
1488 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 8, AUGUST 2024

RR-Compound: RDMA-Fused gRPC for Low
Latency, High Throughput, and Easy Interface
Liang Geng , Hao Wang , Member, IEEE, Jingsong Meng , Dayi Fan , Sami Ben-Romdhane ,

Hari Kadayam Pichumani , Vinay Phegade , and Xiaodong Zhang , Fellow, IEEE

Abstract—Advanced data centers strive for high performance
and throughput, which can be achieved through the desirable mer-
its of Remote Procedure Call (RPC) programming model and the
low latency of Remote Direct Memory Access (RDMA). However,
despite the widespread availability of these software and hardware
utilities, they have been utilized separately for their own appli-
cations in existing production systems for many years. Although
researchers have attempted to develop RDMA-enabled RPC pro-
totypes, they often face challenges such as API discrepancies and a
lack of specific features for effective integration with major produc-
tion software, rendering them incompatible. This industry R&D
project aims to enhance the performance of gRPC, a widely utilized
RPC framework in major companies, by integrating RDMA as an
internal component. Our system solution, called RR-Compound,
combines the simple user interface and other merits of gRPC with
low latency for remote data accesses. RR-Compound is fully com-
patible with gRPC and can serve as a seamless replacement without
altering existing applications. However, to achieve low latency, high
throughput, and scalability for RR-Compound, several technical
challenges in managing network connections and memory space
utilization must be effectively addressed. To overcome the limi-
tations of existing connection methods, we have developed a new
method called BPEV that is independent of gRPC and applicable
to all RDMA systems. We have also retained the asynchronous
framework of gRPC, albeit with limited buffer space in RDMA
memory management. In micro-benchmarks, RR-Compound out-
performs mRPC - the state-of-the-art RPC framework for a large
number of connections, achieving a 14.77% increase in throughput
and a 42.55% reduction in latency. Subsequently, we compare
RR-Compound with gRPC over IPoIB using two real-world ap-
plications: KV-Store and TensorFlow. RR-Compound achieves up
to a 2.35x increase in throughput and reduces the average latency
by 46.92%.

Index Terms—RDMA, RPC, networking.

I. INTRODUCTION

A S THE advancement of networking technologies, such
as Terabit Ethernet (TbE) [1], the bandwidth of moving

Manuscript received 28 September 2023; revised 8 May 2024; accepted 18
May 2024. Date of publication 23 May 2024; date of current version 1 July
2024. The work was supported in part by the U.S. National Science Foundation
under Grant MRI-2018627, Grant CCF-2005884, Grant CCF-2210753, Grant
CCF-2312507, and Grant OAC-2310510. Recommended for acceptance by K.
Gopalan. (Corresponding author: Hao Wang.)

Liang Geng, Jingsong Meng, Dayi Fan, and Xiaodong Zhang are with the The
Ohio State University, Columbus, OH 43210 USA (e-mail: geng.161@osu.edu;
meng.479@osu.edu; fan.1090@osu.edu; zhang@cse.ohio-state.edu).

Hao Wang is with the International Digital Economy Academy (IDEA),
Shenzhen 100191, China (e-mail: wanghao2020@idea.edu.cn).

Sami Ben-Romdhane, Hari Kadayam Pichumani, and Vinay Phegade are
with eBay, Inc., San Jose, CA 95125 USA (e-mail: sbenromdhane@ebay.com;
hkadayam@ebay.com; vphegade@ebay.com).

Digital Object Identifier 10.1109/TPDS.2024.3404394

data remotely in a large-scale data center can be as high as the
internal bandwidth inside a single node. Consequently, modern
data centers serving various applications have been evolved
to a powerful platform of in-memory computing to harvest a
huge capacity of remote memory resources [2], [3], [4], and
being able to scale-up by upgrading each node and scale-out by
increasing the number of nodes. Specifically, the following four
requirements are expected for an advanced data center. (1) An
easy programming interface. To keep the service scope as large
as possible, the application program development in different
areas should be independent of the rapid technical advancement
of data center architecture and systems. In this way, application
users do not need to modify their programs to respond the
infrastructure changes in both software and hardware of data
centers. (2) Low-latency memory accesses. This requires that
frequent data accesses to remote memory modules be fast. (3)
High scalability. A data center must be prepared to serve in-
creasingly more users by physically connecting more computing
nodes, and by timely upgrading each computing node, achieving
sustainable performance improvement. (4) High-throughput for
data processing tasks. This is a major performance factor for
data-intensive applications in data centers, which counts the
number of operations per time unit, such as the number of Key-
Value stores per second. Continued improvement of throughput
for various applications is a critical factor for a high productivity
and high efficiency of data centers. To meet all the above four
requirements is challenging due to several conflicting design
goals of system components under the existing framework of
data centers. So far, none of running systems meet all the
requirements. We will explain the rationale behind this fact by
linking the two major protocols of RPC [5] and RDMA to each
of the four requirements.

Modern data centers consist of many micro-services [6], [7],
[8], [9], which are supported by RPC [5] (remote procedure
calls). The RPC abstraction hides communication details and
makes remote procedure calls just like local ones. Thus, its orig-
inal design well meets the requirement of “an easy programming
interface”. Open source software gRPC initially developed by
Google [10], has been widely used in many production systems.
Its simple service definition using Protocol Buffers [11] with a
variety of programming languages provides a general-purpose
interface to users for their application development being inde-
pendent of the data center infrastructure. According to a Google
data center report, there are over 10 billion RPCs per second [12].
However, gRPC relies on a TCP-based transport layer; thus,

1045-9219 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The Ohio State University. Downloaded on July 03,2024 at 20:53:57 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3646-1215
https://orcid.org/0000-0003-3557-6301
https://orcid.org/0009-0008-4153-6772
https://orcid.org/0009-0000-5561-6783
https://orcid.org/0009-0000-1687-6419
https://orcid.org/0009-0006-7614-6059
https://orcid.org/0009-0009-9032-3404
https://orcid.org/0000-0003-3411-3612
mailto:geng.161@osu.edu
mailto:meng.479@osu.edu
mailto:fan.1090@osu.edu
mailto:zhang@cse.ohio-state.edu
mailto:wanghao2020@idea.edu.cn
mailto:sbenromdhane@ebay.com
mailto:hkadayam@ebay.com
mailto:vphegade@ebay.com

GENG et al.: RR-COMPOUND: RDMA-FUSED GRPC FOR LOW LATENCY, HIGH THROUGHPUT, AND EASY INTERFACE 1489

it has a well-known issue of high-latency memory accesses to
remote nodes over TCP due to memory copies between user
space and kernel space, and due to high overhead caused by
frequent OS kernel interrupts.

In contrast, the widely available Remote Direct Memory Ac-
cess (RDMA) protocol and its Network Interface Cards (NICs)
allow remote memory accesses without involving OS kernels
either in senders or receivers. The low latency in RDMA is
achieved by managing data operations in user space, which
eliminates the data copies between user and kernel space, and the
overhead of interrupting CPU. Thus, it well meets the require-
ment of “low-latency memory accesses”. We have compared
the latency of data accesses between TCP and RDMA, by
changing data sizes from 16 Bytes to 512 KBytes in the standard
network benchmarks of sockperf for TCP and perftest for RDMA
on a 100 Gbps Ethernet cluster. Our experiments show that
RDMA is 8.6x - 15x faster than TCP for memory-to-memory
data communication. However, the RDMA abstraction to users
is narrowly focused on data exchange, which is not “an easy
programming interface”, seriously limiting the scope of users.
In addition, the latency comparisons in our experiments are
done in an isolated environment, which only reflects a single
system factor. The comprehensive performance improvement
of a system comes from a deliberate balancing consideration
among multiple factors, such as the four requirements, and
should be evaluated by representative application workloads.

Regarding the requirement of scalability, we focus on network
connection management in this paper. The remote connection in
gRPC and other advanced RPC systems, such as mRPC [13],
is either handled by OS with a polling engine (typically imple-
mented by a system call of epoll in Linux) or busy-polling in the
user space to detect incoming messages, which can efficiently
handle a large volume of network connections. This partially
meets the requirement of “high scalability” because gRPC is
efficient for many network connections with small data volumes.
In contrast, the connection management in RDMA is supported
by two options: (1) a simple user mechanism of “busy-polling”,
and (2) an event-based method by soft interrupts. However, our
experiments show that neither option is scalable as we increase
the number of connections under different connection frequen-
cies. It is desirable to have a single connection management
mechanism that shares the merits of both busy-polling and
event-based method.

Regarding the requirement of throughput, high throughput for
remote data-intensive applications is not guaranteed over TCP
in gRPC. While, RDMA is designed for applications requiring
high throughput. It meets the requirement of “high throughput of
data processing tasks” under the condition of having an effective
network connection management method. In practice, the low
latency of RDMA is also beneficial to the improvement of
throughput.

Table I summarizes the positions of gRPC and RDMA under
the four requirements, showing that gRPC and RDMA can be
complementary to each other if they are well integrated into
one system. Unfortunately, from our industry perspective, they
have been run separately for their own applications on different
platforms for many years. We present such an integrated system

TABLE I
INDEPENDENT POSITIONS OF GRPC AND RDMA UNDER THE FOUR EXPECTED

REQUIREMENTS OF ADVANCED DATA CENTERS

in this paper by fusing RDMA into gRPC. The system is called
RR-Compound, aiming to provide two unique advantages.
First, the user scope is as large as that of gRPC, serving as a
general-purpose system and enlarging its scope to data-intensive
applications. Second, RR-Compound retains the merits of both
gRPC and RDMA, achieving the goals for low latency, high
throughput, and high scalability.

In order to effectively develop a “compound” based on both
gRPC and RDMA (represented by an acronym of RR) for the
above-mentioned two advantages, we have addressed the follow-
ing technical challenges. First, gRPC uses two-sided socket APIs
to transfer data and RDMA provides two-sided semantic APIs
too. However, the one-sided RDMA APIs are more efficient [14],
[15]. How to fuse the one-sided RDMA into gRPC is non-trivial,
but it is a critical task in this project. Second, the mecha-
nisms of detecting incoming messages are fundamentally dif-
ferent between gRPC and RDMA: gRPC relies on system calls,
e.g., “epoll”, to detect I/O events while RDMA only provides
limited APIs for event-based connection management, e.g.,
ibv_get_cq_event. RDMA also supports “busy-polling” [15].
How to develop and embed a single RDMA message-detecting
mechanism in the gRPC system without losing functionality and
generality is challenging. The merits of event-based method and
busy-polling must be considered for system scalability. Finally,
the memory management of RDMA does not fit in the asyn-
chronous framework of gRPC. gRPC uses two sets of buffers,
i.e., double buffering, to achieve asynchronous processing, while
RDMA only has one set of buffers. The challenge is to maintain
the asynchronous framework after fusing RDMA into gRPC.
We have made the following contributions in this paper.
� We have integrated one-sided RDMA into gRPC, keeping

the general-purpose user interface with a transport layer of
RDMA.

� Aiming for high scalability, we have designed and imple-
mented a new and effective network connection manage-
ment scheme to detect incoming messages, which is gRPC
independent and general-purpose for any RDMA systems.
We also show that network connection management plays
a critical role for the scalabilty of RDMA and RPC related
systems.

� We have maintained the asynchronous processing frame-
work of gRPC by a limited RDMA buffers in user space,
aiming to keep the merits of both.

Authorized licensed use limited to: The Ohio State University. Downloaded on July 03,2024 at 20:53:57 UTC from IEEE Xplore. Restrictions apply.

1490 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 8, AUGUST 2024

� We have developed a separate module to support RDMA-
fused gRPC, so the TCP based gRPC is still available. This
design allows users to switch flexibly based on different
workloads if necessary.

� We have conducted extensive and comparative experiments
on three platforms, namely RR-Compound, gRPC and
mRPC, verifying the effectiveness of our systems design
and implementation.

Besides micro-benchmarks, we evaluate RR-Compound on
two representative workloads: YCSB [16] and TensorFlow [17].
We ran YCSB on Jungle database [18] (an embedded key-value
storage library developed by eBay) to understand performance
insights. A high percentage of execution time in YCSB work-
loads is spent on data communications, where RDMA can gain
high performance. Our experiments show that RR-Compound
achieves up to 2.35x improvement in throughput for YCSB over
that on gRPC. On the other hand, the TensorFlow workloads are
local computing-intensive, and only a small percentage of time is
spent on data communications. Even under this condition, RR-
Compound still achieves up to 30% throughput improvement
over that on gRPC.

II. BACKGROUND

In this section, we will briefly introduce the merits and limits
of RDMA and gRPC. We then present the technical challenges
for fusing RDMA into gRPC.

A. RDMA

Remote Direct Memory Access (RDMA) is a communication
protocol for applications to directly read/write data across a
network from a specified memory region in one node to another
specified memory region in another node. RDMA users will
register the memory region and set the desired memory access
attributes of the memory. The attributes tell the RDMA device
how the memory region can be accessed from local or remote
nodes. After the registration, the RDMA client and server will
exchange the data stored in the memory regions to each other,
so that the client and server can access the memory regions
of each other via specialized RDMA Network Interface Cards
(NICs). As shown by the dotted line in Fig. 1(a), a client node can
directly move data from its send buffer in a specified memory
region to the receive buffer in a specified memory region in
the server node without the involvement of the kernel in both
sides. The specified memory region comes from a “pin” by
users, which tells the kernel that this memory region is owned
by an application in the user space. In contrast, the solid line in
Fig. 1(a) shows that the same data transmission by TCP requires
data movement of copying buffer content from user space to
kernel space along with context switches of OS. The shortcut in
the data transmission path in RDMA is the reason for the latency
gap between the two protocols.

The RDMA programming is provided by the APIs called
“verbs” [19]. The communication primitives of RDMA are
categorized into two classes: one-sided verbs and two-sided
verbs. As shown in Fig. 1(b) top side, one-sided verbs send

Fig. 1. Data flow of TCP and RDMA.

messages to remote memory without getting the remote CPU in-
volved; whereas, two-sided verbs require the CPU involvement
in both sides, as shown in Fig. 1(b) bottom side. We mainly
focus on two RDMA primitives: RDMA_WRITE (one-sided
verb) and RDMA_WRITE_WITH_IMM (two-sided verb). In
RDMA_WRITE, the receiver keeps polling its completion queue
until it gets the result. We call this method as RDMA busy-
polling method (RDMA-BP). In RDMA_WRITE_WITH_IMM,
the receiver uses a completion event channel, which is supported
by the OS kernel, to detect incoming messages. The completion
event channel is a file descriptor (FD) that is used to deliver
completion notifications to the user space process. When a
completion event is generated in a completion queue, the event is
delivered via the completion event channel. The RDMA library
provides a function call, ibv_get_cq_event(), to wait for the
next completion event. During the waiting period, CPU cycles
can be used for other tasks. We call this method RDMA-Event.

B. gRPC

Remote Procedure Call (RPC) [5] is a request-response proto-
col. It allows programmers to invoke a remote function just like
to call it locally without knowing the communication details,
the underlying operating system, and even the programming
language used to implement the remote function. The RPC
system typically consists of a client and its server. A client
initiates an RPC request with arguments of a function to its
server over network. The server processes this request and sends
a response back to the client. The RPC protocol hides the
internal message-passing mechanism from users. Its high-level
abstraction makes programmers productively develop many ap-
plications in distributed systems.

gRPC is a modern and open-source library and framework,
which is one of the most widely used RPCs in production
systems. Two major components of gRPC are network con-
nection management and memory management. In connection
management, gRPC relies on its polling engine for connection
management, where events like new client connections and
incoming data are monitored on a set of file descriptors. gRPC
does not spontaneously generate threads; instead, it depends on

Authorized licensed use limited to: The Ohio State University. Downloaded on July 03,2024 at 20:53:57 UTC from IEEE Xplore. Restrictions apply.

GENG et al.: RR-COMPOUND: RDMA-FUSED GRPC FOR LOW LATENCY, HIGH THROUGHPUT, AND EASY INTERFACE 1491

Fig. 2. Asynchronous RPC call in gRPC.

user-created threads to drive the polling engine, enabling the
detection of I/O events and facilitating data exchange with peers.

The gRPC memory management and CompletionQueue de-
sign enables synchronous and asynchronous RPC calls. Fig. 2
shows the data flow of an asynchronous RPC call in gRPC,
where the connection and memory management are presented.
Before a client starts an RPC call, its server prepares to process
the RPC by calling the I/O multiplexing function epoll_wait()1

to wait for incoming data (step 1). If there is no incoming data,
the thread will yield its CPU time and wait to be woken up.
Since the server is ready to accept requests, the client can issue
an RPC call at any time by placing related parameters and data
in the Payload buffer to be encoded according to the binary
wire format of Protocol Buffer language (gRPC uses Protocol
Buffer to serialize and de-serialize RPCs) (step 2). The encoded
data is copied from the Payload buffer to the gRPC Outgoing
Buffer (step 3). At this moment, the data has not been sent out,
since it is an asynchronous RPC call. Only if the client calls the
corresponding function in CompletionQueue (step 4), gRPC will
be notified to copy the data to the Kernel Send Buffer by TCP,
which is initiated by OS (step 5). The kernel buffer data will be
sent to its NIC (step 6), and the RPC data will be transferred
from the client NIC to the server NIC (step 7). On the server
side, when the message reaches its NIC, it will be moved to
the kernel receive buffer first by OS (step 8), and then the NIC
driver will issue a top-half interrupt to the CPU, followed by
a bottom-half interrupt (step 9). After that, kernel threads will
wake up epoll_wait() function in gRPC (step 10). As a part of the
asynchronous framework, only after epoll_wait notifies gRPC
(step 11), the data will be copied from a kernel receive-buffer to
gRPC incoming buffer by TCP function recvmsg (step 12). After
that, the server will start data processing in user space, and the
encoded data in the gRPC Incoming Buffer will be moved to the
Payload buffer to be decoded (step 13). After decoding, the raw

1Although the I/O multiplexing functions used in gRPC is platform dependent,
epoll_wait() is the most widely used on Linux. Thus, we mainly focus on
epoll_wait() function.

RPC data will be submitted to the server from the Payload buffer
for its function processing (step 14) and the service function will
process the data.

C. Challenges of Fusing RDMA Into gRPC

Since gRPC is a commonly used system platform, we use
it as the basic platform in our system development. In order
to fuse RDMA into gRPC for its low latency merits subject
to retaining the merits of gRPC, we must address multiple
technical challenges in both network connection management
and memory management.

1) Network Connection Management: RDMA-BP uses a
polling thread to keep checking the memory buffer to detect
incoming data. In RDMA-Event method, users create a com-
pletion event channel, which is a FD to deliver the completion
event from kernel space to user space. Then, users call blocking
function ibv_get_cq_event() to check incoming data. In com-
parison, gRPC detects incoming connections by epoll_wait()
that monitors I/O events happening on FDs. A technical issue is
how to effectively incorporate the two RDMA methods into the
existing gRPC facility for high performance.

The other issue is research-related. As we know, RDMA-
busy-polling and RDMA-event can effectively handle certain
connection workloads but do not work well on others. Can we
develop a new method that minimizes the limits of the two
methods and retains their merits? We will answer this question
in Section IV-D.

2) Memory Management: gRPC is designed and imple-
mented as an asynchronous framework that is beneficial to both
execution efficiency and application programming productivity.
gRPC introduces concepts of closure and closure scheduler. A
closure combines together a function call with its arguments, and
a closure scheduler collects execution context for every closures.
With the help of closure and closure scheduler, functions can be
executed asynchronously by scheduling closures, which can be
executed in the future by waiting for their I/O events if necessary.
Since the execution time of closure is unknown in advance,
gRPC dynamically allocates memory to hold RPC data during
closure execution. As a TCP-based system, all gRPC internal
buffers are managed by OS that facilitates dynamic memory
allocation and data movement from user space to kernel space.
Accordingly, the memory management in gRPC is supported by
multi-level memory buffers and intermediate memory copies to
support its asynchronous framework.

OS plays an important role in the memory management for
its asynchronous execution structure in gRPC. The low latency
of RDMA comes from its pinned memory buffers in user space,
which is out of the control of OS but is managed by an RDMA-
enabled NIC. The challenge to fuse RDMA to gRPC without
support from OS on dynamic memory allocations is on how to
effectively emulate dynamic data allocations in user space. The
objective is to gain the benefits of low latency from RDMA, sub-
ject to retaining the asynchronous execution structure of gRPC.
To work around this challenge and to simplify implementations
for RDMA in RPC, several prototypes only provide synchronous
execution, e.g., [20], [21], [22], which cannot be applied to

Authorized licensed use limited to: The Ohio State University. Downloaded on July 03,2024 at 20:53:57 UTC from IEEE Xplore. Restrictions apply.

1492 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 8, AUGUST 2024

Fig. 3. Overview of RR-compound.

gRPC, because the memory management, thread management
and gRPC CompletionQueue are tightly coupled with gRPC’s
asynchronous framework. We will explain how we accomplish
our goal in Section IV-F.

III. AN OVERVIEW OF RR-COMPOUND

Fig. 3 presents the basic architecture of RR-Compound,
where the network connection management and the memory
management will be discussed in detail in Section IV. The
interface to users is the same as that of gRPC for general-purpose
programming. We have designed a new connection method that
combines the merits of both RDMA busy-polling method and
RDMA event-based method. The new method is called BPEV,
which consists of two groups of light-weight threads: working
threads and polling threads shown in Fig. 3. Kernel send/receive
buffers are replaced by RDMA send/receive buffers. Fig. 3 also
gives the data path and execution path of RR-Compound. On
the server side, one or a small number of polling threads are
running to check incoming data in a busy-polling manner (step
1), and working threads will call epoll_wait() function to wait
for events (step 2). On the client side, the client starts to issue an
RPC call by placing related parameters and data in the Payload
buffer to be encoded in a gRPC format (step 3). The encoded
data is copied from the Payload buffer to the RDMA Send Buffer
(step 4). After the client calls gRPC function cq.next() to notify
the availability of the data (step 5), data in the RDMA send
buffer will be sent directly to NIC (step 6). After the data is
transferred from client NIC to server NIC (step 7), it will be
directly moved to RDMA receive buffer (step 8). Immediately,
polling threads in the server will detect this incoming data and
wake up working threads (step 9). Then a working thread will
notify the availability of the data in the RDMA receive buffer
(step 10). After that, the data is moved to the Payload buffer to
be decoded (step 11). Finally the raw RPC data is submitted to
the service function for its execution (step 12) in the server.

TABLE II
NODE SPECIFICATIONS

Fig. 4. Busy-polling versus event latency.

IV. THE CORE DESIGN AND IMPLEMENTATION

A. Experimental Environment

Comprehensive performance evaluation by intensive exper-
iments is a foundation for the design and implementation of
RR-Compound. The configurations of our experiment platform
presented in this sub-section will be referenced in the rest of
paper when experiments and their results are reported. Unless
specified, we use the following configurations for our perfor-
mance evaluation. The cluster used for the experiments consists
of 9 nodes with the following two setups: (1) single client and
single server, where the client issues requests on one node and
the server responds the requests from another node, and (2)
multiple clients and single server, where the clients are dis-
tributed evenly and run across 8 nodes, and the server execution
is conducted on a dedicated node. All nodes are configured with
the specifications listed in Table II.

We have developed RR-Compound based on gRPC v1.38.0.
All performance results of gRPC are produced from this version
and our extension to ensure fair comparisons.

B. Event-Based versus Busy-Polling Methods

We have conducted intensive experiments to compare the la-
tency changes between busy-polling and an event-based method
for network connection management of RDMA under two dif-
ferent request frequencies. We use “ibverbs” to implement a
microbenchmark consisting of a client and a server. Each client
issues 200 K requests in a ping-pong pattern to the server. The
number of clients ranges from 1 to 128 in our experiments.
One parameter in our experiments is the request frequency,
which reaches the peak when requests are continuously sent
to the server without any delay. For such a case, Fig. 4(a)
presents the average latency curves per request as the number

Authorized licensed use limited to: The Ohio State University. Downloaded on July 03,2024 at 20:53:57 UTC from IEEE Xplore. Restrictions apply.

GENG et al.: RR-COMPOUND: RDMA-FUSED GRPC FOR LOW LATENCY, HIGH THROUGHPUT, AND EASY INTERFACE 1493

of clients increases from 1 to 128. It shows that the latency
curve of busy-polling almost stays constant when the number of
connections is lower than the number of CPU cores (40) on the
server. After that, the latency curve slowly increases. In contrast,
the latency of the event-based method starts to increase when the
number of clients is more than 8, and sharply increases when
the number of clients is more than 40.

To investigate the reason behind this behavior, we measure the
total server CPU execution time breakdowns in Fig. 4(b), where
the right bar in a pair is for busy-polling and the left is for the
event-based method. Since the server processes client requests
in a batch, we use the total server time breakdowns to understand
where the time goes for each group of requests. The process of
busy-polling (labeled as “USER-BP”) consists of two parts: (1)
busy detection in a loop for requests, and (2) processing requests
after each successful detection. We also measured the idle CPU
time during busy polling, which is a very small percentage of
CPU time. The increase in busy-polling time observed on the
server in Fig. 4(b) is proportional to the rise in client latency in
Fig. 4(a) as the number of clients grows.

The event-based method is handled in both OS space and user
space in the server, and the server running time is spent in four
parts: (1) upon a request, a bottom-half interrupt2 is scheduled
to generate the event in kernel space, labeled as “SOFTIRQ-
EVENT”; (2) OS further wakes up waiting threads for the re-
quest, labeled as “SYS-EVENT”; (3) the waiting threads process
the request in the user space, labeled as “USER-EVENT”; and
(4) the server is idle when it does not get requests to process,
labeled as “IDEL-EVENT”. Fig. 4(b) shows that the processing
times in the user space of busy-polling (“USER-BP”) and in
the event-based method (“USER-EVENT”) are comparable.
However, when the number of clients is more than 8, the server
idle time starts to increase proportionally as the number of
clients increases for the event-based method. Compared with
the total server time, the idle time is up to more than 80%. We
have further looked into the reason for the increasingly high
idle times. Here are our findings. Under the current Mellanox
driver implementation, there is only one CPU core used for
processing the interrupts because the event handling procedure
is implemented by tasklets APIs in Linux kernel. A tasklet
procedure in Linux generally cannot be executed by more than
one CPU core concurrently. With this restriction, the interrupts
are handled slowly by a small portion of execution time (see
“SOFTIRQ-EVENT” in Fig. 4(b)). Thus, the server spends in-
creasingly more time waiting to process requests. This explains
why the client latency per request increases dramatically as
the number of clients increases in Fig. 4(a). In addition, the
kernel is responsible for waking up threads waiting for events,
with frequent context-switching overhead that is reflected by the
execution time portion of “SYS-EVENT”.

However, the event-based method proves highly effective in
scenarios with low communication frequency. To simulate such a

2A kernel interrupt handler splits its execution into two halves: the top-halve
and the bottom-halve. The top-halve quickly acknowledges the interrupt and
schedules the bottom-halve at a proper time. Since the time spent in top-halve
is so short, we do not present it in the figure. The bottom-half does the rest of
processing that needs much longer time.

Fig. 5. Busy-polling versus event latency with 300µs sending delay. BP
exhibits a sharp increase in latency as the number of clients grows.

scenario, we set the sending interval at 300 µs.3 Fig. 5(a) shows
that the event-based method is scalable, but the busy-polling
gets into trouble. Notably, busy-polling exhibits increased la-
tency after 40 clients due to the significant CPU cycles wasted
by dedicated polling threads. Fig. 5(b) shows the server CPU
time breakdown. The user-space CPU time consumed by busy-
polling significantly increases, while a small amount of time
is dedicated to user space in the event-based method. This
inefficiency in busy-polling escalates with the addition of more
clients, stemming from continuous message detection even when
no requests are present. Conversely, the event-based method
keeps the CPU available for other tasks when request frequency
is low, showcasing its effectiveness in managing low-frequency
connections without excessive consumption of CPU cycles.

C. Ineffectiveness of a Hybrid Method

The cases presented in Section IV-B indicate that we may
have an opportunity to develop a hybrid method by switching
between busy-polling and event-based methods to adaptively
respond to the workload changes. However, the hybrid approach
is infeasible for three reasons. First, in practice, the request
frequency is highly workloads dependent. We need a monitoring
mechanism to dynamically collect the connection frequency data
in order to timely make a switching decision. The overhead of
this mechanism can be nontrivial. Second, switching between
the two methods can also cause high overhead, considering the
jumping between the user and kernel spaces.

Most importantly, our experiments demonstrate that both
methods can encounter scalability issues when processing work-
loads with identical connection frequencies. We observed that a
sending interval of 100 µs represents a critical “pain point” at
which both BP and RDMA-Event struggle to manage medium
communication frequencies. As depicted in Fig. 6, neither busy-
polling nor event-based methods scale beyond 40 clients. In
this case, BP is still suffering from CPU contention. However,
RDMA-Event is constrained by the tasklets mechanism in the
Linux kernel that the RNIC driver implementation of event mode
relies on, which employs only one kernel thread to handle inter-
rupts, resulting in high latency. This experiment underscores that
the bottlenecks discussed for each method can coexist within the

3This value exposes the scalability issue of busy polling. We identify the value
by trails, which may be different on other platforms.

Authorized licensed use limited to: The Ohio State University. Downloaded on July 03,2024 at 20:53:57 UTC from IEEE Xplore. Restrictions apply.

1494 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 8, AUGUST 2024

Fig. 6. Busy-polling versus event latency with 100µs sending delay. Both BP
and RDMA-Event experience an increasingly high latency.

same workload and system environment, thus confirming that a
hybrid approach combining these methods is impractical.

D. BPEV: A New Management Method

We have identified the following two critical bottlenecks that
seriously increase the latency and limit the throughput based
on our experimental studies in Section IV-B: (1) The use of a
busy-polling mechanism leads to a substantial waste of CPU
cycles, particularly under conditions of low request frequency.
This inefficiency results in escalating latency as client numbers
grow. (2) The interrupt function in the RDMA-Event is executed
serially, which causes increasingly long idle time on the server
as the number of clients increases. This is the main reason why
the event-based method is unable to handle frequent requests.

To mitigate the issue of CPU cycle wastage, we have de-
veloped a method termed Busy-Polling Time-Sharing (BPTS).
Unlike the traditional approach of dedicating a single thread
to each connection, BPTS employs a single thread to manage
multiple connections through a round-robin, time-sharing man-
ner. To integrate BPTS with gRPC, it is necessary to embed the
RDMA busy-polling logic within gRPC’s polling engine. This
integration allows for the simultaneous monitoring of RDMA
connections and gRPC’s internal FDs, such as those listening
FDs designed to accept incoming TCP connections.4

Algorithm 1 illustrates the BPTS in pseudocode, implemented
within the WaitEvents function of gRPC’s polling engine,
responsible for awaiting I/O events. The algorithm relies on
three key parameters: epfd, the epoll file descriptor monitoring a
collection of FDs;C, a set of RDMA connections; and timeout,
denoting the maximum period to await events. The output,
events, encompasses events such as EPOLLIN (indicating
readiness to read) and EPOLLOUT (indicating readiness to
write).

In Line 4, the epoll_wait function is iteratively invoked to
gather events from monitored FDs. To prevent blocking during
RDMA polling, we configure epoll_wait with a zero timeout
(the third parameter). Subsequently, from Lines 6 to 14, the algo-
rithm iterates over each RDMA connection to detect incoming
messages or pending write operations, generating EPOLLIN

4RR-Compound still relies on the TCP to exchange queue pair, memory
regions, and other metadata to make RDMA connections.

Algorithm 1: Wait for I/O Events With BPTS.
Input: epfd - the epoll file descriptor to handle new
connections

Input: C - RDMA connections
Input: timeout - user-specified polling timeout
Output: events - an array of readable/writable events
1: � Running on user-created working threads
2: procedure WaitEvents
3: while events = ∅ and elapsed time < timeout do
4: epoll_wait(epfd, events, 0) � Monitoring gRPC’s

internal FDs
5: � Traverse RDMA connections handled by the

thread
6: for c in C do
7: if c has incoming messages then
8: events = events ∪ EPOLLIN � Produce a

readable event
9: end if

10:
11: if c has pending writes then
12: events = events ∪ EPOLLOUT � Produce a

writable event
13: end if
14: end for
15: end while
16: end procedure

or EPOLLOUT events, respectively. The polling engine pro-
cesses these events, facilitating RPC reception and responses
dispatch.

It’s crucial to highlight that gRPC, does not automatically
initiate new threads (Section II-B); while, users instantiate
threads to engage the polling engine through gRPC’s API calls.
Algorithm 1 is designed to enable a single thread to efficiently
manage multiple clients. Therefore, users must ensure that the
number of threads created aligns with the available CPU cores.
Adhering to this guideline minimizes CPU contention, enhanc-
ing system efficiency and overall performance.

This enhanced approach presents two significant advantages.
First, the efficiency of polling is high, as it merely involves a
quick check of the ring buffer’s head to ascertain the presence
of new messages–a process that typically consumes only several
nanoseconds [15]. Consequently, utilizing a single thread to
manage hundreds of connections does not noticeably impact la-
tency. Second, by aligning the number of polling threads with the
count of CPU cores, the overhead associated with inter-thread
scheduling is substantially reduced. The BPTS design is ideally
suited for scenarios requiring high-frequency communication,
such as Key-Value stores.

Nonetheless, BPTS necessitates that polling threads remain
active continuously, leading to full utilization of all CPU cores
even in the absence of requests. Furthermore, the implementa-
tion of busy-polling in user space diverges fundamentally from
gRPC’s event-based polling mechanism. This discrepancy re-
quires constant invocation of epoll_waitwithin the busy-polling

Authorized licensed use limited to: The Ohio State University. Downloaded on July 03,2024 at 20:53:57 UTC from IEEE Xplore. Restrictions apply.

GENG et al.: RR-COMPOUND: RDMA-FUSED GRPC FOR LOW LATENCY, HIGH THROUGHPUT, AND EASY INTERFACE 1495

Fig. 7. Overview of 5 connection managements.

loop to monitor socket FDs for new connections. Failure to do
so results in the server’s inability to accommodate incoming
clients, as the threads are preoccupied with polling and cannot
process TCP connections. The interleaving of busy-polling and
epoll_wait calls incurs system call overhead.

Having intensively studied the insights into busy-polling and
event-based methods, we are ready to develop an effective
network connection management for RDMA to retain the merits
and eliminate the limits in both methods.

We have designed an event-based method named “Busy-
Polling driven with EVents” (BPEV), implemented in user space
with support from the OS kernel. The core concept involves
deploying a limited number of dedicated threads, referred to
as “polling-threads”, which actively engage in busy-polling to
promptly check messages in the receiving buffer across all
connections. Once detecting new messages, a polling thread
signals a working thread through eventfd, an event wait/notify
mechanism supported by the OS. Each RDMA connection is
assigned a unique eventfd, registered with gRPC’s polling engine
(added to “epfd”) during connection establishment. Within the
polling engine, “epoll_wait” is used to manage events from both
RDMA and TCP connections. This seamless integration with the
gRPC’s event-based architecture involves the straightforward
addition of dedicated polling threads.

BPEV comprises two procedures, as illustrated in
Algorithm 2. The RDMAPoll procedure operates on dedicated
polling threads, monitoring all RDMA connections to identify
new messages or pending writes. If a polling thread detects new
messages from any connection (Line 6), it wakes up working
threads using “eventfd_write”. In WaitEvents, an initial
attempt at busy-polling occurs within a predefined timeout
period, “bp_timeout” (Lines 16-26). Recognizing that waking
up threads from sleep incurs a kernel-driven context-switch cost,
frequent context-switch operations can potentially bottleneck
overall performance. To minimize this cost, we have optimized
BPEV by enabling working threads to engage in busy polling
within the timeout period before resorting to “epoll_wait”.

In scenarios with high request frequency, this optimization
allows continuous request processing without frequent kernel
intervention, significantly reducing context switch overhead. In
situations of exceptionally high request volume, BPEV operates
nearly identically to busy-polling of RDMA, leveraging its
optimal performance. Conversely, with moderate request
frequency, BPEV benefits from both low-latency busy-polling
and efficient kernel scheduling triggered by less frequent events.

E. Analysis of the Five Connection Methods

We have integrated four connection management methods
(BP, BPTS, EVENT, and BPEV) into gRPC to demonstrate the
effectiveness of BPEV by comparing their performance results
with that of the conventional TCP connection method in gRPC.
Fig. 7 presents the control flows and data flows of the five
connection methods in our experiments. Fig. 7(a) is the basic
TCP connection for gRPC, where interrupts in two phases are
conducted to inform a working thread that incoming data is
available in the kernel buffer. In the last step of the connection,
the working thread moves the data from the kernel buffer to a user
buffer. Fig. 7(b) shows that BP uses a dedicated thread to check
on one buffer and that BPTS uses one or a few threads to check
on many buffers. Both methods are in user space without the
involvement of OS. Fig. 7(c) shows the RDMA-Event method,
where interrupts in two phases are conducted to inform a work-
ing thread that incoming data is available in the RDMA buffer.
Fig. 7(d) shows our newly designed RDMA-BPEV that has been
well discussed in Section Section IV-D. Fig. 7 also illustrates the
reason for the low latency of RDMA by comparing the last step
of the connection.

As we intend to focus on analyzing the raw connection per-
formance of each method, the remote procedure in the server
should be simple, such that it directly replies to requests without
any other data processing. We have evaluated the five methods
on a cluster described in Table II. Each client sends a request
with a 4 KB payload, and the server quickly replies with 4 KB

Authorized licensed use limited to: The Ohio State University. Downloaded on July 03,2024 at 20:53:57 UTC from IEEE Xplore. Restrictions apply.

1496 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 8, AUGUST 2024

Algorithm 2: Wait for I/O Events With BPEV.
Input: epfd - the epoll file descriptor to handle new
connections

Input: C - RDMA connections
Input: timeout - user-specified polling timeout
Input: bp_timeout - timeout for switching to epoll
Output: events - an array of events
1: � Running on the dedicated polling threads
2: procedure RDAMPoll
3: Register each RMDA connection’s eventfd to epfd
4: while running do
5: for c in C do
6: if c has incoming messages or pending writes then
7: eventfd_write(c.eventfd, 1) � Wake up

working threads
8: end if
9: end for

10: end while
11: end procedure
13: � Running on user-created working threads
14: procedure WaitEvents
15: � Busy-polling before resorting to epoll
16: while elapsed time < bp_timeout do
17: for c in C do
18: if c has incoming messages then
19: events = events ∪ EPOLLIN � Produce a

readable event
20: end if
21:
22: if c has pending writes then
23: events = events ∪ EPOLLOUT � Produce a

writable event
24: end if
25: end for
26: end while
27:
28: � busy-polling is timeout, turn to kernel-supported

epoll
29: if events �= ∅ then
30: epoll_wait(epfd, events, timeout− bp_timeout)
31: end if
32: end procedure

payload to the client. This simple communication pattern allows
us to analyze performance characteristics. For BP, we fixed the
number of working threads to the number of clients. For the rest
of the methods, we fixed the number of threads to 40 when the
number of clients is less than 64; to 64 threads for 64 and 128
clients. In our experiments, we tended to oversubscribe threads
because gRPC has internal locks that hinder the full utilization
of CPU cores.

Fig. 8(a) shows when there is four client, the throughput of
gRPC over IPoIB and EVENT are below 50 k RPCs/s due to the
overhead of complex network stack and system calls. In contrast,
the throughput of BP, BPTS, and BPEV reached to 132 K,

135 K, and 120 K RPCs/s, respectively. The high throughputs
of BP, BPTS, and BPEV were contributed by the low latency
of busy-polling. When the number of clients reached to 32, the
throughput of BP, BPTS, and BPEV demonstrated a respective
capacity of 812 K, 785 K, and 620 K RPCs/s. Here, The highest
throughput was achieved by BP due to the lower number of
clients compared to the number of CPU cores, allowing busy
polling to optimally utilize CPUs for detecting incoming mes-
sages. In contrast, IPoIB and EVENT merely obtained 367 K
and 413 K RPCs/s, respectively, due to the heavy socket APIs
and limited tasklet interrupt processing ability. Fig. 8(b) gives
the evidence, which shows 71% and 73% of CPU time are idle
for IBoIP and EVENT, indicating that threads yield CPU cores
waiting for events to work on the next tasks.

When the number of clients reaches 64 which is more than the
number of CPU cores of 40, the inefficiency of BP is exposed.
As shown in Fig. 8(a), the throughputs of BPTS and BPEV both
are more than 790 K RPCs/s, compared with 598 K RPCs/s for
BP, which is an improvement of 32%. The poor performance
of BP comes from the CPU preemption by using a dedicated
thread to check on one client, which deteriorates performance
as the number of clients increases. As shown in Fig. 8(b), for
128 clients, BP spent 148 s in user space, which is 1.8 times
longer than that of BPTS and 2.3 times longer than that BPEV.
The throughput of BPEV is up to 1417 K RPCs/s, which is 49%
higher than that of BPTS.

To verify the effectiveness of BPEV under a limited connec-
tion rate, it is necessary to set a lower sending rate than we used in
Fig. 5. Under this setting, we consider the RDMA performance
under the gRPC framework. Therefore, we need to set a higher
sending interval (400µs) than we used in Section IV-B (300µs)
to offset the overhead from introducing gRPC. As shown in
Fig. 8(c), for 128 clients, BP had the lowest throughput of 94 K
RPCs/s; and IPoIB was the next worst one with a throughput
of 228 K RPCs/s. As we illustrated in Section IV-B, a lot of
CPU cycles are wasted by creating an unnecessary amount of
polling threads. Indeed, Fig. 8(d) shows that BP spent 2.8 times
and 15.2 times longer on busy time than BPTS and BPEV,
respectively. In contrast, EVENT and BPEV saved a lot of
CPU time since both methods prevent unnecessary busy-polling
operations from happening. From the idle time portion in the
execution time breakdowns in Fig. 8(d), we can see that BPEV
method is as efficient as RDMA-Event and keeps the merits of
high throughput.

F. The Memory Management

The RPC data communication between a client and its server
is done by two major steps in each node: (1) to prepare a data
package, and (2) to send the package to the destination node
via network, where the memory management in the system
design plays an important role. We will discuss how gRPC
makes this happen with the support of OS, and how our memory
management is done in order to fuse RDMA into gRPC without
a support of OS.

Fig. 9(a) depicts the execution and data flows for an RPC
request from a client or for its server response. In the data

Authorized licensed use limited to: The Ohio State University. Downloaded on July 03,2024 at 20:53:57 UTC from IEEE Xplore. Restrictions apply.

GENG et al.: RR-COMPOUND: RDMA-FUSED GRPC FOR LOW LATENCY, HIGH THROUGHPUT, AND EASY INTERFACE 1497

Fig. 8. RR-Compound throughput.

Fig. 9. Memory management of gRPC and RR-compound.

preparation step, an RPC request/response object is created
from the client/server, which carries the required data. When
a stub/service function is invoked/returned, the payload of the
RPC object will be encoded with metadata to describe its
attributes (Step 1 in Fig. 9(a)). The process of encoding is
implemented with many transient functions called closures to
allow gRPC to work asynchronously. The closure mechanism
allows a function to be executed at a proper time, such that a
caller can immediately return for another task after scheduling
a closure without being blocked. When executing a closure that
is for encoding RPC, an OS-managed temporary memory space
(called a slice in gRPC) is allocated to carry the payload or
metadata. Multiple slices are organized into a linked list as the
data package in the outgoing buffer. For example, in Fig. 9(a),
metadata X, payload data, and metadata Y are linked together
and stored in the outgoing buffer.

After an outgoing buffer is fully constructed, gRPC uses
sendmsg to copy the data by iterating each slice in the outgoing
buffer to the kernel buffer (see Step 2 in Fig. 9(a)), where OS con-
nects the delivery destination address. After then, each memory
slice can be safely destructed and recycled in the outgoing buffer
by the OS. The RPC data object is now ready to be sent from
the kernel buffer to its destination node via the NIC that is in
the bottom of Fig. 9(a). Since gRPC uses Linux-provided socket
API, sendmsg, to send the data, it uses the fd (file descriptor) of
the connected socket to locate the request/response destination

of the RPC. In gRPC design, the socket fd is maintained in the
transport layer, so that the destination of an RPC can be found
by looking up attributes at the time of data transmission.

Supported by OS, dynamic memory allocations are effectively
used for the asynchronous framework in gRPC. However, fusing
RDMA into gRPC subject to retaining the asynchronous frame-
work of gRPC, we do not have a privilege of OS support for
dynamic memory allocations and for handling network connec-
tions. We cannot dynamically allocate a temporary buffer and
register it to NIC, considering the significantly high overhead
in memory-to-NIC registration. Thus, we use a pre-allocated
memory region for each data communication, which is pinned
and registered to NIC. Since RDMA bypasses the kernel space,
we maintain a pre-allocated send-/recv-buffer for each connec-
tion in user space to carry the RPC data. Fig. 9(b) shows that N
send-buffers are created for N connections. Each send-buffer is
organized in the format of a ring data structure, which is called
ring buffer. In this way, asynchronous sending operations can
be achieved. The address of a send-buffer can be fetched with
a Global Lookup Table (to be discussed next) by data encoding
closures so that the encoded data can be directly written to the
buffer without another data copy (Fig. 9(b), Step 1). Compared
with gRPC, in the data encoding step, we eliminate an extra
memory copy. For example, in the data sending step, we directly
move the data from the send-buffer to NIC without an OS support
(Fig. 9(b), Step 2).

(1) A pre-allocated ring buffer: This buffer is in a pinned
memory region, with which we emulate dynamic memory man-
agement at a very low cost. We maintain a fix-sized circular
memory space for each RDMA connection. Although one-buffer
per-connection may not perfectly utilize the memory space,
maintaining a global send-buffer for all connections can cause
much bigger performance concerns, such as a high lock con-
tention when many threads try to write the shared buffer. When
executing a closure to write payload or metadata, we instruct
the closure to append the data to the tail of a selected ring buffer
(Step 1 in Fig. 9(b)). The starting address of the written data
is returned and recorded, which will be used as a pointer for
us to manage the ring buffer in the physical memory space.
After then, an RDMA write operation, ibv_post_send, uses the
buffer address to send data to the remote node directly. After
this is done, we recycle the corresponding memory space from
the head of the ring buffer. The ring buffer on the receiver side is
also maintained in the same structure to minimize the memory
management overhead.

Authorized licensed use limited to: The Ohio State University. Downloaded on July 03,2024 at 20:53:57 UTC from IEEE Xplore. Restrictions apply.

1498 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 8, AUGUST 2024

(2) A global lookup table: This table contains a mapping
from grpc_channel to the address of the send-buffer. An gRPC
channel provides the connection information of the peer. We
build a mapping from an RPC grpc_channel to its send-buffer
at the time when the gRPC client/server accesses the buffer
address. We implement the global table existing in singleton
- only one instance exists in the system. This design allows us
to access the mapping information anywhere in the codebase.
As an RPC call that contains grpc_channel in its attributes
is created, the table will be looked up to locate the address of
the send-buffer, and then the encoded data can be written to
the buffer. Since the table is read-only, there will be no lock
contention concerns, so the lookup overhead is negligible.

With the support of these two data structures, we retain the
asynchronous framework since process of data encoding is still
implemented with closures. If a closure requires a memory space
to carry the payload or metadata, we look up the global table for
data communication to match its send-buffer. Then, we allocate
memory space from the send-buffer to store the RPC data. After
data encoding, the RPC data is directly delivered from the local
send-buffer to the destination receive-buffer via NICs, achieving
a “zero-copy” task, which is in Step 2 in Fig. 9(b).

V. PERFORMANCE EVALUATION

First, we use microbenchmarks to compare RR-Compound
with mRPC [13], a recently developed and customized RPC
system leveraging RDMA aiming for performance and advanced
features, such as live upgrade, Quality-of-Service (QoS) at low
cost. Then, we investigate the optimizations of RR-Compound
and discuss the tuning of its parameters. Finally, we conduct
extensive experiments to assess RR-Compound in comparison
with gRPC across two representative workloads: the KV-store
and TensorFlow.

A. mRPC versus RR-Compound on Scalability and Latency

One of our objectives in designing and implementing RR-
Compound is to strike a balance between low latency and high
throughput of RDMA, while also retaining the ease of program-
ming interface from gRPC. We acknowledge that achieving the
highest performance within the constraints of the gRPC frame-
work is impractical. System scalability is our major concern for
production systems. In this section, we use a microbenchmark to
evaluate the scalability and latency of RR-Compound, compared
with mRPC. This system abstracts RPC as a service instead of
linking the RPC library into applications to allow live upgrade
and advanced features such as QoS without the overhead of
introducing a proxy.

We follow the settings provided by mRPC’s benchmark,
with 32-byte requests and 8-byte responses, to evaluate the
aggregated throughput among all the clients. Each mRPC client
keeps 32 concurrent RPCs. To avoid the HTTP2 overhead of RR-
Compound, we use the gRPC’s streaming APIs. This practice
follows gRPC’s official benchmark [23]. The clients are evenly
distributed to eight nodes. For mRPC, we use the same number
of threads for the server as the client. This setting is suggested in
paper [13]. For RR-Compound, we adopt the BPEV connection

Fig. 10. Scalability comparisons between mRPC and RR-Compound by in-
creasing the number of clients.

management method that uses 38 working threads to serve all
the clients and two polling threads with 100 µs busy-polling
timeout.

Fig. 10(a) plots the RPC rates for both mRPC and RR-
Compound as the number of clients increases from 1 to 128. For
a solitary client, mRPC demonstrates a very high throughput
with an aggregated RPC rate of 820 K RPCs/s, surpassing
RR-Compound, which achieves 242 K RPCs/s. This discrepancy
is understandable considering RR-Compound relies on gRPC,
characterized by an extended execution path leading to signif-
icant delays. As the number of clients surpasses eight, mRPC
accelerates to 4.66 M RPCs/s while RR-Compound achieves
1.55 M RPCs/s. Evaluating the speedup of eight clients over
one client, mRPC records a 5.68x improvement, while RR-
Compound achieves a 6.41x improvement (refer to Fig. 10(b)).
The peak throughput for mRPC occurs at 16 clients, reaching
8.67 M RPCs/s. Subsequently, scalability issues become appar-
ent in mRPC, causing a decline to 7.76 M RPCs/s when increas-
ing to 32 clients. In contrast, the throughput of RR-Compound
rises to 2.86 M RPCs/s. With 64 clients, mRPC’s throughput
further drops to 4.92 M RPCs/s, marking approximately half
of its peak throughput. In the meantime, RR-Compound excels
at 5.65 M RPCs/s, outperforming mRPC by 14.77%. As the
number of clients reaches 128, RR-Compound experiences only
7% drop in RPC rate, while mRPC struggles to cope with the
increased demand from busy connections.

The significant divergence in scalability between mRPC and
RR-Compound can be attributed to their distinct approaches to
RDMA connection support. mRPC adopts a two-sided RDMA
implementation coupled with a basic busy-polling mechanism,
exerting demands on CPU resources for both clients and the
server. While mPRC exhibits impressive performance with a
limited number of clients, it faces a substantial decline in per-
formance, leading to service interruptions in scenarios such as
serving 128 clients, where ibverbs failure becomes a critical is-
sue. In contrast, the demonstrated scalability of RR-Compound,
as shown in Fig. 10, stems from specific design choices. RR-
Compound’s BPEV design takes the benefits of event-based and
polling-based methods. By allocating threads equal to the avail-
able CPU cores, RR-Compound mitigates the risk of preempt-
ing CPU cycles, ensuring consistent and efficient utilization.
Furthermore, RR-Compound leverages the one-sided RDMA
write implementation, offloading CPU resources on the receiver

Authorized licensed use limited to: The Ohio State University. Downloaded on July 03,2024 at 20:53:57 UTC from IEEE Xplore. Restrictions apply.

GENG et al.: RR-COMPOUND: RDMA-FUSED GRPC FOR LOW LATENCY, HIGH THROUGHPUT, AND EASY INTERFACE 1499

TABLE III
ROUND-TRIP LATENCIES IN MICRO-SECOND

Fig. 11. (a) 320 clients are sending RPCs in low communication frequency;
(b) 64 clients are continuously sending RPCs.

side. This further enhances scalability and overall system per-
formance.

To further highlight the efficacy of the connection mech-
anisms in RR-Compound, a comparative analysis of latency
with mRPC and RR-Compound is conducted, which results are
shown in Table III. In this experiment, we follow the mRPC’s
configurations to evaluate RR-Compound, encompassing small
RPCs with 64-byte requests and 8-byte responses in a ping-pong
mode. Since RR-Compound adopts one-sided RDMA write, it
exhibits lower latency compared to mRPC. The median latency
comparison reveals that RR-Compound outpaces mRPC by
1.41x. When evaluating the 99th (P99) percentile tail latency,
RR-Compound demonstrates a 1.74x improvement over mRPC.
Note that the latency numbers for mRPC are higher than those
reported in their original paper. We attribute this variance to the
lower base frequency of the CPUs in our experimental settings.

B. Parameters Tuning and Disscussions

Varying Polling Threads Number: We conduct investigations
into the optimal number of polling threads required by BPEV,
examining both low and high load conditions. In a low load
scenario, we initiate a substantial number of clients (320) with
low communication frequencies, and assign 32 working threads
dedicated to handling RPCs on the server, each responsible for
ten clients. The RPC request frequency adheres to an exponential
distribution with a rate parameter λ = 1. To evaluate the impact
of polling threads on performance, we increase their count from
1 to 8, monitoring changes in latency. A reduction in latency
with the addition of more polling threads would suggest that the
limited polling threads serve as the bottleneck.

Fig. 11(a) visualizes the impact of increasing polling threads
on latency. With a single polling thread, the median latency
observed is 24.03 µs, and the 99th percentile (P99) latency is
29.82 µs. However, the addition of more polling threads does
not significantly alter latency, with variations remaining under

Fig. 12. Bandwidth by varying ring buffer size.

5 µs. This marginal change in latency can be attributed to the
low rate of RPC requests, where polling threads primarily spend
time inspecting the ring buffer head for new messages, and the
costly “eventfd_write” operations are infrequently required.
Consequently, under low load conditions with up to 320 clients,
the polling thread count does not emerge as a bottleneck, indi-
cating that BPEV’s design efficiently supports managing a large
number of clients with a minimal number of polling threads
under low load conditions.

Additionally, we simulate a high-load scenario with a small
number of clients (64) continuously issuing RPCs, where
throughput becomes a more appropriate performance metric.
As depicted in Fig. 11(b), a single polling thread allows RR-
Compound to reach a throughput of 2.8 M RPCs/s. With two
polling threads, the throughput increases to 3.8 M RPCs/s, and
with three, it further reaches 4.0 M RPCs/s. Beyond this point,
the throughput exhibits negligible sensitivity to further increases
in polling thread count. This outcome underscores that deploying
additional polling threads fails to continuously improve perfor-
mance, even under high load conditions. Therefore, allocating a
limited number of polling threads, coupled with dedicating more
CPU cores to worker threads, proves to be a pragmatic choice.

Varying Ring Buffer Size: The ring buffer size plays a crucial
role in influencing the performance of large RPCs. A small ring
buffer may frequently block the peer from writing, resulting in an
increased number of RDMA writes. Subsequently, this causes
reduced bandwidth and increased latency. In contrast, a large
ring buffer may introduce memory space overhead, particularly
when handling a large volume of connections. Hence, it is
imperative to explore an appropriate ring buffer size according
to different RPC sizes.

As shown in Fig. 12, for RPCs sized at 8 KB, RR-Compound
achieves a bandwidth of 8.1 Gb/s with a 32 KB ring buffer,
capable of accommodating up to four RPCs. Beyond this point,
enlarging the ring buffer size does not yield bandwidth im-
provements for small RPCs, as the ring buffer on the peer
side seldom reaches full capacity. However, the ring buffer
size significantly impacts the large RPCs. With 128 KB RPCs,
bandwidth significantly increases with a growing ring buffer
size. For example, with a 32 KB ring buffer, RR-Compound can
achieve a bandwidth of 16.2 Gb/s, and the bandwidth more than
doubles when the ring buffer size is augmented from 32 KB to
256 KB.

Authorized licensed use limited to: The Ohio State University. Downloaded on July 03,2024 at 20:53:57 UTC from IEEE Xplore. Restrictions apply.

1500 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 8, AUGUST 2024

Fig. 13. Throughput by varying the busy-polling timeout.

In practice, we opt to set the ring buffer size at 4 MB,
aligning with gRPC’s default maximum RPC size. This con-
figuration provides a reasonable upper limit for most use cases.
Furthermore, users have the flexibility to adjust the buffer size to
better align with their specific workloads. Our intuitive approach
could involve users specifying the maximum expected RPC
size. Upon connection establishment, clients could progressively
send RPCs of increasing sizes, gathering performance data to
iteratively determine the most efficient ring buffer size. While
an auto-tuning method to determine an optimal ring buffer size
is desirable, we acknowledge its significance and complexity,
and differ it to future work.

Varying Busy Polling Time: A small timeout value for BPEV
(bp_timeout in Algorithm 2) does not improve performance as
it doesn’t allow sufficient time for new messages to arrive. Con-
versely, a large timeout value will degenerate BPEV into BPTS,
negating its intended advantages. This underscores the timeout
setting is essential to effectively utilize both busy-polling and
event-based waiting without performance compromise.

Fig. 13 shows the throughput of RR-Compound for one client.
When the timeout is zero, BPEV behaves as an event-based
method, completely depending on the kernel to wake up working
threads. As a result, the throughput is only about 78 K RPCs/s,
and the median latency is about 17.07 µs. With the timeout
increase, the throughput climbs up and stays stable at about
252 K RPCs/s when the timeout is greater than 6µs. Notably, the
median latency in this scenario is approximately 6.80 µs, align-
ing closely with the given timeout. This observation suggests a
practical guideline for selecting an appropriate timeout: it should
be marginally longer than the typical round-trip time (RTT)
of RPCs. By following this principle, BPEV can effectively
leverage busy-polling to bypass the costly epoll_wait process
while still preserving CPU resources.

C. Effectiveness of Zero-Copy

To evaluate the effectiveness of the zero-copy optimization,
we employ varying payload sizes. To ensure a clear under-
standing of the specific benefits introduced by the zero-copy
optimization, we opt to measure bandwidth with a single client,
as multiple clients could easily saturate the bandwidth capacity
of hardware (RNIC), obscuring the benefits by the zero-copy
technique.

Fig. 14 shows the bandwidth of RR-Compound under dif-
ferent payload sizes. With a 64 KB payload, RR-Compound

Fig. 14. Bandwidth when disabling and enabling zero-copy.

Fig. 15. CPU and memory utilization of RR-Compound compared to gRPC
under heavy load.

achieves a bandwidth of approximately 32 Gb/s without the
zero-copy optimization. When activating zero-copy, the band-
width increases to 36 Gb/s, marking an improvement of 12.5%.
For a larger payload of 128 KB, the zero-copy optimization
yields a bandwidth improvement of 16.4%. However, as shown
in the figure, the performance gains become less significant with
a 256 KB payload. As the payload size increases, a significant
portion of the time is spent on serialization/deserialization and
memory allocation, amortizing the memory copy cost. As a
result, with the 256 KB payload, the zero-copy optimization
can only improve the bandwidth by 4.5%. The evaluation across
different payload sizes provides insights into the varying impact
of zero-copy optimization, indicating its effectiveness in certain
scenarios and diminishing returns in others.

D. Resource Utilization

Fusing RDMA into gRPC significantly enhances performance
but comes with increased resource utilization. Regarding CPU
usage, the BPEV design requires a group of polling threads run-
ning in the background to detect incoming messages. Regarding
memory overhead, RR-Compound introduces a fixed-sized ring
buffer as a receive buffer and a send buffer with half the receiver
buffer size [15]. For n connections with ring buffers in size c
bytes, RR-Compound consumes n× 1.5× c bytes on the RPC
server, where c = 4 MB by default.

Fig. 15 shows the resource utilization of RR-Compound com-
pared to gRPC under heavy load, as per the configurations listed
in Section V-F. RR-Compound exhibits higher CPU utilization
than gRPC, ranging from 1.12x to 5.80x. This is reasonable
given higher throughput, demanding a proportionally higher
utilization of CPU resources. Fig. 15(a) shows that the CPU

Authorized licensed use limited to: The Ohio State University. Downloaded on July 03,2024 at 20:53:57 UTC from IEEE Xplore. Restrictions apply.

GENG et al.: RR-COMPOUND: RDMA-FUSED GRPC FOR LOW LATENCY, HIGH THROUGHPUT, AND EASY INTERFACE 1501

Fig. 16. CPU and memory utilization of RR-Compound compared to gRPC
under low load.

utilization of RR-Compound drops slightly for 128 clients.
This potentially attributes to gRPC’s internal locks contention
under high loads, causing certain threads to enter sleep mode.
Fig. 15(b) compares the median memory usage per client. Owing
to higher throughput in RR-Compound, it requires more tempo-
rary memory for in-flight RPCs, resulting in 4.4x to 8.2x higher
memory consumption than gRPC. As the client count increases,
the per-client memory consumption decreases. This trend can
be attributed to two main factors: static memory allocation
necessary for gRPC’s operation, remaining constant regardless
of client numbers, and linear increase in send/receive buffer
size with the number of clients. Consequently, adding more
clients amortizes the constant memory, resulting in a decreasing
memory usage per client in RR-Compound.

Fig. 16 shows the resource utilization of RR-Compound un-
der low load, by setting an RPC rate limiter, as configured in
Section V-C. In this settting, RR-Compound consistently uti-
lizes 200% CPU due to the allocation of two polling threads.
In contrast, gRPC, being purely event-based, leads to threads
entering sleep mode while waiting for messages, resulting in
a lower CPU utilization (4%). Fig. 16(b) shows the memory
utilization of RR-Compound. For one client, gRPC takes 5.6 MB
of memory, and RR-Compound takes 14.3 MB. As the number
of clients increases, the amortized memory of RR-Compound
decreases. With 16 clients, the memory consumption per client is
about 6.7 MB, comprising 4 MB for the receive buffer and 2 MB
for the send buffer. This also aligns with our analysis above.

Modern data center servers are typically equipped with TBs
of memory and tens to hundreds of CPU cores. While RR-
Compound exhibits higher resource utilization, it can be justified
by achieving higher throughput and lower latency. A possible
improvement involves putting polling threads into sleep mode
during extended periods of inactivity. We mark it as a potential
part for future research.

E. gRPC versus RR-Compound by Key-Value Store

Key-value store is an RPC favorable workload for its small
size of payload and high communication frequency. In this
section, we use Yahoo! Cloud Serving Benchmark (YCSB) [16]
to evaluate the performance of RR-Compound against gRPC
over IPoIB. Six core workloads of YCSB are shown in Table IV.

Since YCSB is written in Java, we implemented a gRPC-
binding that invokes the gRPC client with Java Native Interface

TABLE IV
SIX CORE WORKLOADS OF YCSB

TABLE V
YCSB SPEEDUPS OF RR-COMPOUND OVER GRPC

(JNI). For 4 to 32 clients, we fixed the number of threads to the
CPU cores (40). For 64 to 128 clients, we fixed the number of
threads to 64. We tend to oversubscribe CPUs to gain a higher
throughput because the CPU will be yielded when accessing
the database. The completion queues are set to the number of
threads. We used Jungle [18] to store the key-value-pairs. It is
based on a combined index of LSM-Tree [24] and copy-on-write
(append-only) B+ tree [25]. Jungle is used as a storage engine
for eBay production systems. We use Yahoo! Cloud Serving
Benchmark (YCSB) [16] to evaluate the performance of RR-
Compound. During the execution of the workloads, 20 K records
are inserted into the database and 20 K operations are executed
for each type of workload. Other YCSB settings remain as the
default except for the record count and operation count.

Fig. 17 shows the aggregated throughput results by increasing
the number of clients up to 128. The experimental results con-
sistently show that RR-Compound outperforms gRPC running
over IPoIB for all workloads, which confirms our R&D efforts
discussed in the previous sections. Table V summarizes the
throughput speedups of RR-Compound, which range from 1.63x
to 2.35x.

RR-Compound shows its high scalability over gRPC to handle
a large volume of connections. For Workload B and C, read-
intensive workloads, tend to exhibit the peak performance for
both gRPC and RR-Compound due to reading operation in the
database taking a small amount of time. For Workload C, when
increasing the number of clients from 4 to 64, the throughput of
gRPC increased from 28kOP/s to 303kOPs/s. For 128 clients,
the throughput stays the same as 64 clients, but the number
of clients doubled. In contrast, RR-Compound scales well. Its
throughput increased from 49kOPs/s for four clients all the way
up to 535kOPs/s for 128 clients. For Workload A, B, E, and
F, the throughput of gRPC even dropped when increasing the
number of clients from 64 to 128. This behavior could be blamed
on gRPC’s TCP communication channel, which relies on the
kernel. Under high pressure, the performance deteriorates due
to frequent system calls, interrupts, overloaded CPU cores, etc.

Authorized licensed use limited to: The Ohio State University. Downloaded on July 03,2024 at 20:53:57 UTC from IEEE Xplore. Restrictions apply.

1502 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 8, AUGUST 2024

Fig. 17. YCSB throughput.

Fig. 18. YCSB latency.

We have also looked into the latency changes in Fig. 18.
Again, gRPC has the highest latency almost for all operations no
matter what the number of clients is. Fig. 18(a)–(f) shows that
the read latency for all workloads stay in their flat curves from
4 to 32 clients. This is because the server still has enough CPU
cores to handle the requests well. By increasing the number
of clients from 32 to 64, the read latency of all workloads
increases. It is interesting that for Workload E when the number
of clients is more than 64, the latency of insert operation for
RR-Compound is higher than gRPC (Fig. 18(k)) - the only case
that RR-Compound is inferior to gRPC. We investigated that
Workload E consists of 95% scan operation and only 5% insert
operation. The scan operation fetches many values from the
database for a single key, so it could easily saturate the CPU on
the server side. Due to the high performance of RR-Compound,
the high frequent scan operation could squeeze out CPU cores,
leaving a small amount of CPU resources for insert operations.
Thus, the latency of the insertion is pulled up. When the number
of clients increases from 64 to 128, the read and write latency for
all workloads significantly increase because the server resources
are exhausted. Nevertheless, the latency of RR-Compound is
still relatively low, achieving latency reduction from 10.25% to
46.92% compared to IPoIB.

F. gRPC versus RR-Compound by TensorFlow

TensorFlow [26] is an open-source Machine Learning frame-
work designed by the Google Brain team. It provides an API
for distributed training across multiple compute nodes. During
the execution, each node communicates via gRPC to exchange

training data updates with other nodes. In this section, we eval-
uate the performance of TensorFlow running on both gRPC and
RR-Compound by testing several DNNs from TensorFlow CNN
benchmark [27]. This benchmark generates synthetic image
data and measures the throughput performance on the number
of images processed per second. The TensorFlow version we
used is 2.8.0. We set TensorFlow in Parameter Server mode and
use up to twelve nodes for distributed training. Different from
Table II, we use another group of machines, which equip with
2xIntel(R) Xeon(R) CPU E5-2680 v4, Mellanox ConnectX-5
NIC, and NVIDIA Tesla V100 GPUs. We run the benchmark
on different DNN models. Like other parallel processing ap-
plications, the TensorFlow benchmark’s execution interleaves
between data communication stages and local computation
stages. This set of benchmark programs are highly computing
intensive. In other words, the data communication time spent
in the total execution time for each benchmark program is
relatively low. Since RR-Compound focuses on improving the
data communication for gRPC, it may not significantly improve
overall performance compared with that of gRPC. However,
our RR-Compound achieved comparable performances with a
customized and RDMA-based TensorFlow framework [20].

Inception4: Fig. 19(a), (b), and (c) compares the through-
put performance between RR-Compound and gRPC on Incep-
tion4 [28]. We measured the data communication time in the
total program execution time, which ranges from 14% to 49%.
For Inception4 model, RR-Compound improves TensorFlow’s
performance over gRPC on 4 nodes, 8 nodes, and 12 nodes by
9.8%, 14.7% and 14.8%, respectively.

AlexNet: Fig. 19(d), (e), and (f) compares the throughput per-
formance between RR-Compound and gRPC on AlexNet [29].

Authorized licensed use limited to: The Ohio State University. Downloaded on July 03,2024 at 20:53:57 UTC from IEEE Xplore. Restrictions apply.

GENG et al.: RR-COMPOUND: RDMA-FUSED GRPC FOR LOW LATENCY, HIGH THROUGHPUT, AND EASY INTERFACE 1503

Fig. 19. TensorFlow performance.

We measured the data communication time in the total program
execution time, which ranges from 8% to 40%. For Alexnet
model, RR-Compound improves TensorFlow’s performance
over gRPC on 4 nodes, 8 nodes, and 12 nodes by 17.6%, 18.9%
and 20.3%, respectively.

Resnet50: Fig. 19(g), (h), and (i) compares the throughput per-
formance between RR-Compound and gRPC on Resnet50 [30].
The measured data communication time in the total program
execution time ranges from 9% to 60%. For Resnet50 model,
RR-Compound improves TensorFlow’s performance over gRPC
on 4 nodes, 8 nodes, and 12 nodes by 14.5%, 16.8% and 29.6%,
respectively.

We achieved a speedup of TensorFlow up to 1.3x, while the
speedup of YCSB experiments was up to 2.35x. The perfor-
mance gap comes from different data communication ratios in
the total execution times in TensorFlow and YCSB. For example,
the data communication time ratio in YCSB is at least 77%,
whereas the ratio in TensorFlow is at most 60%. In several
cases, the ratio is under 10%. Being consistent with Amdahl’s
Law, we have shown that RR-Compound can make a significant
performance improvement over gRPC if we have a sufficiently
high ratio of data communication time in the total execution time
for an application program because the RDMA with low latency
and high throughput plays an effective role under this condition.

In RR-Compound, RDMA-fused gRPC is a separate module.
TCP-based gRPC is still available, providing an option for highly
computing-intensive applications with low data communication
ratios.

VI. RELATED WORK

Numerous research efforts have leveraged RDMA in
distributed systems and applications, including distributed
key-value stores [31], [32], [33], [34], [35], B-trees [36], [37],
R-trees [38], [39], file systems, database and transactional

systems [40], [41], [42], [43], [44], [45], and deep learning
systems [46]. These approaches require developers to explicitly
utilize RDMA interfaces to rewrite systems and applications,
which significantly increases the human effort involved.

Concealing the complexities of RDMA behind a more
general-purpose programming interface is highly desirable. Sev-
eral customized RPC systems, including FaRM [15], Herd
RPCs [47], FaSST [48], PRISM [49], StRoM [50], Octopus [51],
ScaleRPC [22], RFP [52], and eRPC [21], utilize RDMA for
RPC data transport. However, none of these systems offer the
extensive service scope of gRPC, which supports a variety of
programming languages and is compatible with different oper-
ating systems.

In practice, an RPC system often requires certain advanced
management features, such as authentication, flow control, and
live upgrades, demanding a proxy service support. mRPC [13]
is a flexible architecture by providing RPC as a system service
instead of a library integrated into each application. Moreover,
mRPC supports various transport layers, such as TCP and
RDMA, through the dynamical loading of libraries. It exhibits
impressive performance, particularly with RDMA for a limited
number of clients. Compared to mRPC, our experimental results
demonstrate that RR-compound exhibits better scalability.

There are also several other studies that have incorporated
RDMA into more conventional RPC systems like Hadoop RPC,
gRPC, and Thrift [20], [53], [54]. However, these implemen-
tations have omitted some features and benefits of traditional
RPC systems. For instance, AR-gRPC bypassed all connection
and memory management modules of gRPC, constructing RPC
stubs directly atop the RDMA transport layer, which made
the TCP transport layer and asynchronous execution of gRPC
unavailable.

Several studies focus on addressing the inherent bottlenecks
of RDMA, such as significant performance degradation when
the number of concurrent connections exceeds the capabilities
of RDMA NICs, and when data bursts lead to congestion control
issues [55], [56], [57], [58], [59], [60]. These challenges, along
with the intricacies of RNIC microarchitecture and performance
isolation issues, have been explored in depth [61]. Additionally,
solutions to address bandwidth imbalances in heterogeneous
RNIC environments have been proposed [62]. These studies
necessitate new hardware and operating system features and are
orthogonal to the focus of our work in this paper.

Literature [63] explores the utilization of RDMA and mul-
ticore to accelerate streaming data processing. A more recent
work [9] advocates for customizing the network implementation
to be entirely application-specific to minimize unnecessary over-
head. Some auto-tuning frameworks, as discussed in [7], [64],
adapt different threading models to optimize performance under
various workloads. An example is µ Tune, which selects the
most suitable combination of synchronous versus asynchronous
communication, in-line versus dispatch-based RPC processing,
and event versus poll-based message detection based on specific
workloads [64]. Our perspective aligns with the belief that in-
corporating a flexible threading model and adaptive connection
management will yield significant benefits for RR-Compound,
and we recognize these aspects as part of our future work.

Authorized licensed use limited to: The Ohio State University. Downloaded on July 03,2024 at 20:53:57 UTC from IEEE Xplore. Restrictions apply.

1504 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 8, AUGUST 2024

VII. CONCLUSION

Fusing RDMA into an RPC framework to create a unified sys-
tem that leverages the benefits of both data communication pro-
tocols is a common wisdom. However, the integration process
based on a well-established and widely used production system
like gRPC presents several complex technical challenges. RR-
Compound is a gRPC-based system that effectively incorporates
the RDMA protocol, gaining high performance for low latency
and high throughput. In order to fuse RDMA seamlessly with
gRPC’s asynchronous execution framework, we have devel-
oped adaptive network connection methods and space-efficient
memory management mechanisms. We have made a case for
RR-Compound’s effectiveness by intensive experiments, partic-
ularly for workloads involving frequent data communications.
Moreover, users working with highly computationally intensive
tasks can choose to use gRPC directly. Our future work is to
make efforts to merge RR-Compound to the gRPC ecosystems.

REFERENCES

[1] J. D. Ambrosia and M. Nowell, “IEEE P802.3df 200 Gb/s, 400 Gb/s,
800 Gb/s, and 1.6 Tb/s ethernet task force,” 2022. [Online]. Available:
https://www.ieee802.org/3/df/index.html

[2] Y. Lee, H. Al Maruf, M. Chowdhury, A. Cidon, and K. G. Shin, “Hydra:
Resilient and highly available remote memory,” in Proc. 20th USENIX
Conf. File Storage Technol., 2022, pp. 181–198.

[3] H. Al Maruf and M. Chowdhury, “Effectively prefetching remote memory
with leap,” in Proc. USENIX Annu. Tech. Conf., 2020, pp. 843–857.

[4] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang, “LegoOS: A disseminated, dis-
tributed OS for hardware resource disaggregation,” in Proc. 13th USENIX
Symp. Operating Syst. Des. Implementation, 2018, pp. 69–87.

[5] A. D. Birrell and B. J. Nelson, “Implementing remote procedure calls,”
ACM Trans. Comput. Syst., vol. 2, no. 1, pp. 39–59, Feb. 1984.

[6] N. Dragoni et al., Microservices: Yesterday, Today, and Tomorrow. Berlin,
Germany: Springer International Publishing, 2017, ch. 12, pp. 195–216.

[7] A. Sriraman and T. F. Wenisch, “µ suite: A benchmark suite for mi-
croservices,” in Proc. IEEE Int. Symp. Workload Characterization, 2018,
pp. 1–12.

[8] A. Sriraman, A. Dhanotia, and T. F. Wenisch, “SoftSKU: Optimizing server
architectures for microservice diversity, scale,” in Proc. 46th Int. Symp.
Comput. Archit., 2019, pp. 513–526.

[9] X. Zhu et al., “Application defined networks,” in Proc. 22nd ACM Work-
shop Hot Topics Netw., 2023, pp. 87–94.

[10] Google, “gRPC: A high performance, open source universal RPC frame-
work,” 2022. [Online]. Available: https://grpc.io/

[11] Google, “Protocol buffers: A language-neutral, platform-neutral extensi-
ble mechanism for serializing structured data,” 2022. [Online]. Available:
https://developers.google.com/protocol-buffers

[12] Google, “Introducing gRPC, a new open source HTTP/2 RPC framework,”
2015. [Online]. Available: https://developers.googleblog.com/2015/02/
introducing-grpc-new-open-source-http2.html

[13] J. Chen et al., “Remote procedure call as a managed system service,”
in Proc. 20th USENIX Symp. Netw. Syst. Des. Implementation, 2023,
pp. 141–159.

[14] P. MacArthur and R. D. Russell, “A performance study to guide RDMA
programming decisions,” in Proc. IEEE 14th Int. Conf. High Perform.
Comput. Commun. IEEE 9th Int. Conf. Embedded Softw. Syst., 2012,
pp. 778–785.

[15] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson, “FaRM: Fast
remote memory,” in Proc. 11th USENIX Symp. Netw. Syst. Des. Implemen-
tation, Seattle, WA: USENIX Association, 2014, pp. 401–414. [Online].
Available: https://www.usenix.org/conference/nsdi14/technical-sessions/
dragojevi’c

[16] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in Proc. 1st ACM
Symp. Cloud Comput., 2010, pp. 143–154.

[17] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, and Z. Chen, “TensorFlow:
Large-scale machine learning on heterogeneous systems,” 2015. [Online].
Available: https://www.tensorflow.org/

[18] J.-S. Ahn, M. A. Qader, W.-H. Kang, H. Nguyen, G. Zhang, and S. Ben-
Romdhane, “Jungle: Towards dynamically adjustable key-value store by
combining LSM-tree and copy-on-write B-tree,” in Proc. 11th USENIX
Workshop Hot Topics Storage File Syst., 2019, Art. no. 9.

[19] RDMA core userspace libraries and daemons, 2022. [Online]. Available:
https://github.com/linux-rdma/rdma-core

[20] R. Biswas, X. Lu, and D. K. Panda, “Accelerating TensorFlow with adap-
tive RDMA-based gRPC,” in Proc. IEEE 25th Int. Conf. High Perform.
Comput., 2018, pp. 2–11.

[21] A. Kalia, M. Kaminsky, and D. Andersen, “Datacenter RPCs can be general
and fast,” in Proc. 16th USENIX Symp. Netw. Syst. Des. Implementation,
Boston, MA: USENIX Association, 2019, pp. 1–16. [Online]. Available:
https://www.usenix.org/conference/nsdi19/presentation/kalia

[22] Y. Chen, Y. Lu, and J. Shu, “Scalable RDMA RPC on reliable connec-
tion with efficient resource sharing,” in Proc. 14th EuroSys Conf., 2019,
Art. no. 19.

[23] Benchmarking | gRPC, 2024. [Online]. Available: https://grpc.io/docs/
guides/benchmarking/

[24] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, “The log-structured
merge-tree (LSM-tree),” Acta Informatica, vol. 33, no. 4, pp. 351–385,
Jun. 1996.

[25] O. Rodeh, “B-trees, shadowing, and clones,” ACM Trans. Storage, vol. 3,
no. 4, pp. 1–27, Feb. 2008.

[26] M. Abadi et al., “TensorFlow: A system for Large-Scale machine learning,”
in Proc. 12th USENIX Symp. Operating Syst. Des. Implementation, 2016,
pp. 265–283.

[27] Tensorflow benchmark, 2018. [Online]. Available: https://github.com/
tensorflow/benchmarks/

[28] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-ResNet and the impact of residual connections on learning,”
in Proc. 31st AAAI Conf. Artif. Intell., 2017, pp. 4278–4284.

[29] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6,
pp. 84–90, May 2017.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[31] J. Huang et al., “High-performance design of HBase with RDMA over
InfiniBand,” in Proc. IEEE 26th Int. Parallel Distrib. Process. Symp., 2012,
pp. 774–785.

[32] J. Appavoo et al., “Providing a cloud network infrastructure on a super-
computer,” in Proc. 19th ACM Int. Symp. High Perform. Distrib. Comput.,
2010, pp. 385–394.

[33] J. Jose et al., “Scalable memcached design for infiniband clusters using
hybrid transports,” in Proc. IEEE/ACM 12th Int. Symp. Cluster Cloud Grid
Comput., 2012, pp. 236–243.

[34] J. Jose et al., “Memcached design on high performance RDMA capable
interconnects,” in Proc. Int. Conf. Parallel Process., 2011, pp. 743–752.

[35] C. Mitchell, Y. Geng, and J. Li, “Using One-SidedRDMA reads to build a
fast, CPU-EfficientKey-Value store,” in Proc. USENIX Annu. Tech. Conf.,
2013, pp. 103–114.

[36] C. Mitchell, K. Montgomery, L. Nelson, S. Sen, and J. Li, “Balancing
CPU and network in the cell distributed B-Tree store,” in Proc. USENIX
Annu. Tech. Conf., 2016, pp. 451–464.

[37] X. Wei, R. Chen, and H. Chen, “Fast RDMA-based ordered Key-Value
store using remote learned cache,” in Proc. 14th USENIX Symp. Operating
Syst. Des. Implementation, 2020, pp. 117–135.

[38] M. Xiao, H. Wang, L. Geng, R. Lee, and X. Zhang, “An RDMA-enabled
in-memory computing platform for r-tree on clusters,” ACM Trans. Spatial
Algorithms Syst., vol. 8, no. 2, pp. 1–26, Jun. 2022.

[39] M. Xiao, H. Wang, L. Geng, R. Lee, and X. Zhang, “Catfish: Adaptive
RDMA-enabled r-tree for low latency and high throughput,” in Proc. IEEE
39th Int. Conf. Distrib. Comput. Syst., 2019, pp. 164–175.

[40] N. S. Islam et al., “High performance RDMA-based design of HDFS over
infiniband,” in Proc. Proc. Int. Conf. High Perform. Comput. Netw. Storage
Anal., 2012, pp. 1–12.

[41] J. Wu, P. Wyckoff, and D. Panda, “PVFS over InfiniBand: Design and
performance evaluation,” in Proc. Int. Conf. Parallel Process., 2003,
pp. 125–132.

[42] B. Callaghan, T. Lingutla-Raj, A. Chiu, P. Staubach, and O. Asad, “NFS
over RDMA,” in Proc. ACM SIGCOMM Workshop Netw.-I/O Conver-
gence: Exp. Lessons Implic., 2003, pp. 196–208.

[43] M. DeBergalis et al., “The direct access file system,” in Proc. 2nd USENIX
Conf. File Storage Technol., 2003, pp. 175–188.

[44] Y. Gao et al., “When cloud storage meets RDMA,” in Proc. 18th USENIX
Symp. Netw. Syst. Des. Implementation, 2021, pp. 519–533.

Authorized licensed use limited to: The Ohio State University. Downloaded on July 03,2024 at 20:53:57 UTC from IEEE Xplore. Restrictions apply.

https://www.ieee802.org/3/df/index.html
https://grpc.io/
https://developers.google.com/protocol-buffers
https://developers.googleblog.com/2015/02/introducing-grpc-new-open-source-http2.html
https://developers.googleblog.com/2015/02/introducing-grpc-new-open-source-http2.html
https://www.usenix.org/conference/nsdi14/technical-sessions/dragojevi'c
https://www.usenix.org/conference/nsdi14/technical-sessions/dragojevi'c
https://www.tensorflow.org/
https://github.com/linux-rdma/rdma-core
https://www.usenix.org/conference/nsdi19/presentation/kalia
https://grpc.io/docs/guides/benchmarking/
https://grpc.io/docs/guides/benchmarking/
https://github.com/tensorflow/benchmarks/
https://github.com/tensorflow/benchmarks/

GENG et al.: RR-COMPOUND: RDMA-FUSED GRPC FOR LOW LATENCY, HIGH THROUGHPUT, AND EASY INTERFACE 1505

[45] D. Kim et al., “Hyperloop, group-based NIC-offloading to accelerate
replicated transactions in multi-tenant storage systems,” in Proc. Conf.
ACM Special Int. Group Data Commun., 2018, pp. 297–312.

[46] J. Xue, Y. Miao, C. Chen, M. Wu, L. Zhang, and L. Zhou, “Fast distributed
deep learning over RDMA,” in Proc. 14th EuroSys Conf., 2019, pp. 1–14.

[47] A. Kalia, M. Kaminsky, and D. G. Andersen, “Design guidelines for high
performance RDMA systems,” in Proc. USENIX Annu. Tech. Conf., 2016,
pp. 437–450.

[48] A. Kalia, M. Kaminsky, and D. G. Andersen, “FaSST: Fast, scalable
and simple distributed transactions with Two-Sided (RDMA) datagram
RPCs,” in Proc. 12th USENIX Symp. Operating Syst. Des. Implementa-
tion, Savannah, GA: USENIX Association, 2016, pp. 185–201. [Online].
Available: https://www.usenix.org/conference/osdi16/technical-sessions/
presentation/kalia

[49] M. Burke et al., “PRISM: Rethinking the RDMA interface for distributed
systems,” in Proc. ACM SIGOPS 28th Symp. Operating Syst. Princ., New
York, NY, USA, 2021, pp. 228–242, doi: 10.1145/3477132.3483587.

[50] D. Sidler, Z. Wang, M. Chiosa, A. Kulkarni, and G. Alonso, “StRoM:
Smart remote memory,” in Proc. 15th Eur. Conf. Comput. Syst., 2020,
Art. no. 29.

[51] Y. Lu, J. Shu, Y. Chen, and T. Li, “Octopus: An RDMA-enabled distributed
persistent memory file system,” in Proc. USENIX Annu. Tech. Conf., 2017,
pp. 773–785.

[52] M. Su, M. Zhang, K. Chen, Z. Guo, and Y. Wu, “RFP: When RPC is faster
than server-bypass with RDMA,” in Proc. 12th Eur. Conf. Comput. Syst.,
2017, pp. 1–15.

[53] X. Lu et al., “High-performance design of hadoop RPC with RDMA over
infiniband,” in Proc. 42nd Int. Conf. Parallel Process., 2013, pp. 641–650.

[54] T. Li, H. Shi, and X. Lu, “HatRPC: Hint-accelerated thrift RPC over
RDMA,” in Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal.,
New York, NY, USA, 2021, Art. no. 36.

[55] H. N. Schuh, W. Liang, M. G. Liu, J. Nelson, and A. Krishnamurthy,
“Xenic: SmartNIC-accelerated distributed transactions,” in Proc. ACM
SIGOPS 28th Symp. Operating Syst. Princ., 2021, pp. 740–755.

[56] Y. Zhu et al., “Congestion control for large-scale RDMA deployments,” in
Proc. ACM Conf. Special Int. Group Data Commun., 2015, pp. 523–536.

[57] B. Li, T. Cui, Z. Wang, W. Bai, and L. Zhang, “Socksdi-
rect: Datacenter sockets can be fast and compatible,” in Proc.
ACM Special Int. Group Data Commun., 2019, pp. 90–103. [On-
line]. Available: https://www.microsoft.com/en-us/research/publication/
socksdirect-datacenter-sockets-can-be-fast-and-compatible/

[58] E. Amaro et al., “Remote memory calls,” in Proc. 19th ACM Workshop
Hot Topics Netw., 2020, pp. 38–44.

[59] A. Singhvi et al., “1RMA, re-envisioning remote memory access for multi-
tenant datacenters,” in Proc. Annu. Conf. ACM Special Int. Group Data
Commun. Appl. Technol. Architectures Protoc. Comput. Commun., 2020,
pp. 708–721.

[60] W. Reda, M. Canini, D. Kosti’c, and S. Peter, “RDMA is turing complete,
we just did not know it yet!,” in Proc. 19th USENIX Symp. Netw. Syst. Des.
Implementation, 2022, pp. 71–85.

[61] X. Kong et al., “Understanding RDMA microarchitecture resources for
performance isolation,” in Proc. 20th USENIX Symp. Netw. Syst. Des.
Implementation, 2023, pp. 31–48.

[62] Q. Li et al., “Flor: An open high performance RDMA framework over
heterogeneous RNICs,” in Proc. 17th USENIX Symp. Operating Syst. Des.
Implementation, 2023, pp. 931–948.

[63] S. Zeuch et al., “Analyzing efficient stream processing on modern hard-
ware,” Proc. VLDB Endowment, vol. 12, no. 5, pp. 516–530, 2019.

[64] A. Sriraman and T. F. Wenisch, “µTune: Auto-Tuned threading for OLDI
microservices,” in Proc. 13th USENIX Symp. Operating Syst. Des. Imple-
mentation, 2018, pp. 177–194.

Liang Geng received the BEng and MEng degrees
from Liaoning Technical University and Northeast-
ern University in China, respectively. He is currently
working toward the PhD degree with The Ohio State
University. His research interests include in computer
systems, especially using advanced hardware tech-
nology to accelerate spatial data processing.

Hao Wang (Member, IEEE) received the PhD degree
from the Institute of Computing Technology, Chinese
Academy of Sciences. He is a senior research scientist
with the International Digital Economy Academy
(IDEA), Shenzhen, China. His research interests in-
clude synergistic intersection of computer architec-
ture, distributed and parallel computing, and algo-
rithms for database and blockchain.

Jingsong Meng received the bachelor of engineering
(BE) degree from Xi’an Jiaotong University, in China,
and the master’s degree from Syracuse University. He
is currently working toward the PhD degree with The
Ohio State University. He is interested in distributed
systems.

Dayi Fan received the BEng degree from the South-
ern University of Science and Technology in China.
He is currently working toward the PhD degree with
The Ohio State University. His research interests in-
clude in parallel systems and algorithms, especially
for using new hardware to accelerate data-intensive
applications.

Sami Ben-Romdhane received the BS degree from
Ecole Nationale des Ingénieurs de Tunis, and the
master’s degree from Ecole Nationale des sci-
ences de l’informatique. He is a vice president
and technical fellow with eBay Inc. He has long
experience in designing and implementing high-
performance/reliable, highly scalable, highly avail-
able distributed systems.

Hari Kadayam Pichumani received the BEng de-
gree from the University of Madras. He is a distin-
guished engineer with eBay, Inc. He has more than 20
years of experience in technical leadership, building
architecture from ground up, prototyping, designing,
and implementing end-to-end storage systems soft-
ware.

Vinay Phegade is a principal engineer with eBay,
Inc. He is a technical leader with expertise in building
AI/ML platforms with security and privacy founda-
tions, leading eBay’s AI/ML platform architecture
team to deliver advanced capabilities to data scien-
tists at optimized cost. He also has applied hands-on
experience in building scalable systems with soft-
ware/hardware co-design and practical knowledge of
training and deploying deep learning models.

Xiaodong Zhang (Fellow, IEEE) received the PhD
degree in computer science from the University of
Colorado at Boulder, where he was honored with a
Distinguished Engineering Alumni Award, in 2011.
He is a University distinguished scholar and the
Robert M. Critchfield professor in engineering with
the Ohio State University. His research interests in-
clude on data management in computer and dis-
tributed systems. He received the Education Leader-
ship Award from the Lutron Foundation for chairing
the Department of Computer Science and Engineer-

ing with Ohio State from 2006 to 2018. He is also a fellow of the ACM.

Authorized licensed use limited to: The Ohio State University. Downloaded on July 03,2024 at 20:53:57 UTC from IEEE Xplore. Restrictions apply.

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kalia
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kalia
https://dx.doi.org/10.1145/3477132.3483587
https://www.microsoft.com/en-us/research/publication/socksdirect-datacenter-sockets-can-be-fast-and-compatible/
https://www.microsoft.com/en-us/research/publication/socksdirect-datacenter-sockets-can-be-fast-and-compatible/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

