Likewise, GPU-specific
mechanisms such as shared memory and specialized caches
provide little benefit, since each matrix entry is typically
accessed only once and exhibits negligible reuse.

Fig. 3: Time breakdown of the GS and MW algorithms

C. Inefficient Synchronization

Parallelizing the GS and MW algorithms on multi-core
CPUs or GPUs leverages their inherent parallelism, with each
thread representing a man and making proposals indepen-
dently. When multiple men propose to the same woman simul-
taneously, only the most preferred proposer is accepted [49].
Although this process is conceptually simple, efficient paral-
lelization is difficult. Conventional synchronization methods
introduce substantial overhead in this context. Locks enforce
exclusive access but incur high overhead from frequent ac-
quisitions and releases caused by fine-grained updates of the

GS algorithm. Barrier synchronization, by contrast, forces
all threads to pause at fixed points, meaning all men must
wait after proposing until every woman has processed her
choices. Yet not all threads require this synchronization:
rejected men could immediately issue new proposals. This
mismatch creates idle time and poor resource utilization, mak-
ing barrier synchronization inefficient. Atomic operations such
as compare-and-swap (atomicCAS), provide a finer-grained
alternative. atomicCAS updates a memory location only if
it matches an expected value, ensuring correctness without
global barriers [56]. In the GS and MW, atomicCAS is used
to update a woman’s partner rank atomically, preventing race
conditions. However, under high contention it performs poorly:
frequent atomicCAS failures lead to repeated retries and
wasted work [57]. Our analysis in Section IX shows that in
the congested case, where all men share identical preference
lists, the number of atomic operations can grow to O(n3),
overshadowing the GS algorithm’s O(n2) complexity.

D. Irregular Parallelism Inherent in SMP

CPUs (Central Processing Units) and GPUs (Graphics Pro-
cessing Units) are two standard, widely available computing
units, each tailored to distinct computational roles. Modern
CPUs are designed to minimize response time for single-
threaded and latency-sensitive tasks. To achieve this, they
employ deep and sophisticated pipelines with architectural
advances such as out-of-order execution, branch prediction,
and speculative execution. In addition, CPUs integrate large
last-level caches to exploit spatial and temporal locality,
thereby mitigating the high cost of main memory access [58],
[59]. Modern GPUs, by contrast, are designed to maximize
throughput for massively parallel workloads such as dynamic
programming algorithms [60], graph processing [61], [62],
and large-scale data analytics [63], [64], [65]. They rely on
the SIMT (Single Instruction, Multiple Thread) execution
model, enabling tens of thousands of threads to execute
concurrently [66], [67].

Although GPUs achieve high computing throughput when
data parallelism is plentiful, their design philosophy makes
them ill-suited for sequential tasks. GPU pipelines are delib-
erately simplified to conserve chip area and power within the
thermal envelope, with the saved resources repurposed into
a larger number of cores and hardware threads to maximize
throughput. GPUs also employ a relatively shallow two-
level cache hierarchy optimized for bandwidth rather than
latency. These trade-offs are highly effective for massively
parallel execution but leave GPUs dependent on large degrees
of parallelism to hide memory stalls. When parallelism is
limited or imbalanced, cores become idle and resources un-
derutilized, ultimately delaying task completion and degrading
overall performance. This challenge of irregular parallelism
is particularly pronounced in SMP workloads. To illustrate
its impact, we conducted comparative experiments on five
implementations of the GS and MW algorithms using the solo
case with 10,000 participants, where most proposals must be
executed sequentially.

419

TABLE I: Performance Comparison of five implementations
of the GS and MW algorithms running on CPUs and GPUs

Implementation Description Time (ms)
GS-Seq-CPU The Sequential GS on CPU 412.9
MW-Seq-CPU The Sequential MW on CPU 451.1
GS-Par-CPU The Parallel GS on CPU 546.9
MW-Par-CPU The Parallel MW on CPU 551.5
MW-Par-GPU The Parallel MW on GPU 26543.7

The results in Table I show that GPU performance is
markedly inferior to CPU performance in sequentially domi-
nated workloads, largely due to GPUs’ poor handling of long
sequential computations. Specifically, the MW-Par-GPU im-
plementation is 58.8× slower than MW-Seq-CPU, a slowdown
attributable to both the sequential nature of the solo case
and the higher memory access latencies of GPUs. Moreover,
even GS-Par-CPU and MW-Par-CPU run slower than their
sequential counterparts, primarily due to the synchronization
overhead introduced by atomicCAS operations.

IV. BAMBOO-SMP

Having identified three critical issues limiting the perfor-
mance of parallel GS and MW, we develop Bamboo-SMP,
a parallel processing framework designed to deliver high
performance across diverse workloads. Bamboo-SMP lever-
ages optimized data structures, advanced atomic operations,
and a hybrid CPU–GPU execution model to overcome these
bottlenecks and ensure efficient performance.

A. Locality-Aware Computing

1) PRMatrix: A major performance bottleneck in the GS
algorithm stems from frequent rank-matrix lookups, whose
non-sequential nature incurs substantial overhead. By examin-
ing the GS and MW algorithms, we identify a critical property:
there exists a bijection between a man’s decision regarding
which woman to propose to and his rank in her preference
list. Let PrefListsM denote the men’s preference lists and
RankMatrix represent the women’s rank matrix. When a
man m proposes to a woman at rank r in his preference list,
the woman PrefListM[m,r] is identified. The rank of the
proposer m in this woman’s preference list is then determined
by accessing RankMatrix[PrefListM[m,r], m]. This
establishes a direct one-to-one correspondence between entries
in the men’s preference list and the rank matrix.

To harness this inherent relationship, we introduce a novel
locality-aware data structure called PRMatrix. In PRMatrix,
interrelated entries from the men’s (P)reference lists and
(R)ank matrix are co-located within a unified entity, termed a
PRNode. Each PRNode can be retrieved with a single memory
access, simultaneously providing both the target woman and
the man’s rank within her preference list, thereby eliminating
the need for separate lookups in the rank matrix.

Constructing a PRMatrix requires a preprocessing step
to consolidate these entries. For example, as illustrated in
Figure 4, when man M1 is proposing to the woman at R1,

W2 is retrieved from PrefListsM[M1,R1]. Subsequently,
RankMatrix[W2,M1] is accessed, yielding R2. These two
data elements are combined into PRNode(W2,R2), which is
then stored in PRMatrix[M1,R1].

Fig. 4: Construction of PRMatrix

In existing GS implementations, the rank matrix initializa-
tion is either omitted [68], which increases the execution-phase
complexity from O(n2) to O(n3) as stated in Subsection II-B,
or executed sequentially on the CPU [69], [70]. In contrast, our
approach exploits GPUs to initialize both the rank matrix and
PRMatrix in parallel. Although this preprocessing step still
requires quadratic time, each matrix entry can be computed
independently, making the task embarrassingly parallel and
well suited for GPU execution. The massive parallelism and
high throughput of GPUs render this additional overhead
negligible in practice.

2) LA-Seq-CPU Implementation: Building on PRMatrix,
we develop the (L)ocality-(A)ware (Seq)uential implementa-
tion of the GS algorithm on the (CPU), referred to as LA-
Seq-CPU. The algorithm, shown in Algorithm 1, is organized
into three phases: initialization, execution, and postprocessing.
1 Initialization. The LAInit constructs the PRMatrix on the

GPU and initializes two key data structures: Next, which
records the next woman each man has yet to propose to,
and PartnerRank, which tracks the rank of each woman’s
current partner. 2 Execution. In this phase, the subrou-
tine LAProp is invoked for each unmatched man. Notably,
LAProp retrieves a PRNode at each iteration (line 13 in
Algorithm 1), thereby eliminating random rank-matrix ac-
cesses and fully exploiting the locality provided by PRMatrix.
3 Postprocessing. Once all men are matched, PostProc

finalizes the stable matching S by matching each woman to
the man at her recorded partner rank.

B. Contention Resolver

As discussed in Subsection III-C, traditional synchroniza-
tion methods suffer from severe inefficiency under high

420

Algorithm 1 The LA-Seq-CPU implementation
Input: PrefListsM, PrefListsW
Output: A stable matching S
1: procedure LA-SEQ-CPU PROCEDURE
2: PRMatrix,Next,PartnerRank←LAINIT ▷ initialization Phase
3: for m← 0 to n− 1 do ▷ execution Phase
4: LAPROP(m)
5: end for
6: S ← POSTPROC ▷ postprocessing Phase
7: return S
8: end procedure

9: procedure LAPROP(m)
10: wRank ← 0
11: while true do
12: pr ← PRMatrix[m,wRank]
13: pRank ← PartnerRank[pr.w]
14: wRank ← wRank + 1
15: if pRank > pr.mRank then
16: Next[m] ← wRank
17: PartnerRank[pr.w] ← pr.mRank
18: if pRank = n then
19: break
20: else
21: m← PrefListsW[pr.w, pRank]
22: wRank ← Next[m]
23: end if
24: end if
25: end while
26: end procedure

contention. To address this limitation, a finer-grained hard-
ware primitive capable of reliably handling such contention
is required. NVIDIA CUDA architectures provide advanced
atomic primitives for arithmetic synchronization, among which
atomicMin is particularly well-suited to this task. One
atomicMin instruction atomically reads the value at a mem-
ory address, updates it with the minimum of the current and
new values, and returns the original. Crucially, this ensures
that each thread completes its operation in a single attempt,
eliminating retries and minimizing wasted work [71], [72].

1 int m = blockIdx.x * blockDim.x + threadIdx.x;
2 if (m < n) {
3 int wRank = 0;
4 while (true) {
5 PRNode pr = PRMatrix[m * n + wRank];
6 int pRank = atomicMin(&PartnerRank[pr.w], pr

.mRank);
7 wRank++;
8 if (pRank > pr.mRank) {
9 Next[m] = wRank;

10 if (pRank == n) break;
11 m = PrefListsW[pr.w * n + pRank];
12 wRank = Next[m];
13 }
14 }
15 }

Listing 1: Implementation of LA-Par-GPU-MIN Kernel

By leveraging the advanced atomic function in modern GPU
architectures, we developed a (Par)allelized adaptation of the
(LA)-Seq-CPU on (GPU), referred to as LA-Par-GPU. As
detailed in Listing 1, the LA-Par-GPU kernel is specifically
designed to handle SMP workloads characterized by high
contention. It exploits data locality through PRMatrix and
minimizes wasted work using atomicMin, and it is therefore

also denoted as LA-Par-GPU-MIN. In this kernel, Line 6
directly updates PartnerRank[w] with mRank, returning
the woman’s current partner rank pRank without requiring
an expected value. If the update fails, man m is rejected
and proceeds to the next woman on his preference list. If
successful, two cases arise: (1) if pRank = n, the woman
was previously unmatched and the loop terminates; (2) oth-
erwise, the woman replaces a less-preferred partner, and the
CUDA thread assumes the identity of that displaced man
(Line 11). This update mechanism illustrates the efficiency of
atomicMin under high contention. In such scenarios, the
maximum number of atomicMin operations executed by
LA-Par-GPU-MIN is O(n2), a substantial improvement over
the O(n3) operations required with atomicCAS. 2

C. Hybrid Execution Model

1) Adaptive Execution Mechanisms: While PRMatrix min-
imizes data movements and the LA-Par-GPU-MIN GPU
kernel manages contention effectively, both approaches have
limitations. In congested cases and random cases, the locality-
aware sequential algorithm may underperform compared to
existing parallel GS or MW implementations since it fails
to exploit the inherent parallelism of these SMP workloads.
In solo cases, the costly synchronization overhead and GPU-
memory latency can make LA-Par-GPU-MIN even slower
than the basic GS algorithm.

To address these limitations, Bamboo-SMP introduces an
adaptive execution mechanism that dynamically switches be-
tween GPU and CPU to maintain optimal performance across
diverse workloads. Execution begins on the GPU with the
LA-Par-GPU-MIN kernel, enabling all free men to issue
proposals concurrently. Throughout the computation, Bamboo-
SMP continuously monitors the available degree of paral-
lelism. When only one unmatched man remains, the execution
flow shifts to the CPU, where sequential processing becomes
more effective. This adaptive transition prevents the slowdown
that occurs when reduced-parallelism workloads are left on the
GPU and ensures balanced utilization of both devices.

1 do {
2 cudaMemcpyAsync(PartnerRankHost,

PartnerRankDevice, n_ * sizeof(int),
cudaMemcpyDeviceToHost, memcpyStream);

3 cudaStreamSynchronize(memcpyStream);
4 int unmatchedID = n * (n - 1) / 2;
5 int unmatchedNum = 0;
6 int w = 0;
7 while (unmatchedNum <= 1 && w < n) {
8 int mRank = PartnerRankHost[w];
9 if (mRank == n) {

10 unmatchedNum++;
11 } else {
12 int m = PrefListsW[w * n + mRank]
13 unmatchedID -= m;
14 }
15 w++;
16 }
17 } while (unmatchedNum > 1);

Listing 2: MonitorProcedure

2A detailed mathematical proof is provided in Theorem IX.2 and IX.3.

421

To implement the adaptive execution policy, we introduce
the MonitorProcedure, which continuously tracks the
matching state and identifies the point at which only one un-
matched man remains. At this threshold, the system seamlessly
transitions from GPU-based parallel execution to CPU-based
sequential processing. The pseudocode for this monitoring
routine is provided in Listing 2.

As shown in Listing 2, at the start of each itera-
tion, the device array PartnerRankDevice is asyn-
chronously copied to the host (PartnerRankHost) using
cudaMemcpyAsync, creating a snapshot without interrupt-
ing the GPU kernel. cudaStreamSynchronize ensures
the snapshot is complete before proceeding. Two host-side
variables are then initialized: unmatchedNum, which counts
the number of unmatched men, and unmatchedID, set to
the sum of all men’s IDs, n(n − 1)/2, and used to identify
the last unmatched man. The procedure iterates over the host
snapshot of partner ranks: if mRank equals n, the man is
unmatched and unmatchedNum is incremented; otherwise,
the matched man’s ID, PrefListsW[w * n + mRank],
is subtracted from unmatchedID. When exactly one un-
matched man remains, his ID is revealed by unmatchedID,
and the monitor terminates, triggering a seamless switch to
CPU-based locality-aware sequential execution.

2) Heterogeneous Computing Model: Building on the adap-
tive execution mechanism, Bamboo-SMP employs a hetero-
geneous computing model that coordinates device–host inter-
action (Figure 5) to manage data structures and adjust the
execution flow, delivering optimal performance across all SMP
workloads. The pseudocode for Bamboo-SMP is shown in
Algorithm 2. 3

Fig. 5: The Heterogeneous System

3The proof of correctness of LA-Par-GPU-MIN kernel and our heteroge-
neous computing model is provided in Theorem IX.7 and IX.8.

Bamboo-SMP prefixes the three-phase design of LA-Seq-
CPU with an additional precheck phase, resulting in four
phases: precheck, initialization, execution, and postprocessing.
1 Precheck. Bamboo-SMP first checks for trivial perfect

cases by letting each man propose to his top choice. If all
top choices are distinct, the matching is already stable and
the algorithm terminates; otherwise, execution proceeds to
initialization. 2 Initialization. If the instance is not perfect,
Bamboo-SMP invokes LAInit on the GPU to construct the
PRMatrix and supporting data structures. An atomic flag,
termFlag, is also initialized to 0 to indicate that match-
ing is in progress. 3 Execution. Two threads are launched
concurrently: tGPU, which executes doWorkOnGPU to run
the LA-Par-GPU-MIN kernel, and tCPU, which executes
doWorkOnCPU to run the MonitorProcedure. These
threads compete to update termFlag: if it is set to 1, the
GPU completed all proposals; if set to 2, the CPU has detected
a single unmatched man and continues sequential execution.
4 Postprocessing. Once either the GPU or CPU completes,

the main thread joins the corresponding worker and detaches
the other. The stable matching is then finalized directly from
PartnerRankHost.

Algorithm 2 Bamboo-SMP
Input: PrefListsM-Host and PrefListsW-Host
Output: A stable matching S

1: procedure BAMBOO-SMP
2: isPerfect ← PRECHECK ▷ precheck phase
3: if isPerfect = false then
4: Run LAInit on the GPU ▷ initialization phase
5: termFlag.set(0)
6: std::thread tGPU(doWorkOnGPU) ▷ execution phase
7: std::thread tCPU(doWorkOnCPU)
8: while mode == 0 do
9: mode ← termFlag.load()

10: if mode = 1 then
11: tGPU.join()
12: tCPU.detach()
13: else if mode = 2 then
14: tCPU.join()
15: tGPU.detach()
16: end if
17: end while
18: end if
19: S ← POSTPROC() ▷ postprocessing phase
20: return S
21: end procedure

V. EXPERIMENT EVALUATION

This section presents our experimental evaluation of
Bamboo-SMP to demonstrate the effectiveness of the three
key techniques introduced in Section IV: locality-exploitation,
contention resolution via atomicMin, and the hybrid CPU-
GPU computing model.

a) Experimental Setup: All experiments were conducted
on a server at the Ohio Supercomputer Center, equipped with
2 AMD EPYC 7643 CPUs totaling 96 cores, 1 NVIDIA
Tesla A100 GPU, and 1 TB of host memory. The software
environment included g++ version 11.2.0, CMake version
3.25.2, and nvcc version 12.6.77.

422

b) Baselines: To provide a comprehensive comparison,
we implemented all five state-of-the-art implementations dis-
cussed in Section III-D. Parallel CPU versions were imple-
mented using C++ standard library threads. To isolate and
quantify the contributions of each proposed technique, we also
implemented four additional GPU kernels:
• MW-Par-GPU-CAS: Parallel MW on GPU with contention

resolved using atomicCAS.
• MW-Par-GPU-MIN: Parallel MW on GPU with contention

resolved using atomicMin.
• LA-Par-GPU-CAS: Locality-aware parallel GS on GPU

with contention resolved using atomicCAS.
• LA-Par-GPU-MIN: Locality-aware parallel GS on GPU

with contention resolved using atomicMin.
c) Datasets.: The absence of publicly accessible SMP

workloads necessitated the use of synthetic datasets to capture
the diversity and complexity of real-world scenarios. Table II
summarizes the four representative synthetic workloads used
in our experiments, highlighting their distinct characteristics
and execution pattern.

Workload Workload Characteristics Execution Pattern
Perfect Case All participants have distinct

top choices.
Embarrassingly paral-
lel.

Solo Case Most participants matched
early; few remain unmatched
requiring further rounds.

Highly sequential;
Minimal parallelism;
Suitable for CPU.

Congested Case Identical or similar pref-
erences among participants
causing frequent rejections.

High contention;
Substantial
parallelism;
Suitable for GPU.

Random Case Preferences grouped in
clusters with random order
within groups.

Moderate contention;
Substantial
parallelism;
Suitable for GPU.

TABLE II: Summary of Synthetic SMP Workloads.

A. Where Does Time Go?

This subsection evaluates in detail the impact of the PRMa-
trix and atomicMin techniques in both sequential and par-
allel processing across diverse workloads.

1) Performance Benefits of PRMatrix: We empirically
demonstrate that PRMatrix is a broadly effective optimization.
It achieves substantial performance gains in solo cases and
introduces only negligible overhead in other scenarios.

a) Cache behavior: We first examine cache behav-
ior to confirm that PRMatrix improves locality by re-
ducing cache misses. The top row of Fig. 6 reports
cache miss ratios for five implementations: GS-Seq-CPU,
MW-Seq-CPU, LA-Seq-CPU, MW-Par-GPU-CAS, and
LA-Par-GPU-CAS, evaluated on solo, congested, and ran-
dom workloads. The GPU implementations are omitted in
the solo case due to severe bottlenecks during sequential
execution, as discussed in Section III-D. Across all three
workloads, PRMatrix reduces cache miss ratios signif-
icantly. In the solo case on CPU, cache miss ratios fall
from 23.4% (GS-Seq-CPU) and 22.9% (MW-Seq-CPU) to
just 3.1% (LA-Seq-CPU). In the congested case, CPU miss

ratios decrease from 28.9% and 27.3% to 15.7%, while GPU
miss ratios drop from 41.6% (MW-Par-GPU-CAS) to 20.0%
(LA-Par-GPU-CAS). In the random case, CPU miss ratios
fall to 11.4%, and GPU ratios drop from 46.6% to 23.7%.

b) Runtime performance: We next examine runtime per-
formance. The bottom row of Fig. 6 shows initialization
and execution times (in seconds) for the same implementa-
tions and workloads, aligned vertically with the cache plots
above. GPU-based parallel initialization is applied uniformly
across all implementations to ensure fairness. Overall, PRMa-
trix achieves remarkable speedups across all workloads
while introducing only negligible overhead. In the solo
case, LA-Seq-CPU achieves a 4.64× speedup, reducing
runtime from 19.00s (GS-Seq-CPU) to 4.09s. This improve-
ment arises from eliminating a large proportion of random
memory accesses. In the congested case, LA-Seq-CPU re-
duces runtime from 53.81s to 28.50s, a 1.88× speedup,
while on GPU, LA-Par-GPU-CAS slightly outperforms
MW-Par-GPU-CAS (0.58s versus 0.64s). In the random
case, LA-Seq-CPU reduces runtime from 31.50s to 11.14s,
a 2.82× improvement, and on GPU, LA-Par-GPU-CAS
performs comparably to MW-Par-GPU-CAS (0.46s versus
0.45s).

Fig. 6: Cache behavior (top) and runtime performance (bot-
tom) of five implementations across Solo (left), Congested
(center), and Random workloads (right).

2) Operational efficiency of Contention Resolver: To eval-
uate the effectiveness of atomicMin, we evaluated four GPU
kernels on congested and random workloads. The top row of
Fig. 7 reports their execution times, and the bottom row shows
the number of atomic operations, profiled with ncu. The base-
line kernel, MW-Par-GPU-CAS, employs no optimizations.
MW-Par-GPU-MIN introduces atomicMin to mitigate con-
tention and improve synchronization. LA-Par-GPU-CAS
leverages PRMatrix to improve memory locality and reduce
data movement. Finally, LA-Par-GPU-MIN combines both
techniques to capture the benefits of each. These results con-
firm that atomicMin significantly enhances synchronization

423

efficiency under contention, and that its benefits extend across
both congested and random workloads when combined with
PRMatrix.

In the congested case (top-left subplot), with workload
sizes up to 30,000, the baseline kernel underperforms com-
pared to its optimized variants. At the largest workload size,
atomicMin alone achieves a 2.33× speedup, PRMatrix
achieves 1.29×, and their combination delivers a 3.44×
speedup. These improvements correspond closely to the re-
duction in global atomic operations enabled by atomicMin,
which eliminates wasted work under heavy contention. As
shown in the bottom-left subplot, both MW-Par-GPU-MIN
and LA-Par-GPU-MIN nearly halve the number of atomic
operations compared to their atomicCAS-based counterparts.

For random workloads (right subplots), we fixed the total
workload size at 30,000 and varied group sizes from 1 to
50. The top-right subplot shows that both PRMatrix and
atomicMin improve performance across all group sizes.
Although contention naturally decreases as group size grows,
resulting in a less pronounced reduction in atomic operations
as shown in the bottom-right subplot, the combined kernel
consistently achieves the best execution times.

Fig. 7: Execution times (top) and atomic operations (bottom)
of four GPU kernels for Congested (left) and Random (right)
workloads.

B. Performance Evaluation

To demonstrate the high performance of Bamboo-SMP
relative to state-of-the-art algorithms, we evaluated it on
four representative scenarios: perfect, congested, random, and
solo. For each scenario, the GPU workload size was scaled
to 30,000. Figure 8 presents, for every implementation and
scenario, the breakdown of time spent in the prechecking
phase (specific to Bamboo-SMP), initialization, execution, and
postprocessing. In baseline algorithms, the rank matrix is
initialized on the CPU, consistent with their original design.
In contrast, Bamboo-SMP initializes both the rank matrix and

PRMatrix directly on the GPU, exploiting massive parallelism
as described in Section IV-A.

From these results, we draw the following observations.
1 Across all workloads, Bamboo-SMP consistently achieves

the lowest latency, underscoring its robustness and effective-
ness as a general solution. It outperforms MW-Par-GPU-CAS
by over 20× in the congested and random cases, and
MW-Par-CPU by more than 6× in the solo case. 2 The
prechecking step in Bamboo-SMP and the postprocessing step
in all algorithms consume negligible time and have no impact
on overall performance. 3 In the perfect case, Bamboo-
SMP bypasses unnecessary phases entirely, sharply reducing
total runtime. 4 In all workloads, GPU-based initialization
of PRMatrix in Bamboo-SMP delivers substantial speedup
by exploiting independence across rank matrix entries. 5 In
solo cases, Bamboo-SMP transitions execution to the host
once only one unmatched man remains, leveraging the CPU’s
low-latency operations and eliminating rank matrix access
via PRMatrix. 6 In congested and random cases, CUDA
kernels reduce execution time through massive parallelism,
further enhanced by the combined benefits of PRMatrix and
the contention resolver.

Fig. 8: Performance comparison of Bamboo-SMP and baseline
algorithms

C. Scalability Evaluation on Multi-GPUs

The scalability of Bamboo-SMP is inherently bounded by
the memory capacity of a single GPU, which on the A100
corresponds to problem sizes of up to about 30K partici-
pants. Scaling data size beyond this limit requires distribut-
ing larger workloads across multiple GPUs, which evaluates
algorithm’s ability to maintain high performance as additional
processors are used to handle larger problem sizes. To show
Bamboo-SMP’s scalability as the number of SMP instances
increases, we implemented a multi-GPU version on four-GPU
A100 nodes interconnected via NVLink, without relying on
unified memory. During execution, each GPU manages the
preference lists and associated data of a disjoint subset of
participants, partitioned evenly by participant ID, while GPU
kernels directly access remote GPUs whenever non-local data
is required.

424

Figure 9 presents the execution times of Bamboo-SMP on
4 GPUs as workload sizes increase to 90K participants. Since
these problem sizes exceed the single-GPU memory limit,
we compare performance against the best CPU baselines:
GS-PAR-CPU (Random and Congested) and GS-SEQ-CPU
(Solo). The wide gap between the baseline curves (black
dashed lines) and Bamboo-SMP (red solid lines) clearly
demonstrates substantial speedups, reaching up to 10.9× (Ran-
dom), 13.8× (Congested), and 5.6× (Solo). These performance
gains illustrate Bamboo-SMP’s strong multi-GPU scalability
and its critical role in solving large-scale SMP instances.

Fig. 9: Execution times of Bamboo-SMP with increasing
problem sizes on a multi-GPU platform

The key to achieving high scalability is to ensure that the
average parallel processing overhead or latency—including
synchronization delays and inter-GPU communication la-
tency—increases only minimally as the workload size and
the number of GPU nodes grow [73]. The average latency
is computed as the total overhead across all nodes divided
by the number of nodes, enabling proportional and balanced
scaling of workloads with respect to the GPU cluster size. Our
experiments demonstrate that when scaling SMP workloads
across two, three, or more GPU nodes, the average latency
increases only marginally with each additional node. This low
overhead enables efficient execution of large-scale workloads
across dozens of GPU nodes. Furthermore, as inter-node GPU
communication hardware continues to advance, the overall
scalability of such systems is expected to improve substan-
tially.

VI. RELATED WORK

In addition to the parallelized GS and MW algorithms,
several theoretical parallel approaches have been proposed to
solve the SMP with complexities lower than the GS algo-
rithm’s O(n2). SMP can be framed as a linear programming
and solved using the primal-dual interior path method [74],
[75], [76]. This approach achieves an impressive sublinear time
complexity of O(n1/2 log3 n). However, it requires at least
O(n4) processors, making it hard to parallelize in practice. To
reduce the number of processors, a parallel iterative improve-
ment method was proposed, which starts with a randomly
generated initial matching and iteratively refines it towards
stability [77]. This method [78] and its variations [79], [80]
still require n2 processors for parallel processing. A divide

and conquer parallel algorithm was developed with a time
complexity of O(n log log n), utilizing n processors on a
Concurrent Read Exclusive Write (CREW) Parallel Random
Access Machine (PRAM) [81], [82], and it runs slower than
the sequential GS algorithm [83]. A two-phase parallelization
of the GS algorithm uses the master-slave strategy, alternating
between rounds of proposals and rejections [83], and its
inefficiency was demonstrated in [56].

VII. CONCLUSION

We presented Bamboo-SMP, a high-performance parallel
framework that reduces data access latency through a locality-
aware structure, leverages CUDA-based synchronization to
eliminate redundant atomic operations under high contention,
and integrates a GPU–CPU hybrid computing model to ensure
efficiency across diverse workloads. Our experimental results
demonstrate that Bamboo-SMP consistently outperforms exist-
ing algorithms, achieving significant speedups across a wide
range of workloads. Its performance improvements and multi-
GPU scalability underscore its potential to solve large-scale
SMP problems and to meet real-time requirements in practical
applications.

VIII. ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for
their insightful comments and suggestions. The work is sup-
ported in part by the U.S. National Science Foundation under
grants MRI[1]2018627, CCF-2005884, CCF-2210753, CCF-
2312507, and OAC-2310510.

IX. ADDENDUM: THE SOUNDNESS OF BAMBOO-SMP

Lemma IX.1. To find the minimum among n numbers using
n threads with atomicCAS on a shared memory location
(initialized with a value larger than all n numbers), the total
number of atomicCAS operations is O(n2).

Proof. Let the initial value in the shared memory be vn+1, and
let the values proposed by the threads be v1 < v2 < · · · <
vn < vn+1. The thread with the smallest value v1 executes
atomicCAS only once. The thread with the second smallest
value v2 may execute at most twice: it fails once due to v1,
then succeeds or terminates on its second attempt. In general,
the thread with the k-th smallest value vk executes at most k
times, failing once for each of the k − 1 smaller values that
updated the location earlier. Thus, the maximum number of
executions is T (n) =

∑n
k=1 k = O(n2).

Theorem IX.2. For an SMP instance with n men and n
women, the number of atomicCAS executions is O(n3).

Proof. Consider the worst case where all n men share identical
preference lists. In the first round, all n threads contend
for the same memory location, requiring O(n2) operations
by Lemma IX.1. In the second round, n − 1 men remain
unmatched, again incurring O(n2) operations. This pattern
continues across n rounds. Therefore, the total number of
atomicCAS executions is

∑n
i=1 O(n2) = O(n3).

425

Theorem IX.3. For an SMP instance with n men and n
women, the maximum number of atomicMin executions is
O(n2).

Proof. Let the initial value in the shared memory be vn+1, and
let the proposed values be v1 < v2 < · · · < vn < vn+1. Each
thread executes atomicMin exactly once, since the operation
always succeeds by writing the minimum of the proposed
and current value. Hence, determining the minimum among n
values requires at most n executions. As this process repeats
for each of the n rounds of proposals in the SMP instance,
the worst-case total is O(n2).

During the execution of the LA-Par-GPU-MIN kernel,
each man is either matched or unmatched. A man m
is matched with a woman w if prefListsW[w,
partnerRank[w]] = m; otherwise, he is unmatched.
A man is active if there exists a thread executing
atomicMin(&partnerRank[w], mRank) with
prefListsW[w, mRank] = m; otherwise he is inactive.

Lemma IX.4. Throughout execution, if a man is matched, he
is inactive; conversely, if a man is unmatched, he is active.

Proof. We prove this lemma by induction.
Base Case. Initially, every man is unmatched and ac-

tive, since each thread begins by executing a proposal via
atomicMin.

Induction Hypothesis. Assume that at some execution point,
this lemma holds.

Induction Step. Although a woman may receive
multiple proposals concurrently, each is issued through
atomicMin, which serializes updates. For a proposal
atomicMin(&partnerRank[w], mRank), one of three
cases can occur:
1) If w is unmatched, she accepts. Man m becomes matched,

his thread terminates, and he becomes inactive.
2) If w is matched with a more-preferred man

(partnerRank[w] < mRank), she rejects. Man m
remains unmatched, advances to the next woman on his
list, and thus remains active.

3) If w is matched with a less-preferred man
(partnerRank[w] > mRank), she accepts. Man m
becomes matched and inactive, while the displaced partner
becomes unmatched, resumes proposals on that thread,
and is therefore active.

In all cases, the invariant is preserved.

Lemma IX.5. LA-Par-GPU-MIN kernel terminates with a
matching.

Proof. To begin, termination of the LA-Par-GPU-MIN ker-
nel is equivalent to reaching a matching. If the kernel halts,
no threads remain active. By Lemma IX.4, this implies that all
men are matched with distinct women, and hence the result is
a complete matching. Conversely, once a complete matching is
formed, no further proposals occur and all threads terminate.

To finish the argument, we show this kernel always termi-
nates in two steps. 1. The number of acceptances is finite.

Suppose that n(n − 1) + 2 acceptances occur. Then at least
one woman must accept twice after all others had already
accepted once, which implies all women were already matched
before the latest acceptance. But this contradicts the existence
of that last acceptance. Hence the number of acceptances is at
most n(n − 1) + 1, and therefore finite. 2. Every active man
makes progress. If a man is active, he eventually produces
an acceptance. If he were rejected by all women, then all
women would already be matched, leaving no active men
and contradicting the fact that he is making proposals. Thus,
every active man contributes to the bounded set of acceptances.
Since the number of acceptances is finite and every active man
eventually produces one, the kernel must terminate.

Lemma IX.6. LA-Par-GPU-MIN kernel always terminates
with a stable matching.

Proof. We prove this by contradiction. Assume that the
matching µ produced by LA-Par-GPU-MIN Kernel is not
stable. Then there must exist a blocking pair (m,w) such
that m prefers w over µ(m), and w prefers m over µ(w).
During execution, when m proposes to µ(m) and is accepted,
m has already proposed to w and been rejected. At that time,
w was already matched with a man she preferred over m.
Therefore, µ(w) is strictly preferred by w to m, contradicting
the assumption that w prefers m over µ(w). Thus, no blocking
pair exists, and µ is a stable matching.

Theorem IX.7. The LA-Par-GPU-MIN Kernel must ter-
minate with a man-optimal stable matching, where no man
can obtain a more preferred partner in any other stable
matching.

Proof. Suppose the matching µ produced by
LA-Par-GPU-MIN is stable but not man-optimal. Then
there exists another stable matching µ′ and a man m such that
m prefers µ′(m) = w′ over µ(m) = w. During execution,
some men may be rejected by their partners in µ′. Let m
be among the first rejected. Suppose m is rejected because
w′ is matched with m′, which means w′ prefers m′ to m.
Let µ′(m′) = w′′. Since m is rejected first, m′ could not
have been rejected by w′′, so m′ must prefer w′ to w′′.
Otherwise, m′ would have proposed to w′′ first and been
rejected before turning to w′, contradicting the minimality of
m’s rejection. Thus, in µ′, both m′ and w′ prefer each other
over their partners, forming a blocking pair. This contradicts
the stability of µ′. Hence, µ must be man-optimal.

Theorem IX.8. The Bamboo-SMP hybrid execution model
must terminate with a man-optimal stable matching

Proof. The correctness of our heterogeneous computing model
holds regardless of which device produces the matching. If all
computation is performed on the GPU, the proof of Theo-
rem IX.7 applies directly. If the CPU takes over, the snapshot
of proposal states determines which man proceeds, exactly as
it would on the GPU, thereby preserving correctness.

426

REFERENCES

[1] D. Gale and L. S. Shapley, “College admissions and the stability of
marriage,” The American Mathematical Monthly, vol. 69, no. 1, pp. 9–
15, 1962.

[2] Y. Geng and M. Gao, “Distributed stable marriage with incomplete list
and ties using spark,” S15/projects/stable marriage spark report. pdf,
2015.

[3] S. Wu, L. H. U, and P. Karras, “k-best egalitarian stable marriages for
task assignment,” Proceedings of the VLDB Endowment, vol. 16, no. 11,
pp. 3240–3252, 2023.

[4] J. Hirvonen and S. Ranjbaran, “Fast, fair and truthful distributed stable
matching for common preferences,” arXiv preprint arXiv:2402.16532,
2024.

[5] B. Li, Y. Cheng, G. Wang, and Y. Sun, “Incremental bilateral preference
stable planning over event based social networks,” Complexity, vol. 2019,
no. 1, p. 1532013, 2019.

[6] R. Anurag and A. Bhattacharya, “Sms: Stable matching algorithm
using skylines,” in Proceedings of the 28th International Conference
on Scientific and Statistical Database Management, 2016, pp. 1–4.

[7] K. Fritsch and S. Scherzinger, “Solving hard variants of database
schema matching on quantum computers,” Proceedings of the VLDB
Endowment, vol. 16, no. 12, pp. 3990–3993, 2023.

[8] P. A. Bernstein, S. Melnik, and J. E. Churchill, “Incremental schema
matching,” in VLDB, vol. 6. Seoul, Korea, 2006, pp. 1167–1170.

[9] S. Melnik, H. Garcia-Molina, and E. Rahm, “Similarity flooding: A
versatile graph matching algorithm and its application to schema match-
ing,” in Proceedings 18th international conference on data engineering.
IEEE, 2002, pp. 117–128.

[10] A. Jhingran, “Moving up the food chain: Supporting e-commerce
applications on databases,” ACM SIGMOD Record, vol. 29, no. 4, pp.
50–54, 2000.

[11] S. Scott, A study of stable marriage problems with ties. University of
Glasgow (United Kingdom), 2005.

[12] B. Gao, Z. Zhou, F. Liu, F. Xu, and B. Li, “An online framework for joint
network selection and service placement in mobile edge computing,”
IEEE Transactions on Mobile Computing, vol. 21, no. 11, pp. 3836–
3851, 2021.

[13] B. Genc, M. Siala, G. Simonin, and B. O’Sullivan, “On the complexity
of robust stable marriage,” in International Conference on Combinatorial
Optimization and Applications. Springer, 2017, pp. 441–448.

[14] L. Du, P. Cheng, L. Chen, W. Ni, J. Zhao, and X. Lin, “Stable task as-
signment with range partition under differential privacy,” in International
Conference on Database Systems for Advanced Applications. Springer,
2024, pp. 243–253.

[15] R. C.-W. Wong, “Spatial matching.” 2017.
[16] L. Guanjie, M. Zeng, K. Wu, G. Wang, Z. Shan, and K. Lei,

“Blockchain-based cooperative game bilateral matching architecture for
shared storage,” Available at SSRN 4654316.

[17] Z. Chen, P. Cheng, L. Chen, X. Lin, and C. Shahabi, “Fair task assign-
ment in spatial crowdsourcing,” Proceedings of the VLDB Endowment,
vol. 13, no. 12, 2020.

[18] Y. Tong, J. She, B. Ding, L. Wang, and L. Chen, “Online mobile
micro-task allocation in spatial crowdsourcing,” in 2016 IEEE 32Nd
international conference on data engineering (ICDE). IEEE, 2016, pp.
49–60.

[19] J. She, Y. Tong, L. Chen, and C. C. Cao, “Conflict-aware event-
participant arrangement and its variant for online setting,” IEEE Trans-
actions on Knowledge and Data Engineering, vol. 28, no. 9, pp. 2281–
2295, 2016.

[20] B. Zhao, P. Xu, Y. Shi, Y. Tong, Z. Zhou, and Y. Zeng, “Preference-
aware task assignment in on-demand taxi dispatching: An online stable
matching approach,” in Proceedings of the AAAI conference on artificial
intelligence, vol. 33, no. 01, 2019, pp. 2245–2252.

[21] J. She, Y. Tong, L. Chen, and C. C. Cao, “Conflict-aware event-
participant arrangement and its variant for online setting,” IEEE Trans-
actions on Knowledge and Data Engineering, vol. 28, no. 9, pp. 2281–
2295, 2016.

[22] Y. Tong, L. Wang, Z. Zimu, B. Ding, L. Chen, J. Ye, and K. Xu,
“Flexible online task assignment in real-time spatial data,” Proceedings
of the VLDB Endowment, vol. 10, no. 11, pp. 1334–1345, 2017.

[23] B. Li, Y. Cheng, Y. Yuan, G. Wang, and L. Chen, “Simultaneous arrival
matching for new spatial crowdsourcing platforms,” in Proceedings of

the Twenty-Ninth International Joint Conference on Artificial Intelli-
gence, ser. IJCAI’20, 2021.

[24] A. E. Roth, T. Sönmez, and M. U. Ünver, “Kidney exchange,” The
Quarterly journal of economics, vol. 119, no. 2, pp. 457–488, 2004.

[25] N. Seidi, “A stable matching assignment for cancer treatment centers
using survival analysis,” arXiv preprint arXiv:2401.10469, 2024.

[26] L. Huang, K. Zhang, Y. Sun, G. Shen, and D. Coursey, “Application of
gale-shapley algorithm in optimal matching for healthcare facilities to
elderly population: the case of hangzhou, china,” Applied Economics,
pp. 1–12, 2024.

[27] A. Abdulkadiroğlu, P. A. Pathak, and A. E. Roth, “The new york city
high school match,” American Economic Review, vol. 95, no. 2, pp.
364–367, 2005.

[28] Z. Sun, N. Yamada, Y. Takenami, D. Moriwaki, and M. Yokoo, “Stable
matchings in practice: A constraint programming approach,” arXiv
preprint arXiv:2401.07761, 2024.

[29] P. Biró, A. Hassidim, A. Romm, R. I. Shorrer, and S. Sovago, “The large
core of college admission markets: Theory and evidence,” in Proceedings
of the 23rd ACM Conference on Economics and Computation, 2022, pp.
958–959.

[30] A. Khalili-Fard, R. Tavakkoli-Moghaddam, N. Abdali, M. Alipour-
Vaezi, and A. Bozorgi-Amiri, “A roommate problem and room allocation
in dormitories using mathematical modeling and multi-attribute decision-
making techniques,” Journal of Modelling in Management, 2024.

[31] C. Yang, Y. Hou, Y. Song, T. Zhang, J.-R. Wen, and W. X. Zhao, “Mod-
eling two-way selection preference for person-job fit,” in Proceedings of
the 16th ACM Conference on Recommender Systems, 2022, pp. 102–112.

[32] R. Kaur, V. Goyal, V. M. Gunturi, and C. Long, “A matching based
spatial crowdsourcing framework for egalitarian task assignment,” in
2022 23rd IEEE International Conference on Mobile Data Management
(MDM). IEEE, 2022, pp. 185–187.

[33] National Resident Matching Program, “Charting outcomes™:
Characteristics of u.s. do seniors who matched to their preferred
specialty: 2024 main residency match,” Online, 2025, available
from: https://www.nrmp.org/match-data/2024/08/charting-outcomes-
characteristics-of-u-s-do-seniors-who-matched-to-their-preferred-
specialty-2024-main-residency-match/.

[34] P. Xia, B. Liu, Y. Sun, and C. Chen, “Reciprocal recommendation system
for online dating,” in Proceedings of the 2015 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining 2015,
2015, pp. 234–241.

[35] B. Zhao, P. Xu, Y. Shi, Y. Tong, Z. Zhou, and Y. Zeng,
“Preference-aware task assignment in on-demand taxi dispatching: an
online stable matching approach,” in Proceedings of the Thirty-Third
AAAI Conference on Artificial Intelligence and Thirty-First Innovative
Applications of Artificial Intelligence Conference and Ninth AAAI
Symposium on Educational Advances in Artificial Intelligence, ser.
AAAI’19/IAAI’19/EAAI’19. AAAI Press, 2019. [Online]. Available:
https://doi.org/10.1609/aaai.v33i01.33012245

[36] N. M. Kou, L. H. U, N. Mamoulis, Y. Li, Y. Li, and Z. Gong, “A
topic-based reviewer assignment system,” Proceedings of the VLDB
Endowment, vol. 8, no. 12, pp. 1852–1855, 2015.

[37] Y. Tong, Z. Zhou, Y. Zeng, L. Chen, and C. Shahabi, “Spatial crowd-
sourcing: a survey,” The VLDB Journal, vol. 29, pp. 217–250, 2020.

[38] H. Xu and B. Li, “Egalitarian stable matching for vm migration in cloud
computing,” in 2011 IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS). IEEE, 2011, pp. 631–636.

[39] B. M. Maggs and R. K. Sitaraman, “Algorithmic nuggets in content
delivery,” ACM SIGCOMM Computer Communication Review, vol. 45,
no. 3, pp. 52–66, 2015.

[40] T. Wang, F. Liu, J. Guo, and H. Xu, “Dynamic sdn controller assignment
in data center networks: Stable matching with transfers,” in IEEE
INFOCOM 2016-The 35th Annual IEEE International Conference on
Computer Communications. IEEE, 2016, pp. 1–9.

[41] W. N. W. Muhamad, S. S. M. Aris, K. Dimyati, M. A. Javed, A. Idris,
D. M. Ali, and E. Abdullah, “Energy-efficient task offloading in fog
computing for 5g cellular network,” Engineering Science and Technol-
ogy, an International Journal, vol. 50, p. 101628, 2024.

[42] S. S. Yellampalli, M. Chalupa, J. Wang, H. J. Song, X. Zhang,
H. Yue, and M. Pan, “Client selection in federated learning: A dynamic
matching-based incentive mechanism.”

[43] Y. Zhang, L. Cui, and Y. Zhang, “A stable matching based elephant flow
scheduling algorithm in data center networks,” Computer Networks, vol.
120, pp. 186–197, 2017.

427

[44] B. Li, Y. Cheng, Y. Yuan, G. Wang, and L. Chen, “Three-dimensional
stable matching problem for spatial crowdsourcing platforms,” in
Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, ser. KDD ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 1643–1653.
[Online]. Available: https://doi.org/10.1145/3292500.3330879

[45] H. AlHakami, F. Chen, and H. Janicke, “An extended stable marriage
problem algorithm for clone detection,” arXiv preprint arXiv:1408.2969,
2014.

[46] National Resident Matching Program, “Results and Data: 2025 Main
Residency Match,” https://www.nrmp.org/about/news/2025/05/nrmp-
releases-2025-main-residency-match-results-and-data-report-
providing-in-depth-insight-into-the-largest-residency-match-in-
history/, 2025, accessed: 2025-09-06.

[47] D. Fan, R. Lee, and X. Zhang, “X-blossom: Massive parallelization of
graph maximum matching.”

[48] C. Hong, A. Sukumaran-Rajam, B. Bandyopadhyay, J. Kim, S. E.
Kurt, I. Nisa, S. Sabhlok, Ü. V. Çatalyürek, S. Parthasarathy, and
P. Sadayappan, “Efficient sparse-matrix multi-vector product on gpus,” in
Proceedings of the 27th International Symposium on High-Performance
Parallel and Distributed Computing, 2018, pp. 66–79.

[49] D. Gusfield and R. W. Irving, The stable marriage problem: structure
and algorithms. MIT press, 1989.

[50] F. Manne, M. Naim, H. Lerring, and M. Halappanavar, “On stable
marriages and greedy matchings,” in 2016 Proceedings of the Seventh
SIAM Workshop on Combinatorial Scientific Computing. SIAM, 2016,
pp. 92–101.

[51] D. G. McVitie and L. B. Wilson, “The stable marriage problem,”
Communications of the ACM, vol. 14, no. 7, pp. 486–490, 1971.

[52] ——, “Algorithm 411: Three procedures for the stable marriage
problem,” Commun. ACM, vol. 14, no. 7, p. 491–492, jul 1971.
[Online]. Available: https://doi.org/10.1145/362619.362632

[53] National Resident Matching Program, “Results and data: Special-
ties matching service, 2025 appointment year,” Online, 2025, avail-
able from: https://www.nrmp.org/match-data/2025/02/specialty-match-
program-results-2021-2025/.

[54] Z. Zhang, Z. Zhu, and X. Zhang, “A permutation-based page interleaving
scheme to reduce row-buffer conflicts and exploit data locality,” in
Proceedings of the 33rd annual ACM/IEEE international symposium
on Microarchitecture, 2000, pp. 32–41.

[55] K. Zhang, K. Wang, Y. Yuan, L. Guo, R. Lee, and X. Zhang, “Mega-kv:
A case for gpus to maximize the throughput of in-memory key-value
stores,” Proceedings of the VLDB Endowment, vol. 8, no. 11, pp. 1226–
1237, 2015.

[56] H. H. Lerring, “Parallel algorithms for matching under preference,”
Master’s thesis, The University of Bergen, 2017.

[57] A. Morrison and Y. Afek, “Fast concurrent queues for x86 processors,”
in Proceedings of the 18th ACM SIGPLAN symposium on Principles
and practice of parallel programming, 2013, pp. 103–112.

[58] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen,
N. Satish, M. Smelyanskiy, S. Chennupaty, P. Hammarlund et al.,
“Debunking the 100x gpu vs. cpu myth: an evaluation of throughput
computing on cpu and gpu,” in Proceedings of the 37th annual interna-
tional symposium on Computer architecture, 2010, pp. 451–460.

[59] J. L. Hennessy and D. A. Patterson, Computer Architecture, Sixth
Edition: A Quantitative Approach, 6th ed. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2017.

[60] D. Fan, R. Lee, and X. Zhang, “X-ted: Massive parallelization of tree
edit distance,” Proc. VLDB Endow., vol. 17, no. 7, p. 1683–1696, Mar.
2024. [Online]. Available: https://doi.org/10.14778/3654621.3654634

[61] H. Wang, L. Geng, R. Lee, K. Hou, Y. Zhang, and X. Zhang,
“Sep-graph: finding shortest execution paths for graph processing under
a hybrid framework on gpu,” in Proceedings of the 24th Symposium
on Principles and Practice of Parallel Programming, ser. PPoPP ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
38–52. [Online]. Available: https://doi.org/10.1145/3293883.3295733

[62] K. Meng, L. Geng, X. Li, Q. Tao, W. Yu, and J. Zhou, “Efficient multi-
gpu graph processing with remote work stealing,” in 2023 IEEE 39th
International Conference on Data Engineering (ICDE), 2023, pp. 191–
204.

[63] L. Geng, R. Lee, and X. Zhang, “Librts: A spatial indexing library by ray
tracing,” in Proceedings of the 30th ACM SIGPLAN Annual Symposium
on Principles and Practice of Parallel Programming, ser. PPoPP ’25.

New York, NY, USA: Association for Computing Machinery, 2025, p.
396–411. [Online]. Available: https://doi.org/10.1145/3710848.3710850

[64] ——, “Rayjoin: Fast and precise spatial join,” in Proceedings of the
38th ACM International Conference on Supercomputing, ser. ICS ’24.
New York, NY, USA: Association for Computing Machinery, 2024, p.
124–136. [Online]. Available: https://doi.org/10.1145/3650200.3656610

[65] S. Zhang, M. Xiao, C. Guo, L. Geng, H. Wang, and X. Zhang,
“Hypha: a framework based on separation of parallelisms to accelerate
persistent homology matrix reduction,” in Proceedings of the ACM
International Conference on Supercomputing, ser. ICS ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 69–81.
[Online]. Available: https://doi.org/10.1145/3330345.3332147

[66] Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza, “Dissecting the
nvidia volta gpu architecture via microbenchmarking,” arXiv preprint
arXiv:1804.06826, 2018.

[67] Z. Jia and P. Van Sandt, “Dissecting the ampere gpu architecture via
microbenchmarking,” in GPU Technology Conference, vol. 43, 2021.

[68] H. Wilde, V. Knight, and J. Gillard, “Matching: A python library for
solving matching games,” Journal of Open Source Software, vol. 5,
no. 48, p. 2169, 2020.

[69] J. P. Krishnaa and R. Meenakshi, “CS6023: Matching with Pref-
erences,” https://github.com/meenakshiravisankar/stable-matching/blob/
master/GPU Project Report.pdf, 2020, course Project Report, Roll No:
CS14B049, AE15B051. Accessed: 2025-04-20.

[70] N. Udhayasankar, “A parallel approach to the stable matching problem,”
https://cse.buffalo.edu/faculty/miller/Courses/CSE633/Naveen-
Udhayasankar-Spring-2022.pdf, 2022, cSE 633 Course Project
Report, Spring 2022. Accessed: 2025-04-20.

[71] NVIDIA, “Cuda toolkit documentation,” Online, 2024, available from:
https://docs.nvidia.com/cuda/.

[72] C. Yang and J. Mellor-Crummey, “A wait-free queue as fast as fetch-
and-add,” in Proceedings of the 21st ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, 2016, pp. 1–13.

[73] X. Zhang, Y. Yan, and K. He, “Latency metric: An experimental
method for measuring and evaluating parallel program and architecture
scalability,” Journal of Parallel and Distributed Computing, vol. 22,
no. 3, pp. 392–410, 1994.

[74] T. Feder, N. Megiddo, and S. A. Plotkin, “A sublinear parallel algorithm
for stable matching,” Theoretical computer science, vol. 233, no. 1-2,
pp. 297–308, 2000.

[75] A. Subramanian, “A new approach to stable matching problems,” SIAM
Journal on Computing, vol. 23, no. 4, pp. 671–700, 1994.

[76] T. Fleiner, “A fixed-point approach to stable matchings and some
applications,” Mathematics of Operations research, vol. 28, no. 1, pp.
103–126, 2003.

[77] E. Lu and S. Zheng, “A parallel iterative improvement stable matching
algorithm,” in International Conference on High-Performance Comput-
ing. Springer, 2003, pp. 55–65.

[78] A. A. Barkley and J. A. Martin, “Implementing the parallel iterative
improvement algorithm for the stable marriage problem on gpus.”

[79] S. Wynn, A. Kyritsis, S. Alberi, and E. Lu, “Selection improvements
for the parallel iterative algorithm for stable matching,” arXiv preprint
arXiv:2401.07467, 2024.

[80] C. White and E. Lu, “An improved parallel iterative algorithm for stable
matching,” SuperComputing 2013, Denver, Colorado, USA, 2013.

[81] S.-S. Tseng and R. C. T. Lee, “A parallel algorithm to solve the stable
marriage problem,” BIT Numerical Mathematics, vol. 24, pp. 308–316,
1984.

[82] S. Tseng, “The average performance of a parallel stable marriage
algorithm,” BIT Numerical Mathematics, vol. 29, pp. 448–456, 1989.

[83] J. Larsen, A parallel approach to the stable marriage problem. Datal-
ogisk Institut, Københavns Universitet, 1997.

428

APPENDIX

ARTIFACT EVALUATION

A. Availability

The artifact is available at both GitHub: https://github.com/
victorliu-sq/PACTAE and Zenodo: https://zenodo.org/records/
16800775. Users can clone the repository to your local ma-
chine or HPC environment, then run:

./runme.sh

This will automatically generate all experimental results pre-
sented in the paper.

B. Hardware Requirements

• At least one NVIDIA GPU, with each Streaming Multi-
processor (SM) supporting a block size of at least 1024
threads.

• A multi-core CPU of at least 32 threads.
• At least 24 GB of both host memory and GPU memory.
• At least 120 GB of free disk space for storing generated

synthetic data.

C. Software Requirements

The following software must be installed and available in
your PATH:

• bash
• wget or curl
• perf
• ncu
• GCC ≥ 11.4.0
• CMake ≥ 3.22.1
• Python ≥ 3.10
• CUDA Toolkit ≥ 12.6

D. Evaluation

If the above software requirements are met, simply navigate
to the root of the codebase and execute:

./runme.sh

This script will:
1) Download dependencies
2) Compile the framework
3) Generate synthetic datasets
4) Execute all experiments
5) Produce all figures and tables in data/figures

The entire experiment may take approximately 4–6 hours
to complete, depending on the hardware configuration. The
outputs include Figures 3, 5, 7, 8, 9, and Table 1. Abso-
lute execution times, speedups, and other numerical values
may vary depending on the hardware used. In Figure 9,
MW-Par-GPU-CAS is omitted for the Solo case due to
excessive execution time.

429

