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ABSTRACT
Real-time spatial data analysis is a fundamental requirement for
many critical applications in this digital era. However, such a re-
quirement in practice is often hindered by the low performance of
spatial join queries on conventional parallel systems. Specifically,
all existing spatial join methods, including both classical plane
sweeping algorithms and various grid- or tree-based index-assisted
algorithms, have unacceptably long execution times and thus fail to
deliver real-time performance. In this paper, we present RayJoin, a
new and effective approach that utilizes the ray tracing hardware in
modern GPUs (e.g., NVIDIA RT Cores) as accelerators to overcome
the bottlenecks in spatial join processing and push the performance
to an unprecedented level. Specifically, RayJoin consists of a high-
performance and high-precision spatial join framework that accel-
erates two vital spatial join queries: line segment intersection (LSI)
and point-in-polygon test (PIP). Besides these ray tracing-backed
algorithms, RayJoin also contains new solutions to address two
challenging technical issues: (1) how to meet the high precision
requirement of spatial data analysis with the insufficient precision
support by the underlying hardware, and (2) how to reduce the high
buildup cost of the hardware-accelerated index, namely Bounding
Volume Hierarchy (BVH), while maintaining optimal query perfor-
mance. Our evaluation results show that RayJoin achieves speedups
from 3.0x to 28.3x over any existing highly optimized methods in
high precision. To the best of our knowledge, RayJoin stands as
the sole solution capable of meeting the real-time requirements of
diverse workloads, taking under 460ms to join millions of polygons.
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1 INTRODUCTION
Spatial join queries are pivotal in Geographic Information Science
(GIS) and geo-databases. A spatial join query aims to identify pairs
of geometries from multiple datasets that satisfy a given predicate,
such as “intersect” or “contain.” [7, 32, 45]. For example, it can de-
termine the locations of bridges by querying intersections between
a road network and a hydrographic map. However, the increasing
volume of GIS data collected from various sources, including satel-
lites and mobile devices, poses challenges for timely data analytics
[4, 10, 37, 51]. This requirement is particularly acute in domains
like interactive urban planning, emergency management, and risk
assessment [58, 72, 79].

Various techniques have been explored to address the challenges
of large-scale data and low-latency processing. The plane-sweep
algorithm is favored for its low complexity [12, 47, 66] but suffers
from limited parallel processing capabilities [5, 6, 41]. Rasterization-
based methods offer parallelism but require intensive preprocessing
[16, 65, 79]. Learned spatial indexes, though efficient in query perfor-
mance and storage, struggle with high training costs and accuracy
concerns [18, 29, 52, 53, 59, 82]. Consequently, GIS researchers and
practitioners often resort to conventional indexing techniques, such
as grids and trees, which offer numerous advantages [4, 6, 10, 17, 62–
64, 71, 73–77, 80].

However, the conventional spatial indexesmentioned above have
performance limitations from achieving real-time processing [61].
While tree-based methods offer a unique advantage in logarithmic
time complexity, they suffer from inherent shortcomings, including
branches, irregular memory accesses, and memory space overhead
for storing pointers. These drawbacks notably undermine the effi-
ciency of spatial join operations, particularly on GPUs. In contrast,
grids convert spatial queries into hardware-friendly scan opera-
tions within a limited search space, thereby maximizing memory
access efficiency. However, skewed data distributions may result
in imbalanced workloads that hinder the effectiveness of parallel
processing [43, 44, 69].

Over the years, algorithmic improvements in conventional in-
dexing methods seriously mismatch with the execution models of
general-purpose computer architecture, including CPUs and GPUs,
leading to persistent performance bottlenecks and associated trade-
offs in designing databases and analytical systems [13, 31, 78, 81].
In fact, our evaluation shows that none of the existing spatial join
methods satisfy the real-time processing requirement (§5.7), de-
fined as the completion time within a second. Recently, the GPU
advancement of dedicated ray-tracing units, such as NVIDIA’s RT
Cores, opens a new opportunity to accelerate spatial join queries
through hardware-accelerated Bounding Volume Hierarchy (BVH)
tree traversal. Moreover, the processing capability of RT Cores is
doubled per generation, making RT-based methods automatically
benefit from the advancing of this new hardware [48, 49]. Utilizing
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the technology advancement, we have designed and implemented
a new and effective acceleration engine for spatial joins with RT
Cores, which is called RayJoin, to address the limitations of all
existing approaches.

Leveraging RT Cores for spatial join queries presents three non-
trivial challenges for us to address. First, to harness the dedicated
hardware effectively, it is crucial to devise an efficient method
that formulates spatial join queries as ray tracing problems. In
RayJoin, we showcase two critical spatial join queries, line segment
intersection (LSI) and point-in-polygon (PIP) test. We transform
these two queries into RT-friendly algorithms using the𝐴𝑛𝑦𝐻𝑖𝑡 and
𝐶𝑙𝑜𝑠𝑒𝑠𝑡𝐻𝑖𝑡 shaders supported by RT Cores. Specifically, we have
leveraged these queries to develop a polygon overlay application.
Second, the precision in RT Cores is limited to single-precision
floating-point (FP32) for high-performance rendering. However,
this limitation poses a significant challenge in meeting the require-
ments of GIS applications. To address this, we have proposed a
conservative representation that stores polygons in low precision
while still delivering exact query results. In computer arithmetic, a
conservative method ensures the precision of computation results,
even at a cost of performance. RayJoin achieves both high precision
and high performance. Finally, the BVH construction cost, in both
time and space, is another bottleneck to be resolved to achieve high
performance. We have noticed that the construction time is often a
magnitude higher than the query time. In response, we have intro-
duced a grouping technique that greatly reduces the construction
cost by reducing the number of primitives used in the BVH. This
effectively reduces construction costs while keeping high query
performance.

Our experiments show that RayJoin has achieved 3.0x to 28.3x
speedups over any existing polygon overlay solutions. It only takes
about 460ms on the full-fledged polygon overlay analysis to join
1.6M polygons with 303K polygons, meeting real-time spatial join
query requirements. In this paper, we have made a strong case for
using RT Cores to accelerate various spatial queries in geodatabases,
and our contributions are as follows:

• We have developed an effective approach that utilizes RT
Cores to accelerate LSI and PIP queries, substantially out-
performing conventional spatial join techniques on both
CPUs and GPUs. To the best of our knowledge, RayJoin is
the fastest spatial join solution (§3.1).

• Within the existing GPUs that only support FP32 ray-tracing,
we have developed a method to effectively achieve double-
precision floating-point (FP64) while maintaining perfor-
mance levels similar to the underlying hardware (§3.2).

• We have proposed an algorithm that greatly reduces the
BVH construction time and memory cost while keeping high
query performance (§3.3).

• We have comprehensively compared and analyzed RayJoin
with many existing spatial join solutions by a consistent
benchmark with synthetic and real-world datasets (§5), mak-
ing a strong case for RT Cores to attain fast and precise
spatial join.

• RayJoin is an open-source software project for widespread
public usage.1

1Source code: https://github.com/pwrliang/RayJoin

2 BACKGROUND
2.1 Spatial Join Queries and Spatial Indexes
Spatial join finds pairs of spatial objects (𝑟, 𝑠) from two datasets 𝑅
and 𝑆 that satisfy a spatial predicate 𝜃 , where 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆 . Formally,

𝑅 ⊲⊳𝜃 𝑆 B {(𝑟, 𝑠) | 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆, 𝜃 (𝑟, 𝑠) = 𝑡𝑟𝑢𝑒}
Spatial objects come in several forms, including points, line seg-

ments, polylines, and polygons. Predicates, such as intersect, con-
tain, overlap, etc., can be combined to perform complex spatial
queries. Figure 1 provides an example of joining two sets of poly-
gons 𝑅 and 𝑆 , which is also called polygon overlay analysis2. The
polygon overlay is achieved by combining the results of LSI and PIP
queries. The LSI query generates points at the intersections where
the boundaries of datasets 𝑅 and 𝑆 meet. The PIP query determines
the polygon 𝑟 ∈ 𝑅 where a query point 𝑠 ∈ 𝑆 lies and vice versa.
The output from the above two steps is combined to obtain the
resulting polygon (on the right of Figure 1).

Performing spatial join queries on a large volume of complex
geometries is challenging due to the high computational cost [3].
Exhaustive search compares all pairs of geometries, resulting in
𝑂 ( |𝑅 | · |𝑆 |) time complexity, which is impractical for large datasets
[40]. Thus, spatial indexes are necessary to improve query perfor-
mance by reducing search space.

Line-segment intersection
Point-in-polygon test

Join

Dataset R Dataset S Output R⋈S

Figure 1: Example: polygon overlay analysis through spatial
join. Dataset 𝑅 contains the union of multiple simple poly-
gons with common boundaries. Dataset 𝑆 has a simple poly-
gon. The output is the overlapped regions from two datasets.

This section introduces two typical tree-based and grid-based
spatial indexes, namely BVH and uniform grid. To clarify, in graph-
ics, BVH is a general term to describe a hierarchical data structure
that partitions geometries with bounding volume. For example,
the R-tree can be categorized into BVH because it uses Minimum
Bounding Rectangle (MBR) as the bounding volume [19].

BVH. The BVHs organize geometries in tree-like data structures.
The internal node in the BVH is associated with an axis-aligned
bounding box (AABB)3, which tightly encloses the union of the
children’s AABBs. Leaf nodes hold the primitives4, which can be
points, lines, triangles, or any shapes. AABB approximates the
primitive boundary, making the intersection test more efficient.
Building a BVH can be efficiently converted into a GPU-friendly
2To understand dataset R, considering the provinces/states (the three simple polygons)
share the common boundaries forms into a country (the whole polygon).
3AABB is a synonym of MBR in this paper.
4We use the word “primitive” interchangeably with “geometry.” In the context of
BVH, we prefer the word “primitive” because they are conventionally used together in
computer graphics.
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Figure 2: (a): given a group of geometric objects and a query 𝑄𝐸 , finding which geometry intersects with the query. (b) and (c):
demonstrate the acceleration of the query with two spatial indexes and their memory layouts and access patterns.

sorting problem. For example, Linear Bounding Volume Hierarchy
(LBVH) organizes geometries in the order of their Morton Code,
balancing the construction time and index quality [26].

Figure 2 (a) depicts a query𝑄𝐸 being performed on a scene com-
posed of four triangles. Figure 2 (b) illustrates how to accelerate the
query with the BVH. The query aims to identify all the triangles
intersecting the query. This process begins by performing an inter-
section test between 𝑄𝐸 and the AABB 𝐵1 of the root node. If an
intersection is detected, further tests are conducted between𝑄𝐸 and
the nodes 𝑁2 and 𝑁3. The search proceeds until we narrow it down
to the leaf node 𝑁2. Then, we only need to execute the intersection
test against the triangle bounded by 𝐵2. The right sub-tree rooted
at 𝑁3 can then be pruned as it does not intersect with the query.

Tree-based indexes offer logarithmic time complexity of search-
ing, which is a key advantage. However, they can be memory in-
efficient. As shown in Figure 2 (b), tree nodes are stored in the
“𝑁𝑜𝑑𝑒𝑠” array. Logical pointers connect parent nodes to their child
nodes. Each query starts by visiting the root node and following the
logical pointers to its descendants, resulting in a Depth-First Search
(DFS). The pointer-chasing during DFS leads to irregular memory
access patterns and branches, preventing coalesced memory access
optimization and resulting in cache line inefficiencies. As a result,
numerous memory transactions are generated during the traversal.
Determining the traversal path also results in branch divergence
on the GPU, causing very few threads to be active in each warp.

UniformGrid. The uniform grid is a spatial index that partitions
the space into equal-sized cells. The width of the grid is called the
resolution. Figure 2 (c) represents a 3x3 uniform grid built for the
scene. The triangles are split into line segments for efficient retrieval.
The grid data structure consists of “Cells” and “Line Segs” array.
The “Cells” array maintains the beginning offsets that point to the
positions in the “Line Segs” array, where the line segments within
the cell are organized in a contiguous memory region.

Accelerating the query 𝑄𝐸 can be achieved through the uniform
grid, as demonstrated in Figure 2 (c). The cells that overlap with
the query are collected (shaded with gray). Then, we scan line
segments in the cells to determine whether they intersect with the
query. With the grid, the line segments spatially distant from the
query are pruned. The finer the grid, the more line segments are
pruned, leading to improved query efficiency, but the construction
cost is also increased due to duplicated line segments. Thus, the
resolution of the grid must be carefully tuned.

The uniform grid offers several advantages, including GPU-
friendly scan operations and a low construction cost. If geometries

are distributed uniformly, the grid-based indexes should be ideal
candidates for GPUs. Unfortunately, this is not true in real-world
applications. For example, geometries representing buildings are
dense in metropolitan cities but usually sparse in deserts, which
forms an uneven grid, limiting the parallelism of GPUs and leading
to load imbalance and low occupancy.

2.2 Ray-Tracing and Its Programming Model
Ray tracing is a technique for rendering photorealistic images. The
fundamental principle of ray tracing is identifying the primitives
hit by rays, which is time-consuming, typically requiring an Accel-
erating Structure (AS) to reduce search space. Currently, BVH is
the most widely utilized AS in ray tracing frameworks, as discussed
in §2.1. Despite their efficiency, tree-based indexes are not optimal
for use on GPUs. As a result, researchers have proposed various
hardware-based solutions to accelerate BVH traversal. For example,
NVIDIA RTX series GPUs provide dedicated ray tracing units to ac-
celerate both BVH traversal and ray-primitive intersection test [8].
Several ray-tracing interfaces are available for the ray-tracing hard-
ware, including NVIDIA OptiX, Vulkan, and DirectX Raytracing.
This paper focuses on OptiX as it is interoperable with CUDA.

OptiX supports the “Multiple Instruction, Multiple Data” (MIMD)
subset of CUDA [50]. Each thread casts a ray, and the execution of
the ray could be rescheduled at runtime to a different lane, warp, and
even Streaming Multiprocessor (SM) for execution efficiency. Thus,
shared memory and warp/block synchronization intrinsics are not
available. A ray is allowed to carry per-ray data via registers to
communicate to shaders. Shaders are user-defined CUDA programs
to cast rays and handle ray-primitive intersection events.

Before casting rays, we have to build the BVH from an array of
primitives. The BVH structure is hardware-specific and handled
by the video driver. Thus, users have no control over the BVH
construction process but only supply primitives. Constructing a
BVH is expensive. The construction time is linearly correlated
to the number of primitives [83]. Upon completion of the BVH
construction, a traversal handle is returned, which is used to access
the BVH. The BVH traversal occurs on the RT Cores, which share
the same device memory with the SMs.

Figure 3 illustrates the execution flow of OptiX (shapes shaded
in grey are non-programmable procedures). OptiX does not allow
explicit BVH traversal and instead begins by generating a set of
rays. The entry point of a ray tracing program is the RayGen (RG)
shader, where the traversal handle, origins, and directions of the
rays are provided to generate rays and identify hits. The BVH is
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Figure 3: Top: Switching between the RT Cores and SMs;
Bottom: Execution flow of OptiX.

autonomously traversed, guided by the rays. The traversal stage is
non-programmatic and transparent to the user. Figure 3 top shows
the execution flow of the query on Figure 2 (b), where 𝑇𝐿𝑖 corre-
sponds to the traversal of BVH node 𝑁𝑖 . If leaf nodes are reached
during the traversal, the IsIntersection (IS) shader is invoked to
determine if a ray intersects with a primitive. When the IS shader
reports an intersection, the AnyHit (AH) shader is called, allowing
the user to execute rendering tasks. At the end of the traversal, the
ClosestHit (CH) shader is called, which returns the closest primi-
tive hit by the ray. The Miss (MS) shader is invoked if the ray does
not hit any primitive. In OptiX, the coordinates of primitives and
ray parameters are defined in the FP32 for performance reasons.
This limitation makes implementing high-precision applications
challenging. Thus, this issue must be addressed to accommodate
broad applications.

3 SPATIAL JOIN OPERATIONS ON RT CORES
3.1 From Spatial Join to Ray-tracing

Ray Definition. A ray R is a semi-infinite line characterized by
its origin 𝑂 , a direction vector ®𝑑 , and a parameter 𝑡 . The parameter
𝑡 allows the ray to extend indefinitely in the direction of ®𝑑 starting
from 𝑂 . Formally, it is defined in Equation (1):

R(𝑡) = 𝑂 + 𝑡 · ®𝑑,where 𝑡 ≥ 0 (1)
When casting a ray, users are asked to provide a range parame-

ter [𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥 ] to filter the intersections on a segment of the ray
(Figure 4 (a)). If the ray hits a primitive (such as an AABB), a hit
event is reported only if 𝑡𝑚𝑖𝑛 ≤ 𝑡ℎ𝑖𝑡 ≤ 𝑡𝑚𝑎𝑥 , where 𝑂 + 𝑡ℎ𝑖𝑡 · ®𝑑 is
the intersection point.

An essential step in ray tracing is finding ray-primitive intersec-
tions. Interestingly, this process bears the similarity of spatial join
problems. For example, a complex polygon overlay query can be
decomposed into two sub-problems, LSI and PIP [37], which can
then be formulated as two RT-friendly problems.

Casting Rays for LSI. Given a base map 𝑅 and a query map
𝑆 , LSI finds all the intersections from 𝑅 ⊲⊳𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 𝑆 . This can be
achieved by ray tracing. We first construct a BVH from an array
of AABBs, where each AABB encloses a line segment from 𝑅. A

O

d

tmin

thit
tmax

Ray Hit Point AABB

(a) Ray-AABB intersection
condition

(b) LSI as a ray tracing
problem

Figure 4: Formulating LSI as a ray tracing problem. By simu-
lating the line segment with a ray, intersections are identified
by ray-AABB intersection tests

line segment from 𝑆 can be represented by a ray. Subsequently, we
cast rays generated from 𝑆 and collect all intersections (Figure 4
(b)). The following ray parameters 𝑂 , ®𝑑 , 𝑡𝑚𝑖𝑛 , and 𝑡𝑚𝑎𝑥 defines a
line segment 𝑠 ∈ 𝑆 , where 𝑝1 and 𝑝2 are the two endpoints of 𝑠 .

𝑂 = 𝑝1, ®𝑑 = 𝑝2 − 𝑝1, 𝑡𝑚𝑖𝑛 = 0, 𝑡𝑚𝑎𝑥 = 1 (2)

Putting the parameter 𝑡 = 𝑡𝑚𝑖𝑛 into equation (1), R(𝑡𝑚𝑖𝑛) = 𝑝1 +
𝑡𝑚𝑖𝑛 · (𝑝2 − 𝑝1) = 𝑝1, which is an endpoint of 𝑠 . Carrying 𝑡 = 𝑡𝑚𝑎𝑥 ,
we have R(𝑡𝑚𝑎𝑥 ) = 𝑝1 + 𝑡𝑚𝑎𝑥 · (𝑝2 − 𝑝1) = 𝑝2, which is another
endpoint. Thus, we can see that any intersection point 𝑝𝑥 on 𝑠 can be
represented by 𝑝𝑥 = 𝑅(𝑡) = 𝑂 +𝑡 · (𝑝2−𝑝1), where 𝑡𝑚𝑖𝑛 ≤ 𝑡 ≤ 𝑡𝑚𝑎𝑥 ,
and the ray-AABB intersection test identifies these hit points.

Algorithm 1 illustrates the above idea, which is orchestrated
by OptiX’s callbacks. RayGen shader is the entry of the algorithm
that computes 𝑂 and ®𝑑 using the endpoints. At Line 8, 𝑜𝑝𝑡𝑖𝑥𝑇𝑟𝑎𝑐𝑒
shoots a ray carrying the line segment ID (per-ray data) from 𝑆 to
find intersections. If the ray hits an AABB, a user-defined function
IsIntersection is triggered to verify the intersection and calculate
the coordinate of intersection point 𝑝𝑥 and the ray parameter 𝑡ℎ𝑖𝑡 .
This step is necessary because a ray hitting an AABB does not
guarantee the ray intersects the line segment enclosed by the AABB.
If 𝑝𝑥 exists, we call 𝑜𝑝𝑡𝑖𝑥𝑅𝑒𝑝𝑜𝑟𝑡𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛, which reports the
intersections and extra information with attributes to OptiX.

Upon the reported intersections, if 𝑡ℎ𝑖𝑡 falls within the interval
[𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥 ], the AnyHit shader is automatically triggered. Remem-
ber that each line segment corresponds to an AABB, and we have
verified the ray indeed intersects the line segment enclosed by the
AABB. We can now safely put the intersection into result set 𝑄 .
At line 27, we invoke the 𝑜𝑝𝑡𝑖𝑥𝐼𝑔𝑛𝑜𝑟𝑒𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 function to ask
OptiX to continue searching.

Casting Rays for PIP. To begin with, we want to clarify that the
classical PIP test determines whether a point lies inside or outside a
polygon. This can be addressed with the crossing number algorithm
[60]. However, we are solving a more complex PIP problem here.
Given a query point and a group of polygons, we want to know
which polygon the point falls in. Specifically, this problem is also
called “Point Location” in some literature [56]. This operation is
the building block of complex spatial queries like polygon overlay
[37].

Figure 5 presents an example polygon alongside its in-memory
representation, which will be used to demonstrate how the PIP
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Algorithm 1: Formulate LSI as a ray-tracing problem
Input :𝑅 - a set of line segments from base map
Input :𝑆 - a set of line segments from query map
Input :ℎ - the BVH traversal handle built from 𝑅

Output :𝑄 - results of intersections
1 procedure RayGen // Entrypoint, invoked when the program starts
2 𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥 = {0, 1}
3 for each 𝑠 in 𝑆 do // For each line segment from 𝑆

4 𝑝1, 𝑝2 = 𝐺𝑒𝑡𝐸𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑠 (𝑠 ) // Get two endpoints from line

segment 𝑠

5 𝑂 = 𝑝1 // Ray origin

6 ®𝑑 = 𝑝2 − 𝑝1 // Ray direction

7 // Cast a ray carrying line segment ID of 𝑠

8 𝑜𝑝𝑡𝑖𝑥𝑇𝑟𝑎𝑐𝑒 (ℎ,𝑂, ®𝑑, 𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥 , 𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝑠 (𝑖𝑑𝑠 ) )
9 end for

10 end procedure
11

12 procedure IsIntersection // Invoked when ray potentially hits

an AABB
13 𝑂 = 𝑜𝑝𝑡𝑖𝑥𝐺𝑒𝑡𝑅𝑎𝑦𝑂𝑟𝑖𝑔𝑖𝑛 ( ) // Ray origin

14 ®𝑑 = 𝑜𝑝𝑡𝑖𝑥𝐺𝑒𝑡𝑅𝑎𝑦𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ( ) // Ray direction

15 𝑖𝑑𝑟 = 𝑜𝑝𝑡𝑖𝑥𝐺𝑒𝑡𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝐼𝑛𝑑𝑒𝑥 ( ) // Line segment id from 𝑅

16 𝑖𝑑𝑠 = 𝑜𝑝𝑡𝑖𝑥𝐺𝑒𝑡𝑃𝑎𝑦𝑙𝑜𝑎𝑑0 ( ) // Line segment id from 𝑆

17 𝑝 = 𝑅 [𝑖𝑑𝑟 ] ⊲⊳𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑠 𝑆 [𝑖𝑑𝑠 ] // Calculate intersection point

18 if 𝑝 ≠ 𝜙 then
19 𝑡ℎ𝑖𝑡 =

𝑝𝑥 .𝑥−𝑂.𝑥

®𝑑.𝑥
// Calculate 𝑡ℎ𝑖𝑡 with x-coordinate

20 𝑜𝑝𝑡𝑖𝑥𝑅𝑒𝑝𝑜𝑟𝑡𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 (𝑡ℎ𝑖𝑡 , 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 (𝑖𝑑𝑟 , 𝑖𝑑𝑠 , 𝑝 ) )
21 end if
22 end procedure
23

24 procedure AnyHit // Invoked when intersections being reported
25 𝑖𝑑𝑟 , 𝑖𝑑𝑠 , 𝑝𝑥 = 𝑜𝑝𝑡𝑖𝑥𝐺𝑒𝑡𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒0...2 ( ) // From

optixReportIntersection

26 𝑄 = 𝑄 ∪ (𝑖𝑑𝑟 , 𝑖𝑑𝑠 , 𝑝𝑥 ) // Collect the intersection

27 𝑜𝑝𝑡𝑖𝑥𝐼𝑔𝑛𝑜𝑟𝑒𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 ( ) // Ask OptiX to continue searching

28 end procedure
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Figure 5: Formulating PIP as a ray tracing problem and the
chain representation of the left polygon. Notably,𝐶4 is a hole,
so it only involves two adjacent faces, resulting in a “closed”
point sequence (the first point also appears as the last point).

works with ray tracing. The point sequence (𝑝1, 𝑝2, . . . , 𝑝7, 𝑝1) con-
sists of the polygon’s outline. The line segment (𝑝7, 𝑝3) splits the
polygon into two faces5 𝑓1 and 𝑓2. The diamond-shaped polygon
(𝑝8, 𝑝9, 𝑝10, 𝑝11, 𝑝8) on the bottom is a hole with face 𝑓0. A chain is
a polyline that belongs to the same adjacent faces. For instance, the
polyline (𝑝3, 𝑝2, 𝑝1, 𝑝7) should be organized as a chain because the
line segment (𝑝3, 𝑝2), (𝑝2, 𝑝1), and (𝑝1, 𝑝7) share the same left face

5The term “face” defines a planar region enclosed by the boundaries. The hole and
region that is not enclosed are defined as the exterior face 𝑓0 .

𝑓0, and right face 𝑓1. The order of points determines the adjacent
faces of a polyline. For example, in chain𝐶2, the left and right faces
are 𝑓2 and 𝑓1, respectively. If the point sequence is (𝑝3, 𝑝7), the left
face is 𝑓1 and the right face is 𝑓2. The chain representation saves
memory by storing common boundaries only once and facilitates
the PIP algorithm by providing neighborhood information.

The idea of PIP is to shoot a ray from the query point vertically
upwards and to identify the closest line segment hit by the ray
[14, 37]. This method works both on convex and non-convex poly-
gons, even polygons with holes. The simulation of ray casting is
traditionally achieved with grids or trees, which have many short-
comings, as mentioned in §2. Since the PIP problem is essentially
a ray tracing problem, solving it with RT Cores is natural. The
algorithm works as follows. Figure 5 (a) shows a query 𝑝 , locating
which polygon the query falls in. We shoot a vertical ray from 𝑝

upwards to identify the closest line segment hit by the ray, which
is (𝑝6, 𝑝7) in chain 𝐶3. Then, we use the chain table (Figure 5 (b))
to determine the face where the query point is located. Since the
x-coordinate of point 𝑝6 is greater than that of 𝑝7, we take the left
face 𝑓2 of chain 𝐶3, as the polygon ID.

Algorithm 2 describes the implementation of PIP with OptiX.
Again, the 𝑅𝑎𝑦𝐺𝑒𝑛 shader is the entry point of the algorithm, start-
ing from casting vertical rays from every point 𝑝 ∈ 𝑆 . In IsIntersec-
tion shader, we calculate the distance 𝑡ℎ𝑖𝑡 between the query point
𝑝 and the hit point 𝑝𝑥 , which is calculated by solving the common
solution of line equations (Line 15). Since the ray may hit multiple
line segments, we report each 𝑡ℎ𝑖𝑡 to OptiX by invoking optixRe-
portIntersection, asking OptiX to find out the closest hit. When a ray
hits the closest line segment, the 𝐶𝑙𝑜𝑠𝑒𝑠𝑡𝐻𝑖𝑡 shader will be called,
where we determine which polygon the query falls in. optixGetPay-
load tells the ID of the query point 𝑖𝑑𝑝 , and optixGetPrimitiveIndex
returns the closest line segment ID 𝑖𝑑𝑙 . Finally, we retrieve the line
segment 𝑙 and query point 𝑝 by the IDs. To tell which polygon 𝑝
falls in, we check the ray casting from the left or right face of 𝑙 .

3.2 High Arithmetic Precision Beyond the
Hardware Support

Ray-tracing frameworks like OptiX typically use FP32 for optimal
performance [28]. In real-time rendering, such as in video games,
the difference in visual quality between lower and higher precision
is generally imperceptible to the human eye. However, precision
levels are critical in areas like spatial databases. For example, FP32
coordinates offer meter-level distance precision, while FP64 coordi-
nates achieve nanometer-level precision [25], crucial for scientific
simulations and engineering analysis. Without improving the pre-
cision, the applicability of ray-tracing technology may be severely
limited. Precision challenges in graphics, such as self-intersection,
and robustness of ray-primitive intersection test, have been well-
studied [22, 39]. However, the issue we address here stems from
floating-point downcasting and differs from these well-known prob-
lems. In this section, we present a simple yet effective method to
achieve exact query results for FP64 or higher precision data sources
within the constraints of limited hardware support.

To tackle the precision challenges, it is crucial to understand the
source of imprecision. Figure 6 represents floating-point numbers
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Algorithm 2: Formulate PIP as a Ray-Tracing Problem
Input :𝑅 - a set of line segments from base map
Input :𝑆 - a set of points from the query map
Input :ℎ - the BVH traversal handle built from R
Output :𝑄 - Polygon IDs;𝑄 [𝑖 ] contains the polygon ID of query 𝑆 [𝑖 ]

1 procedure RayGen // Entrypoint, invoked when program starts
2 𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥 = {0,∞}
3 for each 𝑝 in 𝑆 do
4 𝑂 = 𝑝 // Query point as origin

5 ®𝑑.𝑥𝑦𝑧 = {0, 1, 0} // Towards upward of y-axis

6 𝑜𝑝𝑡𝑖𝑥𝑇𝑟𝑎𝑐𝑒 (ℎ,𝑂, ®𝑑, 𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥 , 𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝑠 (𝑖𝑑𝑝 ) ) // Shoot a

ray, which carries the point id from 𝑆

7 end for
8 end procedure
9

10 procedure IsIntersection // Invoked when ray potentially hits

an AABB
11 𝑖𝑑𝑙 = 𝑜𝑝𝑡𝑖𝑥𝐺𝑒𝑡𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝐼𝑛𝑑𝑒𝑥 ( ) // Line segment id from 𝑅

12 𝑖𝑑𝑝 = 𝑜𝑝𝑡𝑖𝑥𝐺𝑒𝑡𝑃𝑎𝑦𝑙𝑜𝑎𝑑0 ( ) // Point id from 𝑆

13 𝑝 = 𝑆 [𝑖𝑑𝑝 ]
14 𝑙 =𝑚𝑎𝑘𝑒_𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙_𝑙𝑖𝑛𝑒 (𝑝 ) // Generate a vertical line

segment crossing 𝑝

15 𝑝𝑥 = 𝑅 [𝑖𝑑𝑙 ] ⊲⊳𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑠 𝑙 // Intersection point of the line

segment from R and 𝑙

16 if 𝑝𝑥 ≠ 𝜙 then
17 𝑡ℎ𝑖𝑡 = 𝑝𝑥 .𝑦 − 𝑝.𝑦 // Distance between the ray origin and

the hit point

18 𝑜𝑝𝑡𝑖𝑥𝑅𝑒𝑝𝑜𝑟𝑡𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 (𝑡ℎ𝑖𝑡 ) // Report intersection to

OptiX

19 end if
20 end procedure
21

22 procedure ClosestHit // Invoked when a ray hit the closest line

segment
23 𝑖𝑑𝑙 = 𝑜𝑝𝑡𝑖𝑥𝐺𝑒𝑡𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝐼𝑛𝑑𝑒𝑥 ( ) // Line segment id from 𝑅

24 𝑖𝑑𝑝 = 𝑜𝑝𝑡𝑖𝑥𝐺𝑒𝑡𝑃𝑎𝑦𝑙𝑜𝑎𝑑0 ( ) // Query point id from 𝑆

25 𝑙 = 𝑅 [𝑖𝑑𝑙 ]
26 𝑝1, 𝑝2 = 𝐺𝑒𝑡𝐸𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑠 (𝑙 )
27 if 𝑝1 .𝑥 < 𝑝2 .𝑥 then // Check the line segment direction
28 𝑄 [𝑖𝑑𝑝 ] = 𝐺𝑒𝑡𝑅𝑖𝑔ℎ𝑡𝐹𝑎𝑐𝑒 (𝑙 )
29 else
30 𝑄 [𝑖𝑑𝑝 ] = 𝐺𝑒𝑡𝐿𝑒 𝑓 𝑡𝐹𝑎𝑐𝑒 (𝑙 )
31 end if
32 end procedure
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Figure 6: Downcasting a 32-bit floating-point to 16-bit.
in binary format6, consisting of three components: sign, exponent,
andmantissa [1].When downcasting, the sign and exponent bits are
preserved, ensuring no loss of information. However, the mantissa
undergoes truncation. Based on the default rounding rules, known
as “roundTiesToEven” [1], the mantissa bits of the low-precision
type are left as-is if the discarded bits are below 10 . . . 0, while they
are incremented by one if the discarded bits are above 10 . . . 0. In the
case of the discarded bits being exactly 10 · · · 0, one of the rounding
rules is selected that makes the least significant bit of the mantissa

6For ease of representation, we demonstrate the process of downcasting from 32 bits
to 16 bits instead of 64 bits to 32 bits.

bits zero. Consequently, any downcasted floating-point number can
have a value that is less than, greater than, or equal to the value
represented by the higher precision type.

Case 1: x1 rounds up Case 2: x2 rounds down

AABB

Case 3: x1 rounds up
and x2 rounds down

x1
Line Segment from R Ray from S Miss Hit

Coordinates in high-
precison type

x2
ray1

ray2

Figure 7: Low-precision AABB failed to enclose the line seg-
ment in high-precision, leading to geometric inconsistencies.

The process of downcasting high-precision data sources to low-
precision primitives and rays introduces geometric inconsistencies
due to the loss of mantissa bits. Figure 7 shows cases that a line
segment from dataset 𝑅 intersects two rays casting from dataset
𝑆 , resulting in two intersections at x-coordinate 𝑥1 and 𝑥2 where
0 < 𝑥1 < 𝑥2. For the sake of simplicity, let’s assume that the
precision issue only affects the x-axis when constructing the AABB.
In Case 1, 𝑥1 is rounded up, causing the left boundary of the AABB
to fail to enclose the left endpoint of the line segment, leading to a
false negative outcome. In Case 2, rounding down of 𝑥2 causes 𝑟𝑎𝑦2
to miss the AABB, as the right endpoint falls outside the box. In Case
3, neither 𝑟𝑎𝑦1 nor 𝑟𝑎𝑦2 intersects the bounding box, resulting in
the failure to detect any intersections. These examples highlight the
hidden issues that can arise when employing ray-tracing techniques
in GIS applications.
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Figure 8: Conservative Representation: adding 1 to mantissa
bits to compute a conservative right boundary

An intuitive solution is to create slightly larger AABBs, which
can accommodate the line segment after downcasting. However,
determining the appropriate size of the enlarged AABB is not trivial.
Simply enlarging the AABBs by a small epsilon may still lead to
intersections missing, while excessively enlarging them can result
in many false positive hits, hurting performance. Formally, let 𝑥𝑙
denote the x-coordinate of the line segment’s left endpoint in high
precision. We need to find the maximum value expressible in FP32
as the downcasted left AABB boundary 𝑥

′

𝑙
, satisfying 𝑥

′

𝑙
≤ 𝑥𝑙 .

Similarly, 𝑥𝑟 represents the right endpoint in high precision. We
aim to find theminimum value 𝑥

′
𝑟 as the downcasted right boundary,

ensuring 𝑥
′
𝑟 ≥ 𝑥𝑟 . The same consideration applies to the y-axis.

The solution is to create the low-precision AABB that is just
barely large enough to fully enclose the high-precision line segment
by tweaking mantissa bits. In the scenario depicted in Figure 8, 𝑥𝑟
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is the x-coordinate of the line segment’s right endpoint in high
precision. Upon downcasting, this value is rounded down, resulting
in 𝑥𝑑𝑟 , which is less than 𝑥𝑟 . To determine the smallest possible
value 𝑥

′
𝑟 as the new right boundary, we only need to add 1 to the

mantissa bits after downcasting. This ensures that 𝑥
′
𝑟 just exceeds

𝑥𝑟 . Additionally, to compensate for errors caused by downcasting
of the ray origin, we add 1 again to the mantissa bits. To sum up, we
add two to the mantissa bits of the right boundary and subtract two
from the mantissa bits of the left boundary. Adjusting the mantissa
bits may not always be necessary, such as if the 𝑥𝑟 is rounding
up. However, we perform this operation unconditionally to avoid
checking all the rounding cases, minimize branches, and enhance
execution efficiency on GPUs. Hence, we refer to this approach as
Conservative Representation (CR).

3.3 Taming High BVH Construction Overhead
The number of AABBs used to build the BVH equals the line seg-
ments in the dataset because each line segment is bounded by an
individual AABB (§3.1). This bounding strategy introduces a long
construction time and huge memory consumption7 because the
buildup cost is linearly correlated to the number of primitives [83].
One may impulsively use the Ramer–Douglas–Peucker algorithm
to simplify polylines and then create an AABB for each simplified
polyline [54]. Yet, this algorithm’s recursive and sequential nature
renders it inefficient for GPU execution. Therefore, we introduce a
GPU-optimized method, termed Adaptive Grouping (AG), to group
spatially close line segments into the same AABB.

We first introduce the grouping strategy. For two AABBs 𝐵𝑖
and 𝐵 𝑗 , the union operator ∪ is defined as 𝐵 = 𝐵𝑖 ∪ 𝐵 𝑗 , where 𝐵
is their MBR, and |𝐵 | represents its area. Considering 𝑛 line seg-
ments 𝐿1, 𝐿2, . . . , 𝐿𝑛 each enclosed by AABBs 𝐵1, 𝐵2, . . . , 𝐵𝑛 , we
onlymerge adjacent AABBs in the sequence, such as𝐵𝑖 , 𝐵𝑖+1, . . . , 𝐵 𝑗
(where 1 ≤ 𝑖 < 𝑗 ≤ 𝑛). This facilitates representing a line segment
subset with a simple range 𝑅 [𝑖, 𝑗] instead of explicitly storing each
segment’s ID. With the range 𝑅, we linearly scan the line segments
bounded by 𝐵 to find which line segment is hit by the ray. Merging
𝐵𝑖 and 𝐵 𝑗 occurs only if the area expansion ratio |𝐵𝑖∪𝐵 𝑗 |

𝑚𝑎𝑥 ( |𝐵𝑖 |, |𝐵 𝑗 | ) ≤ 𝑠 ,
where 𝑠 is the merging threshold. We will discuss how the param-
eter 𝑠 impacts performance and how to find an optimal 𝑠 in §5.5.
This approach is inspired by R-Tree’s heuristic insertion algorithm
[17], which effectively curtails the occurrence of false positives by
limiting AABB’s dead space.

Figure 9 demonstrates AG’s execution. Initially, each line seg-
ment (𝐿0 to 𝐿7) is in a unique group (𝐺0 to 𝐺7), with a merging
threshold 𝑠 = 1.5. In the first iteration (Figure 9 (b)), 𝐿0 and 𝐿1 form
𝐺0 as their area expansion ratio (1.4) is below 𝑠 . However, 𝐿2 and 𝐿3
remain separate since |𝐵1∪𝐵2 |

𝑚𝑎𝑥 ( |𝐵1 |, |𝐵2 | ) = 2 > 𝑠 . The second iteration
includes 𝐿2 in 𝐺0 and 𝐿6 in 𝐺2, but excludes 𝐿7 from 𝐺2 due to a
ratio of 1.8, above the threshold. The final iteration merges 𝐿3 into
𝐺0, resulting in three groups: 𝐺0 with 𝐵0 and range 𝑅0 [0, 3], 𝐺1
with 𝐵1 and range 𝑅1 [4, 6], and 𝐺2 with 𝐵2 and range 𝑅2 [7, 7].

AG can be efficiently implemented on the GPU. We divide 𝐿
segments into ⌈𝐿

𝑏
⌉ partitions, where 𝑏 is the thread block size.

7One may argue that building the BVH is a one-off cost. A fast buildup allows users to
work on exploratory and interactively workloads, e.g., try out different datasets and
run some ad-hoc queries quickly.
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Figure 9: Execution process of Adaptive Grouping. Initially, a
thread block (TB) processes a fixed number of line segments.
Spatially close line segments are iteratively put together.
Each thread block processes partition 𝑖 containing line segments
𝐿𝑖∗𝑏 , 𝐿𝑖∗𝑏+1, . . . , 𝐿(𝑖+1)∗𝑏 . In the first iteration, thread 𝑗 in thread
block 𝑖 attempts to merge two adjacent AABBs 𝐵𝑖∗𝑏+𝑗 and 𝐵𝑖∗𝑏+𝑗+1,
which encloses line segments 𝐿𝑖∗𝑏+𝑗 and 𝐿𝑖∗𝑏+𝑗+1 respectively. The
thread either produces a merged AABB 𝐵𝑖∗𝑏+𝑗 ∪ 𝐵𝑖∗𝑏+𝑗+1 and a
range 𝑅 [𝑖 ∗𝑏 + 𝑗, 𝑖 ∗𝑏 + 𝑗 +1] if the area expanding ratio is within the
threshold 𝑠 . Otherwise, the AABBs remain unaltered. Subsequent
iterations merge two adjacent AABBs from the previous iteration,
continuing until no further merges are possible.

4 RAYJOIN DEPLOYMENT IN PRACTICE
4.1 Implementation Details

Data Storage. The dataset is stored in a planar graph format on
host memory and is subsequently decomposed into line segments
on device memory for further processing. Each line segment refer-
ences endpoint IDs instead of storing the coordinates to conserve
memory and improve the locality. We pre-compute line equation
coefficients from the endpoints. This pre-calculation enables the LSI
and PIP queries to access coefficients directly, avoiding redundant
calculations. The line segments are then fed into the AG to create
AABBs and ranges, followed by applying CR to determine the new
boundaries of the AABBs, ensuring precise results.

Coordinates Representation.We employ the fixed-point no-
tation to resolve the accumulated errors from the floating-point
arithmetic operations. Given that GPUs do not possess built-in
support for fixed-point arithmetic, we convert the floating-point
numbers to integers through scaling. This allows all subsequent
operations to be performed exclusively on integers, effectively cir-
cumventing the issue of precision loss. Scaling to integers also
benefits performance because NVIDIA RTX GPUs tend to have
very limited FP64 units. Furthermore, we store the intersection
points with rational numbers produced by LSI, thereby eliminating
the need for fractional coordinates.
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Degenerate Cases Handling. In large-scale datasets, degen-
erate cases such as overlapped line segments for LSI or points on
line segments for PIP may occur. These cases must be resolved
for correctness. A well-known method for handling degenerate
cases is Simulation of Simplicity (SOS) [9]. SOS eliminates all de-
generacies by simulating the addition of an infinitesimal value to
the coordinates. We employ SOS to handle degenerate cases.

Eliminating Invocation Overhead. Algorithm 1 and 2 concep-
tually introduce the implementation of RayJoin, where we utilize
AnyHit and ClosestHit shaders to collect results. However, employ-
ing these shaders may introduce invocation overhead. To mitigate
this, both AnyHit and ClosestHit shaders are disabled. We combine
the logic of intersection testing and result collection into a single
𝐼𝑠𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 shader, thereby eliminating the overhead [46].

4.2 RT Cores Acceleration Enabled Applications
We also discovered a subset of 𝑆𝑇 functions in geodatabases that
may benefit from RT Cores [21]. We only present the ideas of
translating them into ray tracing problems. Implementing these
operators with RayJoin in geo-database systems is beyond the scope
of this paper, and we leave it as future work.

ST_Touches. Given two set of geometric objects 𝐴 and 𝐵, the
function 𝑆𝑇_𝑇𝑜𝑢𝑐ℎ𝑒𝑠 returns true if 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 1: 𝐴 and 𝐵 have
at least on common point, and 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 2: the common points
cannot lie in the interior of 𝐴 and 𝐵. Supposing 𝐴 are polygons,
we build a BVH from 𝐴. If 𝐵 are points, we cast very short rays as
approximations of the points to search hits. If 𝐵 are polygons or
polylines, we use Algorithm 1. This fetches all the potential touches,
which can be filtered respected with Condition 1. The Condition 2
can be verified with Algorithm 2.

ST_Intersects. This function returns true if the intersection
of geometry 𝐴 and 𝐵 is not an empty set. We illustrate the idea
due to limited space: a complex geometric object can always be
split into primitives (point, line segment). We build a BVH with
the primitives decomposed from 𝐴. Then we shoot rays depending
on the type of primitives from 𝐵 (a very short ray as a point or a
long ray as a line segment). This allows us to collect potentially
intersected geometries. Then, we filter the results that satisfy the
intersection condition.

ST_Intersection. This function returns the intersected geom-
etry from set 𝐴 and 𝐵. This is one of the most complicated spa-
tial functions and is very compute-intensive. Yet, it benefits from
RayJoin. Assuming 𝐴 and 𝐵 are both polygons, which is the most
complicated case, we (1) build two BVHs from 𝐴 and 𝐵, (2) run
the Algorithm 1 to find all intersections, (3) run Algorithm 2 to
determine which polygon the points fall in, and (4) create the re-
sulting polygon by connecting the points of intersection and the
points that lie in the interior of polygons. This process is exactly
the polygon overlay analysis, which is evaluated in §5.7.

5 EVALUATION
5.1 Evaluation Settings
Baselines. Table 1 lists the artifacts we have evaluated. We im-

plemented the uniform grid and LBVH-based solutions on the GPU,
which support all the queries [26]. cuSpatial is a GPU-accelerated
geospatial analytical platform from NVIDIA [2]. RasterJoin is a

raster-based solution on the GPU for spatial aggregation [79]. PSSL
is a state-of-the-art plane-sweep-based algorithm for LSI on GPUs
[15]. To the best of our knowledge, GLIN is the only learned spatial
index that supports indexing geometries with extends [68]. With
OpenMP, we use GLIN to implement a parallel LSI query. EPUG-
Overlay is a parallel polygon overlay program with a two-level
uniform grid [37]. Kinetica and PostGIS are geospatial databases
[20]. RasterIntervals uses a raster-based method to accelerate poly-
gon overlay query [16].

Datasets.We collected a diverse set of real-world datasets shown
in Table 2, including US-based maps such as County, Zipcode, Block,
andWater fromArcGIS Hub [11] and global maps, such as Lakes and
Parks from OpenStreetMap (OSM) [10]. We partitioned the OSM
datasets based on continents/regions. The spatial join operations
were exclusively performed within datasets originating from the
same geographic region. 𝑅 ⊲⊳ 𝑆 represents the join operation, where
𝑅 is a base map and 𝑆 is a query map. The spatial index is built from
𝑅, and queries are generated from 𝑆 . For the scalability experiments,
we use Spider to generate synthetic datasets [27]. The polygon
size and segment length are set to 0.001 and 10, respectively. The
Gaussian distribution is set to 𝜇 = 0.5, 𝜎 = 0.1.

Parameters. Grid-based solutions need a predefined resolution,
and trying all the possible resolutions to get the best is prohibitively
expensive. By trials, we found that 15000x15000 for the uniform
grid yields low running time for all datasets. For EPUG-Overlay,
the first-level grid is set to 4000x4000, and the second-level grid
is set to 40x40, a typical value used in [37]. RayJoin only needs
one parameter, the merging threshold 𝑠 , in the adaptive grouping
algorithm, which is fixed to 3.5. We discuss how to find an optimal
parameter in §5.5.

Environments. RayJoin is implemented in OptiX 8.0 and CUDA
12.3. We evaluate GPU-based solutions on a workstation with Intel
Core i9-12900, NVIDIA RTX 3090, and 64 GB memory. cuSpatial
version is 23.12.00. For the CPU-based solutions, we employed them
on AWS EC2 using an r5.4xlarge instance with 16 vCPUs and 128
GB of RAM. The version of PostGIS is PostGIS-3.3, and Kinetica is
v7.1.9.10-ga1. Note that Kinetica has GPU acceleration but it does
not support our GPU model and requires a license purchase for
self-hosted installation, so we have to evaluate its CPU version on
AWS Marketplace Platform.

5.2 LSI Performance
Table 3 top shows the running time of LSI queries. For the con-
ventional spatial indexes, LBVH is consistently better than the
uniform grid. Our analysis attributes the grid-based method’s infe-
rior performance to skew distribution issues. For example, in the
𝐶𝑜𝑢𝑛𝑡𝑦 ⊲⊳ 𝑍𝑖𝑝𝑐𝑜𝑑𝑒 , almost 100% of cells have workloads (number
of intersection tests) under 223K per cell, accounting for 70.97% of
total workloads. Yet, about 30% of the workloads are concentrated
in just 90 cells (the total number of cells is 225M). PSSL’s perfor-
mance sits between the grid-based and tree-based methods, with
its limited parallelism likely hindering the best utilization of the
GPU. Notably, GLIN emerges as the least efficient method, with the
majority of its processing time devoted to the query stage.

RayJoin demonstrates superior performance across all baselines.
Focusing solely on processing time, RayJoin achieves speedups
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Table 1: Evaluated artifacts, queries, implementation notes, and measured operations. (H2D: Host to Device)

Artifact Evaluated Queries Implementation Notes Preprocessing Timing Processing Timing
Uniform Grid LSI, PIP, Polygon Overlay Uniform Grid in CUDA H2D, Build Grid Search Index, Compute Overlay

LBVH LSI, PIP, Polygon Overlay LBVH in CUDA H2D, Build LBVH Search Index, Compute Overlay
cuSpatial PIP Quadtree-based in CUDA Build Quadtree Join Quadtree with MBR, Point in Polygon
RasterJoin PIP Rasterization-based in OpenGL H2D, Polygon Triangulation Rendering

PSSL LSI Plane-sweep-based in CUDA H2D, Compute Worklist Compute Intersections
GLIN LSI Learned Spatial Index Bulk Loading Search Index, Compute Intersections

EPUG-Overlay Polygon Overlay Two-level uniform grid in OpenMP Build Grid Search Index, Compute Overlay
Kinetica Polygon Overlay In-memory spatial database - SQL Execution
PostGIS Polygon Overlay Disk-based spatial database - SQL Execution

RasterIntervals Polygon Overlay Rasterization-based in OpenMP Generate Raster Intervals MBR Filter, Raster Intervals Filter, Refinement
RayJoin LSI, PIP, Polygon Overlay HW-accelerated BVH in CUDA+OptiX H2D, AG, Build BVH Ray Tracing, Compute Overlay

Table 2: Statistics of real-world datasets

Dataset Line Segs Polygons Description
County 1.0M 3.1K Boundaries of the U.S. Counties
Zipcode 23.9M 32.2K ZIP Code areas for the USPS
Block 29.3M 239.2K Census block groups in the U.S.
Water 25.6M 463.6K Major water features in the U.S.
LKAF 1.8M 18.2K Water areas in Africa
PKAF 1.3M 25.7K Parks or green areas in Africa
LKAS 10.3M 151.6K Water areas in Asia
PKAS 11.9M 172.6K Parks or green areas in Asia
LKAU 1.2M 14.5K Water areas in Australia
PKAU 567.1K 12.8K Parks or green areas in Australia
LKEU 27.9M 654.8K Water areas in Europe
PKEU 65.9M 1.9M Parks or green areas in Europe
LKNA 69.3M 1.6M Water areas in North America
PKNA 26.9M 303.0K Parks or green areas North America
LKSA 2.4M 32.6K Water areas in South America
PKSA 3.2M 49.5K Parks or green areas in South America
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Figure 10: Summary of Rayjoin’s LSI speedups over baselines
by considering total execution time.
ranging from 1.7x to 6.0x over the eight datasets compared to
the best baseline performances. When including factors like load-
ing time, adaptive grouping, and BVH construction costs, RayJoin
still achieves speedups between 1.5x and 2.4x. We summarize the
speedups in Figure 10.

5.3 PIP Performance
The bottom half of Table 3 reveals that the uniform grid surpasses
LBVH for large datasets, although its performance is hindered by
skewed data. The grid’s advantage lies in its ability to partition
space, allowing for the termination of searches as soon as the closest
line segment to a query point is located. In contrast, LBVH requires
examining all intersecting line segments to identify the closest one.

RasterJoin, however, shows underperformance compared to both
grid and LBVH and runs time out on 𝐿𝐾𝑁𝐴 ⊲⊳ 𝑃𝐾𝑁𝐴 in the poly-
gon triangulation stage. For instance, in the 𝐶𝑜𝑢𝑛𝑡𝑦 ⊲⊳ 𝑍𝑖𝑝𝑐𝑜𝑑𝑒

dataset, RasterJoin spent approximately 6878ms on point rendering
and 5371ms on polygon rendering, a likely consequence of render-
ing excessive primitives in large datasets. Notably, NVIDIA’s spatial
library fell short of the LBVH and ran out-of-memory (OOM) on
the 𝐿𝐾𝐸𝑈 ⊲⊳ 𝑃𝐾𝐸𝑈 dataset.
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Figure 11: Summary of Rayjoin’s PIP speedups over baselines
by considering total execution time.

PIP is an RT-favorable workload because only the closest hit
needs to be found. This property allows us to leverage the ClosestHit
shader supported by the ray-tracing hardware to reduce the amount
of work instead of traversing all the geometries. If considering the
processing time only (ray-tracing), RayJoin exhibited from 4.8x to
74.2x speedups over the best of baselines. As shown in Figure 11,
by considering the total running time, RayJoin achieved from 2.1x
to 22.2x speeds over the best performance of baselines.

5.4 Evaluation of Precision
The conservative representation ensures results identical to those of
the program using FP64 or higher. To validate its precision, we com-
pared the results of RayJoin to the grid implementation in FP64 on
LKNA ⊲⊳ PKNA. The LSI error rate is defined by |𝑀𝑖𝑠𝑠𝑒𝑑 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠 |

|𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠 | ,

and the PIP error rate is defined by |𝑊𝑟𝑜𝑛𝑔𝑙𝑦 𝐼𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑑 𝑃𝑜𝑖𝑛𝑡 |
|𝑄𝑢𝑒𝑟𝑦 𝑃𝑜𝑖𝑛𝑡𝑠 | . Ex-

ecuting LSI and PIP queries with OptiX’s default FP32 precision
resulted in 745 intersections missing (out of 1,251,343) for LSI and
524 incorrect responses (out of 69,273,661) for PIP, yielding error
rates of 0.0595% and 0.0008%, respectively. When using the conser-
vative representation to create the AABBs, both LSI and PIP produce
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Table 3: Performance numbers of LSI and PIP queries. The cell represents "Processing Time (Preprocessing Time) in milliseconds."
(All methods are GPU-based except GLIN.)

Query Artifact County ⊲⊳ Zipcode Block ⊲⊳ Water LKAF ⊲⊳ PKAF LKAS ⊲⊳ PKAS LKAU ⊲⊳ PKAU LKEU ⊲⊳ PKEU LKNA ⊲⊳ PKNA LKSA ⊲⊳ PKSA

LSI

Uniform Grid 1316 (81) 210 (127) 90 (46) 916 (65) 37 (34) 568 (200) 2577 (194) 122 (63)
LBVH 61 (60) 80 (123) 2 (12) 15 (54) 3 (9) 115 (166) 89 (319) 6 (17)
PSSL 147 (242) 1172 (406) 30 (193) 175 (231) 41 (80) 2554 (636) 1766 (631) 69 (115)
GLIN 183668 (73) 3732430 (1055) 2208 (60) 68352 (306) 12459 (59) 6991691 (1037) 4333675 (2836) 7632 (101)
RayJoin 17 (45) 48 (91) 1 (6) 4 (37) 1 (4) 27 (134) 30 (177) 1 (10)

PIP

Uniform Grid 341 (74) 139 (117) 257 (36) 1113 (63) 178 (34) 2785 (157) 624 (180) 414 (49)
LBVH 1709 (61) 24424 (122) 14 (12) 1360 (55) 15 (9) 64661 (166) 25029 (325) 93 (17)

RasterJoin 12248 (31196) 21657 (21641) 1016 (4647) 36755 (16626) 155 (1916) 10925 (27593) Timeout 969 (4986)
cuSpatial 787691 (101) 1795798 (74) 4599 (11) 87942 (43) 7493 (9) OOM 2120454 (70) 16109 (27)
RayJoin 21 (46) 29 (92) 1 (6) 15 (38) 1 (4) 117 (136) 51 (176) 4 (10)

completely the same answers compared to the FP64 program, and
we have verified the correctness of all datasets. These experiments
confirm the analysis in §3.2, and our solution eliminates all the false
negative cases due to the precision loss.

5.5 Effectiveness of Adaptive Grouping and
Parameter Tuning
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Figure 12: Execution time breakdown on 𝐿𝐾𝑁𝐴 ⊲⊳ 𝑃𝐾𝑁𝐴

datasets by varying merging threshold 𝑠

Figure 12 (a) illustrates the variation in BVH construction time,
query time, and AG overhead when joining the LKNA with PKNA
dataset (Table 2) as parameter 𝑠 changes. When 𝑠 is set to 1, AG is
effectively disabled because two line segments are allowed to be put
together only if the area of the merged bounding box does not grow,
leading to high query performance but also high BVH construction
time and memory usage – 166ms and 2403MB, respectively (Figure
12 (b-c)). Here, LSI and PIP queries take just 14ms and 18ms.

As 𝑠 increases, construction costs drop significantly, but query
times for both LSI and PIP begin to rise. At 𝑠 = 3.5, AG achieves
a 29% reduction in total execution time (147ms) and drastically
lowers memory usage to about 408MB, which is just 17% of the
usage without AG. Beyond 𝑠 = 3.5, total time starts to increase,
reaching 155ms at 𝑠 = 5.0. This rise is attributed to AG merging
spatially distant bounding boxes, causing a higher false positive
rate and more intersection tests.

Figure 12 (b) demonstrates a linear correlation between construc-
tion and query times with 𝑠 , particularly in the range of 1.5 ≤ 𝑠 ≤ 4.
This trend is consistent across various datasets. Optimal parameter
selection could be determined through linear regression modeling
of the merging threshold-execution time relationship, though this
process is omitted here due to space constraints.

5.6 Scalability
We generated synthetic datasets with uniform and Gaussian distri-
butions. The BVH is built from dataset 𝑅 with 5M polygons. A series
of datasets 𝑆 , ranging from 1M to 5M polygons, were generated to
evaluate RayJoin’s scalability. To better understand the scalability
of RayJoin, adaptive grouping was disabled, and BVH construction
time was not included; only query time was reported.
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Figure 13: LSI scalability: 𝑅 is fixed to 5M polygons, varying
𝑆 from 1M to 5M

Figure 13 (a)-(d) shows LSI query time and throughput for increas-
ing polygon numbers. Under uniform distribution, 1M polygons
result in a 2.9ms query time and 62K intersections. At 3M poly-
gons, the time rises to 6.9ms with 185K intersections, indicating
RayJoin’s linear scalability, aligning well with the time complexity
of 𝑂 ( |𝑆 |𝑙𝑜𝑔|𝑅 |). Gaussian distributions yield similar patterns but
with longer times due to more intersections. When the number of
queries increases from 1M to 2M polygons, LSI throughput stabi-
lizes at 29M intersections/s. In the Gaussian dataset, throughput
peaks at 99M intersections/s.

For 1M uniform polygons, 8M PIP queries are issued, taking
about 5.9ms (Figure 14 (a)). At 2M polygons and 16M queries, the
time increases to 12.1ms. In Gaussian distributions, query times
are slightly longer due to more ray-primitive intersections. RayJoin

133



RayJoin: Fast and Precise Spatial Join ICS ’24, June 04–07, 2024, Kyoto, Japan

1M 2M 3M 4M 5M
Number of Polygons

0

10

20

30

40

Qu
er

y 
Ti

m
e 

(m
s)

(a) Uniform - Query Time
PIP - Query Time

1M 2M 3M 4M 5M
Number of Polygons

0

10

20

30

40

50

Qu
er

y 
Ti

m
e 

(m
s)

(b) Gaussian - Query Time
PIP - Query Time

1M 2M 3M 4M 5M
Number of Polygons

0.0

0.5

1.0

1.5

G 
Po

in
ts

/s

(c) Uniform - Throughput
PIP - Throughput

1M 2M 3M 4M 5M
Number of Polygons

0.0

0.5

1.0

1.5

2.0
G 

Po
in

ts
/s

(d) Gaussian - Throughput
PIP - Throughput

Figure 14: PIP scalability: 𝑅 is fixed to 5M polygons, varying
𝑆 from 1M to 5M
shows linear scalability with query numbers. Figure 14 (c), (d) in-
dicates a peak PIP throughput of around 1.5G points/s for both
distributions, affirming RayJoin is highly scalable as throughput
remains consistent despite increased queries.

5.7 Polygon Overlay
The polygon overlay query identifies and outputs the overlapped
area of intersected polygons from two maps, which can be achieved
by combining the LSI and PIP query results (§2.1). The overlay
processing is extremely time-consuming due to the complexity of
the overlay algorithm and the irregularity of the execution.
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Figure 15: Summary of RayJoin’s polygon overlay speedups
over baselines by considering total execution time.

Table 4 shows the polygon overlay running time. It is evident that
none of the existing solutions other than RayJoin take under one
second for all datasets, even the highly optimized GPU solutions
(uniform grid and LBVH). The longest execution time of PostGIS is
about 234s on the 𝐵𝑙𝑜𝑐𝑘 ⊲⊳𝑊𝑎𝑡𝑒𝑟 dataset. Kinetica is faster than
PostGIS because it is memory-based, only taking about 53s. EPUG-
Overlay typically takes more than hundreds of seconds for fairly
large datasets. Although RasterIntervals is fast at the processing
stage, it can spend thousands of seconds on preprocessing. The
uniform grid takes up to 9.4s for processing 𝐿𝐾𝐸𝑈 ⊲⊳ 𝑃𝐾𝐸𝑈 , and
LBVH even runs OOM on this dataset. LBVH takes up to 58.4s
to process the 𝐿𝐾𝑁𝐴 ⊲⊳ 𝑃𝐾𝑁𝐴 dataset due to irregular random

memory access patterns of tree-based structure and the inability to
terminate the PIP search early.

RayJoin outperformed all the state-of-the-art solutions on both
CPUs and GPUs. By leveraging the RT Cores, RayJoin efficiently
transforms the polygon overlay problem into two RT-friendly prob-
lems. The RT Cores overcome the long memory access latency and
irregular memory access patterns while benefiting from the loga-
rithmic complexity of tree-based indexes, resulting in extremely
low query time. As summarized in Figure 15, RayJoin achieved from
3.0x to 28.3x speed up over the best of the baselines.

6 RELATEDWORK
Spatial Indexing on Advanced Hardware. Geometric Perfor-

mance Primitives (GPP) is a robust polygon overlay library on GPUs
with a uniform grid [6]. Liu et al. proposed a filtering technique to
accelerate spatial join with fine-grained tiles [33, 34]. Rayhan et al.
designed an R-tree that leverages SIMD instructions [55]. SwiftSpa-
tial is a spatial join accelerator on FPGAs [23]. Note that we target
the same problem but with different hardware. In short, RayJoin is
an index-based solution uniquely exploiting ray-tracing hardware’s
capability to deliver real-time spatial join.

Rasterization-based Techniques. RasterJoin is a rasterization-
based method for spatial aggregation by leveraging the rendering
pipeline [79]. RasterIntervals is the state-of-the-art polygon overlay
method with the approximation technique to reduce the refinement
cost [16]. PixelBox employs a rasterization-based method to com-
pute the Jaccard Similarity [70]. IDEAL is a vector-raster hybrid
method for PIP and point-to-polygon distance calculation [65].
Compared to rasterization-based methods, RayJoin does not need
any preprocessing steps to build up rasterized representations.

Parallel Plane Sweep Algorithms. McKenney et al. proposed
a parallel plane sweep algorithm on CPUs[41] that dynamically seg-
ments the input to spatial operations and executes them in parallel.
PSSL is the plane sweep-based solution for the LSI query on the
GPU [15]. The plane sweep algorithms are challenging to parallelize,
as demonstrated by our evaluations, which clearly indicate that
they exhibit significantly lower performance than other solutions.

Accelerating Non-graphics Workload with RT Cores. An
early work on repurposing RT Cores, proposed by Salmon et al., in-
volves accelerating Monte Carlo particle transport simulations [57].
RTNN adopted spatial reordering and query partitioning optimiza-
tions for K nearest neighbor (KNN). TrueKNN supports arbitrary
radius KNN-search on RT Cores [46]. JUNO is the first work sup-
porting high-dimensional KNN search on RT Cores [35]. A method
presented in [38] supports non-Euclidean distance measures for
KNN. A method proposed in [30] accelerates the PIP test by trans-
forming polygons into 3D representations, which is different from
our method and has accuracy limitations. Accelerating Tet-Mesh
Point Location with RT Cores is discussed in [67]. Literature [24]
explores using RT Cores to serve as a B-Tree. RTScan leverages
RT Cores to accelerate index scans [36]. Accelerating Range Min-
imum Queries with RT Cores is discussed in [42]. None of these
works address the spatial join problem that our paper targets, which
presents unique challenges such as problem formulation, precision
preservation, and performance optimization.
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Table 4: Polygon overlay execution time. The cell represents "Processing Time (Preprocessing Time) in seconds." (∗: GPU-based)

Artifact County ⊲⊳ Zipcode Block ⊲⊳ Water LKAF ⊲⊳ PKAF LKAS ⊲⊳ PKAS LKAU ⊲⊳ PKAU LKEU ⊲⊳ PKEU LKNA ⊲⊳ PKNA LKSA ⊲⊳ PKSA
PostGIS 30.58 233.78 0.97 27.78 0.79 92.58 163.42 2.54
Kinetica 22.81 52.75 0.34 4.10 0.86 14.69 11.75 1.05
EPUG-Overlay 165.71 (52.64) 250.21 (114.46) 4.94 (5.26) 37.41 (35.22) 4.74 (3.54) 177.61 (161.91) 234.53 (166.83) 8.30 (9.75)
RasterIntervals 2.94 (580.40) 10.54 (1114.52) 0.14 (81.20) 5.29 (82.03) 0.12 (48.72) 15.47 (511.82) 21.52 (203.45) 0.45 (272.04)
Uniform Grid∗ 1.82 (0.08) 1.29 (0.13) 0.78 (0.05) 3.54 (0.07) 0.38 (0.03) 9.40 (0.20) 7.29 (0.20) 0.81 (0.06)
LBVH∗ 8.07 (0.11) 54.82 (0.18) 0.05 (0.02) 2.46 (0.09) 0.05 (0.01) OOM 58.40 (0.47) 0.26 (0.03)
RayJoin∗ 0.12 (0.07) 0.23 (0.12) 0.01 (0.01) 0.04 (0.05) 0.01 (0.01) 0.20 (0.20) 0.25 (0.21) 0.02 (0.01)

7 CONCLUSION
We have designed and implemented RayJoin, a high-performance
spatial join engine for real-time applications. By leveraging RT
Cores, RayJoin effectively resolves the longstanding performance
bottlenecks associated with conventional spatial join methods run-
ning on traditional architectures. Additionally, our solution ad-
dresses the underlying hardware precision concerns to ensure ac-
curate results subject to retaining high performance, which can
be widely used in other RT-based spatial data processing applica-
tions. Through intensive experiments, we have demonstrated that
RayJoin achieves super high processing speeds, with spatial join
operations completed within milliseconds. Our research outcome
opens up new possibilities for real-time applications that rely on
fast and accurate spatial processing.
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