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ABSTRACT
With the advancement and dominant service of Internet videos, the
content-based video deduplication system becomes an essential and
dependent infrastructure for Internet video service. However, the
explosively growing video data on the Internet challenges the sys-
tem design and implementation for its scalability in several ways. (1)
Although the quantization-based indexing techniques [22, 23, 50]
are effective for searching visual features at a large scale, the costly
re-training over the complete dataset must be done periodically.
(2) The high-dimensional vectors for visual features demand in-
creasingly large SSD space, degrading I/O performance. (3) Videos
crawled from the Internet are diverse, and visually similar videos
are not necessarily the duplicates, increasing deduplication com-
plexity. (4) Most videos are edited ones. The duplicate contents
are more likely discovered as clips inside the videos, demanding
processing techniques with close attention to details.

To address above-mentioned issues, we propose Maze, a full-
fledged video deduplication system. Maze has an ANNS layer that
indexes and searches the high dimensional feature vectors. The ar-
chitecture of the ANNS layer supports efficient reads and writes and
eliminates the data migration caused by re-training. Maze adopts
the CNN-based feature and the ORB [37] feature as the visual fea-
tures, which are optimized for the specific video deduplication task.
The features are compact and fully reside in the memory. Acoustic
features are also incorporated in Maze so that the visually simi-
lar videos but having different audio tracks are recognizable. A
clip-based matching algorithm is developed to discover duplicate
contents at a fine granularity. Maze has been deployed as a pro-
duction system for two years. It has indexed 1.3 billion videos and
is indexing ∼800 thousand videos per day. For the ANNS layer,
the average read latency is 4 seconds and the average write la-
tency is at most 4.84 seconds. The re-training over the complete
dataset is no longer required no matter how many new data sets
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are added, eliminating the costly data migration between nodes.
Maze recognizes the duplicate live streaming videos with both the
similar appearance and the similar audio at a recall of 98%. Most
importantly, Maze is also cost-effective. For example, the compact
feature design helps save 5800 SSDs and the computation resources
devoted to running the whole system decrease to 250K standard
cores per billion videos.
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1 INTRODUCTION
The video contents on the Internet, such as long videos fromYouTube1
and short videos shared via TikTok2 and Kwai3, have been experi-
encing explosive growth for years. Nowadays, only a video search
engine holding video data at a billion scale is considered effec-
tive [22, 35]. However, the video data at such a massive scale make
the content-based video retrieval task challenging.

The content-based video retrieval centers on the visual fea-
tures generated from frames. The features are either hand-crafting
ones [4, 7, 19, 31, 37] or are created by the deep neural network
(DNN) techniques [15], both incurring high computation costs.
Moreover, various features are required for comprehensively char-
acterizing a video frame. For example, the models applied to rec-
ognize people faces [9] and to calculate the clarity score [42, 44]
are completely different. On the other hand, duplicate contents in
videos widely exist. Users publish their videos on multiple plat-
forms for maximizing profits or a video is transcoded into a number
of bitrates to adapt the network dynamics. Crafting visual features
for duplicate contents is a waste. Thus, efficiently detecting and
1https://www.youtube.com
2https://www.tiktok.com
3https://www.kuaishou.com
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grouping duplicate video contents before the expensive feature gen-
eration would substantially ease the content-based video retrieval.

While detecting duplicate contents is demanding, the dataset
of billions of videos with heavy reads (searching duplicate videos
more than ∼10 million times per day) and writes (adding millions
of videos into the database every day) challenges the system design
and implementation. The existing research on near-duplicate video
retrieval (NDVR) [6, 12, 38–40, 47] mainly focuses on the algorithm
design instead of building a scalable architecture. Another challenge
is that the visually similar videos are not necessarily duplicated. For
example, individual videos of a series of lectures commonly have
both the same lecturer and background but different contents. In
addition, numerous videos are cut and compiled from a few origin
ones, thus it is also desirable to develop a method of locating the
duplicate clips instead of the complete videos.

To solve these problems, we propose Maze, a full-fledged video
deduplication system at Web-scale. In Maze, videos are detached
into key frames, and visual features represented as high dimen-
sional vectors are generated. Maze relies on an approximate nearest
neighboring search (ANNS) layer to index and search the vectors,
where the quantization-based indexing [22, 23, 50] is adopted. How-
ever, for a fast-growing dataset, the quantization-based indexing
requires periodically re-training new centroids over the complete
dataset to more accurately reflect the changing data distribution,
introducing costly data migration. In Maze, the input vectors are
sequentially flushed into shards, i.e., only the most recently created
shard accepts new vectors. As a result, each shard contains data
collected during a short period and the re-training is constrained
inside a shard, avoiding the data movement between nodes at all.
To further reduce the cost of the system, video frames are char-
acterized by convolutional neural network (CNN) based features.
The compact CNN-based features are easy to compare but an addi-
tional verification stage that uses oriented FAST and Rotated BRIEF
(ORB) [37] features is still required to guarantee the retrieval ac-
curacy. The CNN-based features and the ORB features are either
quantized [23] or truncated [7] so that the vectors could be fully
contained in the memory of the shards. As for the videos differenti-
ated by their audio, we incorporate acoustic features. The audio is
first visualized into spectrograms and the CNN is used to generate
the feature vectors. To recognize duplicate clips contained in videos,
we develop a matching scheme based on the Smith-Waterman algo-
rithm. Our scheme exploits both the visual and the acoustic features
of the videos, and recursively locates all potential matching clips.
We evaluate Maze based on a dataset of 1.3 billion videos that are
crawled from the Internet, and ∼800 thousand videos are added to
the dataset every day. The Maze system maintains the average read
latency to the ANNS layer at 4 seconds and the average write la-
tency up to 4.84 seconds. More importantly, when the system scales
from 200 shards to 350 shards (in 5 months), only 2 re-trainings are
performed. Each of the re-training takes 4 hours and suspends 1
shard only. The optimizations on the CNN-based features and the
ORB features make all vectors reside in the memory, eliminating
the expected requirement of 5800 SSDs. Incorporating the acoustic
features helps effectively deduplicate the videos like live streaming
at a high recall rate of 98%, which can not be recognized by only
the visual features. We also measure the computation resources
required to run Maze. The running cost of Maze on 1 billion videos

Maze

Deduplication indices
(individual videos)

Comprehensive indices 
(video groups)

Duplicate

New 
video group

Comprehensive index 
production

Non-duplicate

General video retrieval

Input video

Figure 1: Maze deduplicates videos for the general video re-
trieval service.

converges at 250K standard cores, showing the high scalability of
our design.

In this paper, our contributions are summarized as follows:
• We develop a full-fledged video deduplication system at web-
scale. A highly scalable ANNS layer is designed to eliminate
costly data migration between nodes, supporting the video
dataset at a billion scale and incrementally indexing ∼1 mil-
lion videos per day.
• We design a two-stage feature comparison for the video
deduplication task. The optimizations on the CNN-based
feature and the ORB feature substantially reduce the storage
cost, saving 5800 SSDs that are expected to install.
• We incorporate acoustic features in our system to recognize
videosmore than visually duplicate ones. Amatching scheme
based on the Smith-Waterman algorithm is implemented to
discover duplicate contents in a fine granularity.
• We have evaluated Maze in a production environment for
2 years. While maintaining the stable read and write per-
formance, we have achieved a goal of cost-effectiveness for
Maze by maintaining a constant amount of computing re-
sources to timely process newly arrived videos.

Our paper is organized as follows: Section 2 introduces the back-
ground. Section 3 presents the scalable architecture design of the
ANNS layer in Maze. Section 4 shows how the features are designed
as well as the matching scheme. In Section 5, extensive experiments
are carried out to justify our design. Section 6 discusses related
work and Section 7 concludes our work.

2 BACKGROUND
2.1 Maze and General Video Retrieval
To effectively support general content-based video retrieval, the
search service needs to create a number of comprehensive indices for
a crawled video [35]. For example, producing features that recog-
nize people appeared in the video [9] and features representing the
visual clarity [42, 44]. To avoid unnecessary computation on the fea-
ture generation, comprehensive indices could be organized based on
video groups, whose members contain duplicate contents and share
the same index data. Maze is installed prior to the comprehensive
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Figure 2: The cases challenge the existing NDVR methods [6, 12, 38–40, 47]. (a) Two videos with different contents (singing
vs. advertising) but have a highly similar shooting style. The frame-level feature is hardly helpful. (b) Two individual videos
from a series of lectures on health caring, which have the same lecturer and background but different topics. They are hard
to differentiate without audio information. (c) Two short videos are edited from the same TV series, while the editors choose
different scenes to be included.

index production, identifying if a crawled video contains duplicate
contents with the existing ones. Only a video with non-duplicate
contents is stored as a new video group and invokes the expensive
comprehensive index production. Otherwise, the crawled video is
added to an existing video group directly. Inside Maze, the more
lightweight deduplication indices are created. How Maze interacts
with the general video retrieval service is presented in Figure 1.
In addition, other applications, like plagiarism recognition, copy-
right infringement detection, clip correlation, video recommendation,
etc., could also take advantage of Maze for discovering duplicate
contents.

2.2 ANNS
Visual contents are commonly represented by high-dimensional
vectors, and the similarity is thus quantified as to their L2 distances.
However, searching the nearest neighbors for a query vector over
the entire dataset at a billion scale is unacceptable. Thus, various
indexing solutions are proposed to support approximate nearest
neighboring search (ANNS). Among them, the quantization-based
indices [22, 23, 50] feature high retrieval accuracy (vs. locality-
sensitive hash [11]), efficient memory footprint (vs. graph-based
solutions [33]), and low computational complexity (vs. tree-based
solutions [5, 34]), and are widely adopted in industrial systems [35,
43, 45, 51]. With the quantization-based indices, commonly a set of
centroids are trained. Then indexing a vector is realized as grouping
it to the nearest centroid. In order to find the nearest neighbors of
a query vector, the vectors belonging to the top-n nearest centroids
are selected to calculate the L2 distances from the query. As a

result, top-k vectors with the minimum distances are returned. The
parameters of k and n are selected according to the requirements
of the upper-level applications.

2.3 Challenging Cases
When developing a video deduplication system forWeb-scale datasets,
we have encountered several challenging cases. The visually similar
videos do not necessarily contain duplicate contents. Figure 2(a)
and Figure 2(b) are two examples, which are both a pair of differ-
ent videos with highly similar frames. Characterizing videos with
visual features would falsely identify these videos as duplicates.
In addition, edited videos that are cut and compiled from a few
origin ones are ubiquitous over the Internet. These videos have
different bitrates, frame rates, playback durations, etc., though they
are duplicate contents. Figure 2(c) illustrates such a case. Efficiently
identifying these duplicate clips is also critical to Maze.

3 ARCHITECTURE DESIGN
In this section, we will give an overview of Maze and its highly
scalable design of the ANNS layer, which is the core component of
the system.

3.1 System Overview
Maze is a full-fledged video retrieval system, which is specifically
designed for visual content deduplication. Maze accepts an input
video for indexing (write) or searching (read), which is presented
in Figure 3. For indexing, visual features (Section 4.1) and acoustic
features (Section 4.2) are generated from the key frames and the
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Figure 3: An overview of Maze

audio track, respectively. We build the inverted indices over the
visual features since they mostly determine if the two videos are
similar. Specifically, visual features as high-dimensional vectors are
stored in an ANNS layer for future retrieval. The acoustic features
are associated with the visual features of the same video.

To carry out a search query, visual features of the query video
are sent to the ANNS layer for discovering similar frames. A list
of candidate videos with acoustic features are aggregated from
these frames. For a pair of any candidate video and the query video,
the clip-based matching algorithm locates the duplicate clips and
calculates a similarity score based on both the visual features and
the acoustic features. According to the score, the candidate videos
are ranked and returned.

3.2 Scalable ANNS Layer
In order to ensure the data freshness, Maze is expected to index
millions of videos every day. In the ANNS layer, the workloads
are two orders of magnitude larger: nearly 100 million key frames
are indexed per day. With such a fast scaling dataset, periodical
re-training over the complete dataset is necessary for balancing
the number of vectors grouped under each centroid. However, the
re-organization of all vectors leads to costly data migration among
nodes. This suspends the normal deduplication workloads or at
least greatly degrades the read and write performance. To over-
come the challenge, we design a novel architecture that adapts the
ANNS layer to the quickly growing video dataset, which is shown
in Figure 4(a). We will first introduce our architecture design fea-
turing the write-one-read-all policy, and then discuss two potential
alternatives that are unable to solve the data migration problem.

In Maze, vector data are stored in equivalent shards that each
has a full copy of centroids. A read query is therefore required to
be executed in all shards indiscriminately and the results are then
collected to form the top-k list. Inside a shard, duplicate instances
are added or removed on-demand according to the search workload
for guaranteeing short query latencies. It is worth noting that all
shards but the last one are immutable, i.e., the write traffic is always
handled on the nodes in the last shard. Once the last shard is full,
it is sealed and a new shard is created to sustain the write traffic.
Creating a new shard is trivial: after copying all centroids from

…

The first shard

mutable nodes

The last shard

immutable nodes

…

hashwrite

read fanout

Coordinator

write

read fanout

Coordinator
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Figure 4: The architecture of write-one-read-all vs. in-place
insertion in Maze

the previous shard, the new shard is capable of accepting the write
workloads.

In our design, even if the distribution of the latest data points
has changed (this could be discovered by an average longer search
latency from a shard), it will not affect the historical data. The stable
performance can be expected when re-executing the same query
if the recently created shards are quarantined. This is especially
helpful when diagnosing the running system. Moreover, the distri-
bution change is easy to fix: Maze conducts the re-training inside a
shard, leading to no data migration at all.
In-place insertion: Maze is designed as a memory-centric index-
ing system, i.e., all vectors are in the memory (Section 4.1 introduces
the optimizations on the size of feature vectors), and write-ahead-
logs (WALs) are implemented on the disk only for a recovery from
a system crash. As a result, it is tempting to carry out the in-place
insertion on all shards like the design in Figure 4(b). While the read
queries are still sent to all shards, the write queries are distributed
to one of the shards after hashing for load balancing. However,
with this method, data migration is unavoidable when scaling the
system: as long as a shard is full, we need to launch a new shard
immediately and move half of the data onto it. We also need to
update the hash function so that newly incoming write traffic could
be redirected to the new shard. This complicates the implementa-
tion if we need data on the shard to be always accessible: the shard
expansion must be done on a separate clone while the original one
still accepts the search queries. In addition, the write traffic to the
shard during the expansion has to be hold in an immediate buffer
that also accepts read queries. The immediate buffer is merged into
the base after expansion.
Cluster-based partition: Another potential design is to partition
the dataset according to the centroids, i.e., a group of shards only
hold vectors belonging to a centroid. This benefits the read query
since only n groups of shards are selected to process a search query.
However, this also leads to unfavorable data migration: as long
as the data distribution has changed, we have to perform the re-
training over the entire dataset to avoid data skewness.
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Figure 5: Training the CNN with the Siamese architecture.
In the training, a pair of frames are accepted as the input
and output if they are duplicated. Our training set contains
∼1000 million image pairs that can be distinguished as pos-
itive (similar) pairs and negative (dissimilar) pairs. We man-
ually label a small portion of the training set while most
are generated automatically from an online search service:
if two images are clicked by different users sending the same
query, they are associated as a positive pair. The negative
training pairs are randomly generated. All images are trans-
formed into the grayscale during the training.

4 FEATURES AND MATCHING
The feature selection is critical to a video retrieval system, affecting
both the accuracy and the cost. In Maze, similar frames are retrieved
with the CNN-based features. After the retrieval, a verification stage
refines the results with the ORB features [37]. In addition to the
visual features, acoustic features are generated from the audio track
of a video to be indexed. With both the visual and acoustic features,
duplicate clips are located and ranked according to the clip-based
matching method.

4.1 Visual Features
A video frame could be represented by a set of local features that
characterize details of an image [4, 7, 30, 37]. But leveraging the
local features also introduces high computation costs. Since com-
monly tens to hundreds of feature vectors are generated for ef-
fectively understanding a frame, calculating the similarity of two
frames becomes complicated, which requires pairing the vectors,
calculating the L2 distances, and aggregating to an overall score.
Although several optimizations, e.g., quantizing the feature vector
into a shorter format, replacing the ANN search with hashing op-
erations, and calculating hamming distances instead of Euclidean
distances, could speed up the computation, they fail to reduce the
inherent complexity. Furthermore, searching with local features
would retrieve a large number of frames that are only partially
similar to the query, imposing undesired computation costs to our
system for only deduplication.
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Figure 6: The experimental results of seeking the optimal
ORB length. In the experiment, the query set is 1000 sim-
ilar video pairs marked manually. The dataset is 300 thou-
sand videos that are randomly selected, where ∼50 millions
of key frames are extracted. For each frame, 50 ORB fea-
ture vectors are generated and the index data are built with
HNSW [33]. The recall ratio is measured as the proportion
of queries that successfully retrieve the paired videos in the
top-1 list, and the precision ratio is measured as the propor-
tion of retrieved videos (top-k) manuallymarked as similar.

Considering the drawbacks of the local features, Maze adopts
CNN to generate one feature vector for one frame. More specifically,
a standard ResNet-50 [16] is trained to produce a 64-dimensional
vector for each video frame. The similarity score between two
frames is thus simplified to the L2 distance between two CNN-
based feature vectors. As a result, the retrieval results returned
by the ANN search are more concise because the partially similar
images are excluded. As shown in Figure 5, the ResNet-50 is trained
with the Siamese architecture [8, 13]. We also process the CNN-
based feature with product quantization (PQ) [23] in the ANNS
layer, which further optimizes the vector size.
Verification: Using the CNN-based features occasionally returns
false positive frames. For example, gameplay videos of the same
game commonly share a highly similar background and are rec-
ognized as duplicates. As a result, we still need the local features
to refine the search results. In Maze, ORB is adopted as the lo-
cal feature, which is efficient in crafting (binary tests), comparing
(hamming distance), and storing. Prior work [7] has shown that
when recognizing some identical objects, the saturation effects are
observed beyond ∼60 binary tests, i.e., using a vector size longer
than 60 bits might be unnecessary. In Maze, we determine the ORB
feature size experimentally.

In the experiment, we reduce the ORB feature vector size from
256-bit to 32-bit at the step of 32 bits and measure the retrieval
precision and recall. The results are shown in Figure 6, where
the x-axis is the ORB length in bits, and the y-axis is the average
precision and recall ratio. When the vector length is 64 bits or more,
we observed the saturation effects. The precision ratio is reduced
from 96% to 94.63%, and the recall is increased from 91% to 92.41%.
As long as we reduce the vector length to 32 bits, the precision is
sharply reduced to 71.05% while the recall ratio slightly increases
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Figure 7: Extracting acoustic features from the audio track
of a video. The audio track is in the time domain waveform
kept in the .wav file. The Mel-frequency spectrogram of the
audio track is generated by applying a sliding window of 25
ms at a step of 7.5ms, where 64Mel-filters are used. Then the
spectrogram is sliced with another sliding window of 2000
ms at a step of 1000 ms. The audio track of the video is thus
"visualized" and fed into a standard ResNet-50 for extract-
ing the desired 64-dimensional feature vectors. We train the
ResNet-50 following the Siamese architecture presented in
Figure 5.

to 93.17%. As a result, the ORB feature used in our system is 64-bit
to avoid accuracy loss.

4.2 Acoustic Features
Videos like lectures, news, talkshows, and concerts distinguish them-
selves by the audio data. Thus, the acoustic features are essential in
differentiating them. A potential scheme for creating the acoustic
features is to apply a natural language processing (NLP) technique.
But such a method can not process audio without human languages.
In addition, different models should be involved to tackle various
languages. Distinguishing two audio tracks with the same content,
e.g., different people singing a song is also challenging. As a result,
we need a more general acoustic feature to identify the duplicate
audios.

In Maze, we transform the audio track of a video into the Mel-
frequency spectral coefficients (MFSCs), which are represented as a
Mel-frequency spectrogram having the width of the video playback
duration. Like the visual feature extraction, we also train a CNN
via the Siamese architecture that accepts the spectrograms as the
input. The audio part of a video is materialized into a set of 64-
dimensional vectors as its acoustic features. Figure 7 shows the
details of the acoustic feature extraction. Mel-frequency cepstral
coefficients (MFCCs) are generated by applying discrete cosine
transform (DCT) to MFSCs, and could also represent the audio.
However, MFCCs generate a narrower spectrogram, leading to a
relatively low accuracy in the retrieval task.

4.3 Video Clip Matching
The visual features and the acoustic features only suggest if two
frames or two pieces of audio are similar. A matching method at the
video level is still needed. We then tweak the Smith-Waterman algo-
rithm that is originally designed to find the most similar segments
from a pair of gene sequences for the video clip matching.

Algorithm 1 Recursive Smith-Waterman Algorithm

1: procedure R-SWAlign(𝑙𝑞 , 𝑜𝑞 , 𝑙𝑟 , 𝑜𝑟 , R)
2: Input: 𝑙𝑞, 𝑜𝑞, 𝑙𝑟 , 𝑜𝑟 : The length and the offset of the

query/reference frame sequence to search;R: the matching sub-
sequence pairs; SWAlign(·): The Smith-Waterman algorithm
that finds the best matching subsequence.

3:
4: 𝑠𝑞, 𝑒𝑞, 𝑠𝑟 , 𝑒𝑟 ← SWAlign(𝑙𝑞 , 𝑜𝑞 , 𝑙𝑟 , 𝑜𝑟 )
5: ⊲ {𝑠, 𝑒} marks where a subsequence starts and ends
6:
7: if 𝑠𝑞 < 𝑒𝑞 and 𝑠𝑟 < 𝑒𝑟 then
8: R← R

⋃
{𝑠𝑞 + 𝑜𝑞, 𝑒𝑞 + 𝑜𝑞, 𝑠𝑟 + 𝑜𝑟 , 𝑒𝑟 + 𝑜𝑟 }

9: R-SWAlign(𝑠𝑞, 𝑜𝑞, 𝑠𝑟 , 𝑜𝑟 , R)
10: R-SWAlign(𝑙𝑞 − 𝑒𝑞 − 1, 𝑒𝑞 + 𝑜𝑞 + 1,
11: 𝑙𝑟 − 𝑒𝑟 − 1, 𝑒𝑟 + 𝑜𝑟 + 1, R)
12: end if
13: end procedure

In Maze, a matching score is calculated between a query video
and a reference video, and each of them is represented by a sequence
of visual vectors (plus an optional sequence of acoustic vectors). We
change the Smith-Waterman algorithm to a recursive version as in
Algorithm 1 so that multiple matching subsequences are discovered.
In the algorithm, a match of two sequence elements, i.e., the vectors,
is determined if their L2 distance is less than a threshold. If the
acoustic feature sequences are also involved in the matching score
calculation, the following equation is used:

𝑆 = 𝛼𝑆𝑣 + (1 − 𝛼)𝑆𝑎
, where Sv and Sa are the matching scores from the visual and
acoustic feature sequences, respectively, 𝛼 is the coefficient that
weighs the visual features, and S is the synthesized matching score
used in the final ranking.

5 EVALUATION
Maze is built as a web-scale video deduplication system and it has
been run for 2 years. All the experimental results are collected in
the production environment. Until now, Maze has indexed in total
1.3 billion videos, roughly 130 billion key frames. The features of
the key frames are distributed into approximately 350 shards in
the ANNS layer, each containing indices of 60 million key frames.
About 800 thousand videos are newly crawled every day, which
means 60-80 million key frames are incrementally indexed into the
ANNS layer.

Inside a shard, equivalent nodes are launched to adapt to the dy-
namic workloads. Each node is equipped with 200 standard cores4,

4An E5-2420 CPU with turbo off and hyper-threading on roughly has the same com-
putation power of 240 standard cores.
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Figure 8: The read performance of the ANNS layer when the
dataset scales

60GB DRAM, and 200GB SSD space. A shard launches a new node
if the average utilization of the running nodes inside reaches 80%
for at least 15 minutes, and revokes a node if the average utilization
is lower than 10% for 60 minutes. Based on the hardware config-
uration, we comprehensively evaluate the system in terms of the
performance of the ANNS layer, the effects of the feature design,
and the cost of running Maze.

5.1 ANNS layer
Maze indexes the vectors using a two-level GNOIMI [50] structure.
In a shard of the ANNS layer, vectors are clustered under 8000 level-
1 centroids and 5000 level-2 centroids. The residuals are further
encoded with PQ [23] to save memory space. A vector is equally
split into 8 subspaces and each is quantized into 256 numbers.

When a read query arrives at a shard, Maze searches the nearest
neighboring vectors clustered under the closest 1000-2000 centroids
of both levels. The comparison between the query and a stored
vector uses asymmetric distance computation (ADC) [23], and at
most 8000 results are returned to the coordinator from each shard.
The coordinator merges the collected frames into videos for the
following ranking.

The read latencies of the ANNS layer are continuously collected
when the dataset scales from 200 shards to 350 shards, and the
results are reported in Figure 8. The x-axis is the number of shards
required to hold the index data, and the y-axis is the read latency
measured in milliseconds. We both measure the average read la-
tency of all shards and the average read latency in the last shard. For
the average read latency at varying dataset scales, it keeps stable,
which is always ∼4 seconds. But when looking into the latencies
of the individual shards, it varies significantly. This is because the
trends of the new videos on the Internet is changing but the cen-
troids used in the created shard are inherited from the previous
one. This leads to a roughly increasing average read latency on
the last shard. When the average read latency on the last shard
reaches a threshold, we re-train the centroids on the last shard. The
re-training takes ∼4 hours, and it reduces the shard-level average
read latency to less than 1 second. When the dataset grows from
200 shards to 350 shards, two re-trainings are conducted.

For the write latencies, we collected the performance data from
8:00 to 22:00 on a day in April 2022. The workloads are videos
crawled from the Internet. After extracting the key frames from a
video, individual read queries are sent to the ANNS layer to locate
the duplicate frames, and then the features of the same key frames
are inserted into the last shard. Thus the read and write ratio is 1:1.
The results are shown in Figure 9, where the x-axis is the wallclock
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Figure 9: Thewrite performance of the ANNS layer captured
for 12 hours

time and the y-axis is the average write latency in 5 minutes. We
notice that the average latency is always stable because the write
queries are only handled on the last shard, which is at most 4.84
seconds. As a result, our architectural design for the ANNS layer
can reach the stable read and write performance for a long-living
system at web-scale.

5.2 Visual Features
In Maze, a key frame is materialized into one 64-dimensional CNN-
based feature vector and 50 64-bit ORB features. After product
quantization, a CNN-based feature is reduced to 64 bytes. As a
result, indexing a key frame takes 464 bytes of space. Because an
instance is equipped with 60GB memory, a shard can hold the index
data of 60 million key frames.

Maze reduces the ORB feature from 256-bit to 64-bit (discussed in
Section 4.1). Before the optimization, the ORB features of a shard are
too large to be contained in the memory, and thus need to be stored
in SSDs. Though the ORB features of a shard can hardly occupy a
full SSD, we still have to attach an individual disk to every instance
for satisfying the frequent reads, leading to a low utilization ratio at
8.89% of the SSDs. After the optimization, the ORB features could
be completely held in the memory, eliminating ∼5800 SSDs that
should be installed at the current scale of our system.

5.3 Acoustic Features
The acoustic features are generated for live streaming videos, lec-
tures, etc. Based on the current dataset, 26% of videos are qualified
to generate acoustic features. To evaluate the effectiveness of the
acoustic features, we build an individual database with 4046 videos
extracted from 3271 live streamings, which were collected on De-
cember 10th, 2021. Among the videos, 748 videos were randomly
chosen as the query set, and during the ranking, the weight of the
acoustic feature is set to 0.6. We use recall@1 to reflect the effec-
tiveness, which is calculated as the ratio of the top-1 responses that
contain the same video as the query. In the experiment, applying
the acoustic feature could reach the recall@1 at 98%. Without the
acoustic features, these videos are recognized as bad cases that can
hardly be recalled.

5.4 Running Cost
The cost of running the whole system is the factor we pay most
attention to. Specifically, we measure how many standard cores
have to be devoted to maintaining the acceptable read and write
performance.We record the running cost of different components in
Maze when the underlying dataset scales, and the results are shown
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Figure 10: The cost of running Maze when the dataset scales

in Figure 10. In Maze, four components dominate the running cost:
CNN-based feature production, ANNS layer writes, ANNS layer
reads, and video clip matching. With the growing dataset, the cost
of ANNS layer writes and CNN-based feature production consumes
almost the same computation resources, which are 24.17K and 5K
standard cores, respectively. The reason is that the computation
tasks of these two components are irrelevant to the dataset scale
but are related to the number of videos added per day, which varies
little. For ANNS layer read and video clip matching, more CPU
cores must be devoted to guaranteeing their performance on a
larger dataset. When the dataset scale increases from 0.05 billion
videos to 1.3 billion videos, 200K more standard cores (from 30K)
are consumed to maintain the search performance in the ANNS
layer, and 57K more standard cores (from 3K) are used to finish the
video matching and ranking. The increase of the running cost is
reasonable because we have to search in an ever-growing dataset
and more candidate frames are returned for video clip matching.
At the current system scale of 1.3 billion videos, 335K standard
cores are consumed to run the whole system, and 68.66% are used
on the search queries to the ANNS layer. Figure 10 also plots the
running cost per billion videos as the red line, which shows that
with the dataset growing, the cost for running the system over a
billion videos gradually decreases to approximately 250K standard
cores, showing the high scalability of our design.

6 RELATEDWORK
Feature Description: Numerous approaches are developed for
capturing visual features. The local features are extracted from an
image, describing details of the frames: HSV color histograms [14,
21, 39, 47], local binary patterns (LBP) [21, 48, 53], fuzzy multidi-
mensional histograms of color and motion video segments [10],
auto colour correlograms (ACC) [6], and the keypoint descriptors,
such as SIFT [19, 31], SURF [4], BRIEF [7], and ORB [37], combined
with vector of locally aggregated descriptors (VLAD) [18, 36]. On
the other hand, CNN-based features understand the videos as a
whole so that they are compact and cost-efficient [20, 28, 41, 46].
Retrieval Algorithms: One of the earliest schemes [47] represents
a video with a global vector, and the similarity is the dot product
between vectors. In the Bag-of-Words (BoW) scheme [19, 27, 38], a
frame is mapped to one or more visual words, and the video repre-
sentation is the tf-idf representation of these visual words. Another
practice is to generate a hash code representing a video [20], which
learns a group of hash functions that project the video frames into

the Hamming space and combine the results into a single video
representation.
Video Analytic Systems: The video deduplication system is in
essence a video analytic system. In some cases, indexing all video
content in the database with comprehensive understanding mod-
els is too costly. The design then focuses on accurately filtering
out videos that are irrelevant. Focus [17] is an analytic system
recognizing and classifying objects appearing in videos. To accel-
erate the query processing, videos are first clustered with low-
cost CNNs when being inserted. The ground-truth CNN with high
accuracy and high computation cost is only adopted to a lim-
ited list of retrieval results when processing the query. In No-
Scope [26], the low-cost binary classifiers are trained to efficiently
filter videos, and the reference network is only used at the last step.
Extending the analytic capability is also a concern for the systems.
BlazeIt [24, 25] implements aggregation and limit operations over
the video, and the queries are written in the form of a SQL-like lan-
guage. Panorama [52] further incorporates unbounded vocabulary
queries into the video analytic systems, while another study [32]
suggests adding probabilistic predicates for more operation space
on the video analytic tasks. In Vaas [3], an interactive interface is
provided so that users are encouraged to explore effective methods
for their own analytics tasks. In addition to the content-based ana-
lytic techniques, the inherent structural information of videos is
helpful in query acceleration. Specifically, methods like scaling the
resolution or reducing the color depth can substantially reduce the
time required to process the queries [2]. The configuration of the
video formats in the dataset is considered the central concern in VS-
tore [49], which helps realize the system in a backward derivation
manner. NV-Tree [29] is an efficient indexing technique developed
for high-dimensional vectors on disks, and it has been successfully
deployed in a visual retrieval system containing tens of billions of
features [1].

7 CONCLUSION
In this paper, we present Maze, a video deduplication system at web-
scale. In Maze, an scalable ANNS layer is built to index and search
feature vectors, where the data migration among nodes is elminated.
The CNN-based feature and the ORB feature are employed as the
visual features. After quantization and truncation, the visual feature
could fully reside in thememory, avoiding expensive I/Os during the
search. Maze also generates acoustic features for videos like lectures,
live streaming, etc. This helps identify the videos that only differ
in their audio. A clip-based video matching scheme is developed
based on the Smith-Waterman algorithm in Maze. Maze has been
deployed as a production system for 2 years, and it indexes over
1.3 billion videos. The comprehensive results of high performance
and stable daily operations of Maze in production systems meet
our design goal for a cost-efficient video deduplication system.
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