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ABSTRACT
Social network spam increases explosively with the rapid de-
velopment and wide usage of various social networks on the
Internet. To timely detect spam in large social network sites,
it is desirable to discover unsupervised schemes that can save
the training cost of supervised schemes. In this work, we first
show several limitations of existing unsupervised detection
schemes. The main reason behind the limitations is that ex-
isting schemes heavily rely on spamming patterns that are
constantly changing to avoid detection. Motivated by our
observations, we first propose a sybil defense based spam
detection scheme SD2 that remarkably outperforms exist-
ing schemes by taking the social network relationship into
consideration. In order to make it highly robust in facing
an increased level of spam attacks, we further design an un-
supervised spam detection scheme, called UNIK. Instead of
detecting spammers directly, UNIK works by deliberately
removing non-spammers from the network, leveraging both
the social graph and the user-link graph. The underpinning
of UNIK is that while spammers constantly change their
patterns to evade detection, non-spammers do not have to
do so and thus have a relatively non-volatile pattern. UNIK
has comparable performance to SD2 when it is applied to a
large social network site, and outperforms SD2 significantly
when the level of spam attacks increases. Based on detection
results of UNIK, we further analyze several identified spam
campaigns in this social network site. The result shows that
different spammer clusters demonstrate distinct character-
istics, implying the volatility of spamming patterns and the
ability of UNIK to automatically extract spam signatures.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: Gen-
eral—Security and protection
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1. INTRODUCTION
Spam in online social networks increases quickly because

of the viral distribution of information provided by massive
social connections on the Internet. The effectiveness of email
spam detection also contributes to such a trend. A study [2]
shows that email spam has dropped by half in 2010 and
spammers are more aggressively targeting social networks
and search engines. It is estimated that 67% of social net-
work users have been spammed in a survey [1] conducted by
Sophos.

To detect spam in online social networks, many super-
vised machine learning based methods have been proposed.
For example, Lee et al. [9] proposed to deploy honeypots
in social networks, and apply machine learning to detect
spam using captured spam as the training set. Benevenuto
et al. [3] suggested to detect promoters and spammers in a
video social network with user-based, video-based, and so-
cial network based features. Markines et al. [11] proposed to
use six features at post-, resource-, or user-level to capture
spam in a social bookmarking system. However, supervised
machine learning methods have some inherent limitations
when being applied to a large social network site. Specif-
ically, labeling the training set is required for supervised
learning, which incurs a high human labor cost. Moreover,
the labeling work has to be done repetitively to maintain
effectiveness for spam detection given the volatility of the
spam content and some spam posting patterns. Lastly, the
supervised model always lags behind spam attacks with new
patterns of spam content.

Different from supervised ones, unsupervised schemes that
do not have the training cost have been proposed to detect
spam in emails and social networks by directly leveraging the
spamming patterns. For example, Xie et al. [19] proposed
AutoRE to automatically extract spam URL patterns based
on the distributed and bursty patterns of botnet-based email
spam campaigns. Applying this approach in detecting social
spam, however, may suffer from a high false negative rate
since a number of spam posts in social networks are con-
tinuously sent over months instead of following the bursty
pattern [13]. Gao et al. [6] identified spam by clustering
posts based on text and URL similarities and then expect-
ing spam posts to form large clusters with bursty posting
patterns. This approach assumes that spam clusters are not
connected to non-spam ones. However, spam posts may in-
clude non-spam URLs to increase their legitimacy as shown
in our data and discussed in [19], which effectively connects
spam clusters to non-spam clusters, making it highly dif-
ficult to distinguish spam from non-spam. Thereby, it is



desirable and imperative to design an unsupervised scheme
that can address the limitations of existing schemes.

In this work, we first propose a sybil defense based spam
detection scheme SD2. In SD2, a user graph is constructed
by combining the social graph and the user-link graph. The
former represents the social relationship between active non-
spammers, while the latter characterizes the spam link shar-
ing activity of spammers. Observing that spammers and
non-spammers usually form different communities in the
user graph, SD2 applies community detection based sybil de-
fense algorithm to the user graph and achieves better spam
detection performance than existing schemes. However, be-
cause the effectiveness of sybil defense is subject to the spam
attack intensity, SD2 does not perform well when the level
of attacks increases.

To improve the spam detection performance under an in-
creased level of spam attacks, we further design a new UN-
supervised socIal networK spam detection scheme, called
UNIK. Instead of picking out spam directly, UNIK works
by capturing the properties of non-spammers in the net-
work first, and then clustering suspicious spammers based
on the landing pages they are advertising, leveraging both
the social graph and the user-link graph. The underpinning
of UNIK is that while spammers constantly change their
patterns to evade detection, non-spammers do not have to
do so and thus have a relatively non-volatile pattern. UNIK
first constructs a user-link graph connecting users who share
URL links. Given that a spammer often uses different ac-
counts to post spam URLs, the user-link graph constructed
would include almost all spammers in the system, although
non-spammers who share URLs are also included. UNIK
then constructs the social graph according to the mutual so-
cial connections between users, and identifies non-spammers
with the help of the social graph. The URLs mainly posted
by these identified non-spammers are collected as a URL
whitelist, which captures the patterns of non-spam URLs.
By trimming non-spam URL edges matching the whitelist
in the user-link graph, UNIK isolates a large portion of non-
spammers in the user-link graph. Finally, UNIK differenti-
ates spammers from non-spammers with respect to the node
degree in the trimmed user-link graph and detects the ma-
jority of spammers.

UNIK is expected to overcome the limitations of two exist-
ing unsupervised spam detection schemes [19], [6] and SD2,
as UNIK exploits non-spam patterns to detect spam. First,
the AutoRE scheme [19] works by detecting spam that is sent
with two patterns: distributed and bursty. Correspondingly,
spam that is typically posted in the same long duration as
normal posts will not be detected. UNIK works by removing
non-spammers from the user-link graph which covers most
spammers, so it is able to detect most of the spam. Sec-
ond, the spam clustering scheme [6] relies on the assumption
that spam and non-spam posts can be clustered into differ-
ent groups utilizing the sharing URLs between them. How-
ever, as shown in [19], spam content often includes non-spam
URLs to increase the legitimacy, which effectively breaks the
assumption even if only a handful legitimate URLs are in-
cluded. UNIK overcomes this limitation by using the non-
spam pattern to remove non-spam URLs from the user-link
graph, therefore it is robust to the spam attacks with legit-
imate URLs. Third, SD2 uses a sybil defense algorithm to
cluster non-spammers and spammers, whose performance is
subject to the spam attack intensity. UNIK identifies non-

spam URL signatures based on the social graph and the URL
sharing pattern, and then removes non-spam URLs from the
user-link graph, thus its effectiveness is maintained in spite
of the spam attack intensity since non-spam patterns are
largely not affected.

We evaluate the performance of SD2 and UNIK with a
10-month dataset from a commercial social blog site. SD2
shows its superior performance compared to AutoRE [19]
and the spam clustering scheme [6] by reducing both the
false positive rate and the false negative rate in detecting
spam. UNIK also shows comparable performance to SD2
when being applied to the dataset. Furthermore, UNIK
maintains its performance when the spam attack increases,
while the performance of SD2 degrades accordingly.

Based on the spam detection result of UNIK, we have
identified a number of large spam campaigns in this social
blog dataset. Our analysis shows that different spam cam-
paigns demonstrate distinct characteristics. On one hand,
this indicates the ineffectiveness of some detection schemes
relying on these spamming patterns. On the other hand, this
also means that UNIK is able to effectively group spammers
into spam campaigns, which provides an opportunity to ex-
tract spam signatures from these campaigns and use them
to detect spam in other systems.

The rest of the paper is organized as follows. Section 2
evaluates the limitations of existing work and motivates our
work. Section 3 presents the design, evaluation and analysis
of SD2. Section 4 illustrates the design of UNIK, and Sec-
tion 5 evaluates its performance. Section 6 analyzes the
spammer clusters detected by UNIK. Section 7 discusses
other related work, and Section 8 concludes this paper.

2. MOTIVATION
In this section we present the limitations of existing un-

supervised spam detection schemes based on a dataset from
a large social network site. The results motivated our new
designs in this study.

2.1 Dataset
We have collected posts and social connections of users

for over 10 months from a large commercial social blog site
in 2009 [16]. The number of user IDs who have at least one
URL in their posts is more than 176 thousands. These IDs
have more than 2 million posts with URL(s) in the trace
collection duration. We developed a supervised machine
learning algorithm to detect spammers in this dataset. The
spammers detected by the supervised algorithm have both
the false positive rate and the false negative rate around 1%
to 2%. Because of the accuracy of the supervised algorithm
and the infeasibility to label every user in the dataset, we use
the results of the supervised algorithm as a ground truth in
evaluating the performance of unsupervised spam detection
schemes. As we have aforementioned, the good performance
of a supervised algorithm is achieved with a price, thus it
is still desirable to discover an unsupervised algorithm with
similar performance.

Figure 1(a) shows the number of new user accounts cre-
ated every day, stacked with non-spammers on top of spam-
mers. Although the number of spammers is relatively small,
some of the spammers posted a number of spam articles to
the site as shown in Figure 1(b).

2.2 Evaluation of AutoRE



 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0  50  100  150  200  250  300  350

# 
of

 u
se

rs

Time (day)

Non-spammer
Spammer

(a) New users created every day

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1  10  100  1000

Fr
ac

tio
n 

of
 U

se
rs

# of Posts

Spammer
Non-spammer

(b) Cumulative distribution of
post number by spammers/non-
spammers

Figure 1: Statistics of a social blog dataset
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Figure 2: Evaluating AutoRE

We first discuss the performance of AutoRE [19] that de-
tects email spam with distributed and bursty patterns. We
applied AutoRE to our social blog dataset by replacing the
AS number with the user ID as hinted by [6]. Figure 2(a)
shows that the suggested 5-day threshold of spam URL ac-
tive duration has a false negative rate of 26.8%. We further
changed the threshold from 5 days to 320 days. As a re-
sult, most spam is detected, but the false positive rate is
increased to 44.3%. Figure 2(a) shows the performance re-
sults of AutoRE by tuning the threshold between 5 days
and 320 days. Clearly, tuning the threshold cannot help to
improve the overall performance.

AutoRE suggests that most spam URLs have a bursty
active duration. However, Figure 2(b) shows that in our
dataset, more than 50% of spam URLs have an active dura-
tion of more than 5 days. This finding indicates that if we
rely on the bursty pattern of spamming to detect spam, we
risk to miss a significant portion of spam that is as active as
non-spam [17].

Our study shows that the main reason for the performance
degradation of AutoRE is due to the change of the spam
pattern: lots of spam has been posted with a non-bursty
pattern instead of a bursty one.

2.3 Evaluation of FBCluster
Gao et al. [6] proposed a scheme, referred to as FBCluster,

to detect spam clusters in a social network site. FBCluster
constructs a similarity graph of posts on which posts shar-
ing the same URL or similar text are connected. Spam clus-
ters in the graph are detected if a cluster is distributed and
bursty, i.e., the cluster is posted by more than 5 user IDs
and the median interval of posts is less than 1.5 hours as
suggested by FBCluster.

According to the FBCluster scheme, we first construct a
URL sharing graph connecting posts sharing the same URL
in our dataset. Then we apply the suggested thresholds (5,
1.5 hrs) to detect spam, and we get a false positive rate
of 39.3% with a false negative rate of 0.2%. The low false
negative rate suggests that FBCluster is able to detect most
spam in our dataset as spam URLs are often shared by spam
posts. However, the high false positive rate indicates that
FBCluster has mistakenly included a number of non-spam
posts in the detected spam clusters. We examine the largest
cluster in our dataset, and find it has a non-trivial percent-
age (14.4%) of non-spam posts. Even if we only select the
largest cluster as the detected spam cluster, the false pos-
itive rate is still as high as 30.1% while the false negative
rate increases to 7.0%.

To understand why FBCluster has such a high false posi-
tive rate, we further check the URLs that are posted by both
spam and non-spam posts. We find there are about 0.7%
of non-spam URLs that are also presented in spam posts.
We call this phenomenon the legitimate URL inclusion at-
tack, as spammers include legitimate URLs in their posts to
avoid being detected [19]. Although the scale of this attack
is small in the dataset, any occurrence of such attacks will
effectively connect a spam cluster and a non-spam cluster.
Therefore, the reason for the high false positives is that FB-
Cluster is unable to separate spam clusters from non-spam
clusters when there exist legitimate URL inclusion attacks.
This limitation of FBCluster is rooted from the fact that
spammers can intentionally add legitimate URLs to their
posts, increasing the difficulty of distinguishing spam from
non-spam.

3. APPLYING SYBIL DEFENSE

3.1 SD2: Sybil Defense based Spam Detection
In the previous section, we have shown the limitations of

existing unsupervised schemes in detecting spam. We notice
that FBCluster [6] is able to detect the majority of spam in
the trace, however, it fails to separate spam clusters from
non-spam clusters, and leads to a high false positive rate.
This phenomenon is very similar to the sybil attack, in which
sybil nodes are connected with non-sybil nodes. This moti-
vates us to investigate sybil defense based schemes [20, 4, 18]
to detect spam, given such studies have not been conducted
before.

However, directly applying sybil defense schemes for spam
detection has several challenges. First, existing sybil de-
fense schemes use the social network graph to identify non-
sybil/sybil nodes. As a result, a non-trivial portion of low
degree nodes need to be removed in the pre-processing [20, 4]
of the social graph, in order to shorten the mixing time [12].
This prevents sybil defense schemes from detecting all the
spam as a number of spammer IDs will be removed in the
pre-processing. Second, spammer IDs are not necessarily
participating in the social network at all because it is hard
for spammers to convince non-spammers to be their friends.

Motivated by our findings, we propose SD2, a Sybil De-
fense based Spam Detection scheme by using the social graph
and a user-link graph that connects users sharing the same
URL. SD2 overcomes the problem of FBCluster by effec-
tively separating non-spammers from spammers with the
sybil defense scheme. SD2 also includes most spammers
for detection by capturing the intensive URL sharing ac-



tivities among spammers with the user-link graph to make
the best use of the sybil defense scheme. Ideally, SD2 only
removes inactive/new non-spammers and few spammers in
the pre-processing, and then detects non-sybil nodes as the
non-spammers and sybil nodes as the spammers, resulting
few false positives and few false negatives.

In general, SD2 works as follows. First, a social graph con-
necting users with mutual social connections is constructed.
Second, a user-link graph connecting users sharing URLs
is added to the social graph, generating a user graph in-
cluding almost all users we are interested in. Third, a pre-
processing procedure is applied to remove nodes with less
than 3 degrees [4]. Fourth, community detection based sybil
defense [18] is applied to the user graph to rank nodes with
the expectation that non-sybil nodes have higher ranks and
sybil nodes have lower ranks. Finally, a cutoff is applied to
ranked nodes to identify sybil nodes as spammers.

In SD2, a critical step is to find out the right cutoff point,
for which we propose a method based on conductance ratio.
For a set of nodes A in a graph, conductance [10] reflects the
community structure of A. Define B = Ā, or the comple-
ment of A, then conductance is the number of edges between
A and B, divided by the sum of node degrees in A (or B if
the number is smaller). If we define eAB as the number of
edges between A and B, eAA (eBB) as the number of edges
within A (B). Then conductance of A is defined as:

conductance(A) =
eAB

eAB + 2×min(eAA, eBB)

Clearly, conductance indicates the intensity of connections
between A and the rest of the graph B. Conductance of 0
means strongest community structure (no outside connec-
tions), while 1 means weakest community structure (all con-
nections are external).

The community detection based sybil defense algorithm
[18] outperforms existing sybil defense approaches by utiliz-
ing the conductance metric. The algorithm starts from a
trust node or trust node set s. New neighbor nodes of s is
repeatedly added to the s with the preference of minimiz-
ing conductance, until all connected nodes are added. The
community detection algorithm ranks nodes by the order of
adding to the trust node set s, as the nodes ranked higher
are more likely to be non-sybil nodes.

In applying the community detection based sybil defense
algorithm, SD2 needs to find an optimal cutoff point to sep-
arate non-sybil nodes from sybil-nodes. However, there is no
suggestion on the cutoff point selection from the algorithm.
Therefore, we propose a cutoff method for SD2 based on our
observations from the dataset. Figure 3 shows the conduc-
tance and conductance-ratio values of ranked nodes in the
user graph constructed with the dataset. The conductance
value is computed when the node is added to the trust node
set. The conductance-ratio is computed as the ratio of new
conductance to previous conductance upon adding a new
node. As shown in Figure 3, the conductance-ratio is very
close to 1 until it hits the middle part, where the value starts
to vibrate sharply. SD2 thus selects the cutoff point upon
the sudden increase of the conductance-ratio.

In terms of spam posts detection, SD2 outperforms exist-
ing schemes substantially as shown in Figure 9(b): the false
positive rate is 2.8% and the false negative rate is 1.4%. If
we consider the spammers detection performance, the false
positive rate is 0.9% and the false negative rate is 3.0%.
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Figure 3: Conductance of the user graph (social
graph + user-link graph) of original dataset
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Figure 4: Conductance of the user graph with sim-
ulated sybil attacks

The reason for SD2 to outperform existing schemes is
twofold. First, it is able to effectively separate non-
spammers from spammers by detecting the community of
non-spammers with the social graph. Second, it is able to
detect most spammers by including them with the user-link
graph, even if most of them are not in the social graph.

3.2 Limitations of SD2
Although SD2 shows very good performance when it is

evaluated with our real world dataset, it does have some
limitations. Specifically, the performance of sybil defense
in separating non-spammers from spammers degrades when
the number of sybil attack increases, which results the degra-
dation of SD2 performance.

Figure 4 shows the conductance and conductance-ratio
of our dataset with simulated sybil attacks. We randomly
select 10% of users in the social graph, and add the same
number of spammers connecting to these users, forming a
scale free social network among them. As a result, the cutoff
point leads to higher false negative rate of 10.0% in terms
of spammer detection performance.

4. DESIGN OF UNIK
Because the performance of sybil defense based unsuper-

vised spam detection scheme SD2 degrades when there is an
increasing level of attacks, in this section, we further design
a new scheme UNIK: UNsupervised socIal networK spam
detection. UNIK aims to overcome the limitations of SD2
by exploring the social graph and user-link graph separately.

4.1 Overview
Constructing the social graph is straightforward based on

mutual relationships between any two users. In addition to
that, in an online social network, users post content and
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URLs. For spammers to promote some spam sites or adver-
tisements, they keep posting the URLs pointing to the spam
sites. And they often do this using different user accounts.
Thus, UNIK also constructs a separate graph based on the
posted URLs by each user in the network. On this graph,
users are defined as nodes, and the shared URLs posted by
them are defined as edges, and we call it a user-link graph.

At a high level, UNIK starts with a user-link graph based
on the relationship between users and the URLs posted by
them. Instead of directly detecting spammers, UNIK takes
careful steps to remove non-spammers from this user-link
graph with high confidence by leveraging both the social
graph of social network users and the user-link graph based
on the content. Because non-spammers do not have to con-
stantly change their patterns as spammers do to escape from
detection, non-spammers have relatively stable patterns. By
deliberately removing non-spammers based on their pat-
terns, UNIK is minimally affected by the sybil or legitimate
URL inclusion attack by spammers, and achieves a better
performance.

The underpinnings of UNIK are twofold. First, non-
spammers are the main body of the social network (we as-
sume that if spammers become dominant, the social network
is no longer valuable to perform any detection). Second,
spammers usually keep posting the same spam URLs with
the same or different user accounts. Thus, spam URLs have
high occurrences in the content on the social network.

Accordingly, UNIK works as follows. First, it constructs
a user-link graph based on the posted URLs by the users,
and a social graph based on the mutual relationship of the
users. Second, it leverages the social graph to identify non-
spammers. A URL whitelist is constructed by identifying
the sharing activities of their posted URLs. Third, when
user-link graph URL edges are filtered by the URL whitelist,
UNIK makes most non-spammers become isolated or low-
degree nodes on the user-link graph, which can be removed

safely and left spammers node detectable. Figure 5 depicts
the workflow of UNIK and Figure 6 shows an example on the
edge trimming in separating non-spammers from spammers.

4.2 Generating Whitelist to Trim Edges
UNIK first tries to identify non-spammers by applying

the SD2 algorithm to the social graph only. In contrast,
the standalone SD2 algorithm detects spammers by using
the combination of the social graph and the user-link graph,
as the latter is required to connect spammers. Since non-
spammers are mostly active in the social graph, we do not
need to combine the two graphs in this step.

As shown in the last section, SD2 might have a non-trivial
false negative rate in detecting spammers upon a sybil attack
to the social graph. Therefore, the identified non-spammers
are not 100% correct. Fortunately, UNIK manages to toler-
ate the error in the identified non-spammers list as shown in
follows.

Based on the identified non-spammers list, UNIK gen-
erates a whitelist covering the URLs in identified non-
spammers’ posts, so that more non-spammers can be iden-
tified with the whitelist. However, if a spam URL is in-
correctly included in the whitelist, the spammers sharing
this spam URL may be removed from the user-link graph,
causing false negatives. This situation is even worse for
those widely shared URLs. To deal with such situations,
UNIK uses the identified non-spammers and the user-link
graph to help detect such spam URLs. For a URL shared
among users, we have more confidence to include it on the
whitelist if more than half of the users sharing this URL
are non-spammers. That is, UNIK requires shared URLs to
meet this condition to avoid inclusion of spam URLs in the
whitelist. Note that the whitelist can be built based on do-
mains or hosts, other than the URL itself, because a wider
coverage of the whitelist is able to decrease false positives
while errors in the whitelist only lead to the increase of false
negatives.

Based on the generated whitelist, UNIK examines the
edges on the user-link graph. Shared URL edges in the user-
link graph are trimmed if they match the whitelist. After
these removals, non-spammers who only share whitelisted
URLs become isolated on the user-link graph because all
their edges are trimmed. Thus, they can be removed, and
the remaining nodes on the user-link graph are mostly spam-
mers, with a limited number of non-spammers whose edges
are mostly trimmed.

4.3 Applying the Threshold of Node Degree
The trimmed user-link graph may include some non-

spammers because the whitelist is not likely to cover every
non-spam URL. To further improve the detection perfor-
mance, UNIK aims to remove as many non-spammers as
possible based on the URL sharing properties of spammers.
Typically, the URL sharing activities of spammers are much
more intensive than non-spammers in terms of the num-
ber of shared URLs or the number of sharing users. This
means that a spammer node often has more edges than a
non-spammer node in the user-link graph. UNIK thus ex-
amines the node degree, and detects users whose degree is
beyond a threshold as spammers.

To compute the node degree on the trimmed user-link
graph, intuitively, edge(s) should exist between every two
users sharing URL(s), and the edge weight is set to 1. This



however has a time complexity of O(n2) as all the users
sharing a URL are fully connected. To reduce the process-
ing time, instead, for each shared URL, UNIK organizes
the users sharing the URL into a circular node list, and
only adds two edges to a node, one connecting the node
to its preceding node and the other connecting it to its
succeeding node, with each edge weight set as half of the
number of other sharing users. By the increase of the edge
weight, for each shared URL, the sum of edge weight of a
node increases with the same amount as in a fully connected
graph, which is the number of other sharing users. In this
way, the user-link graph is quickly constructed with a linear
number of edges connecting nodes, while the sum of edge
weights of each node

∑
shared-URLs other-sharing-users is

exactly the same as the node degree in a fully connected
graph

∑
other-sharing-users shared-URLs. With the edge

weight, UNIK applies a heuristic threshold on the sum of
edge weights, below which the connected nodes are deemed
as non-spammers and get removed. In the end, only spam-
mers exist on the user-link graph, possibly with few non-
spammers who have intensive URL sharing activities as well.

The threshold of the node degree or the sum of edge
weights needs to be determined beforehand for UNIK to
work. In the next section, we will show that such a thresh-
old can be independently determined (Figure 7(b)). For the
best spam detection result, this threshold can be estimated
by gauging a small sample of spammers comparing to non-
spammers from time to time.

Algorithm 1 UNIK spam detection

Input: user link graph: (V, E) where V are users and E are
shared URLs between V (linearly added)

Input: social graph: (V, E) where V are users and E are social
connections

Input: edge weight sum threshold w
Output: spammers detected (spam detected are the posts by

spammers detected)
for v in social graph.V do

if v.degree < 3 then
remove v from social graph.V

end if
end for
WhiteUser ← social graph.V - SD2(social graph)
whitelist ← set()
for v in WhiteUser do

for url in v.posts do
if url not in whitelist and len(sharing users(url) in
WhiteUser) >= len(sharing users(url)) * 0.5 then

whitelist.add(url)
end if

end for
end for
for e in user link graph.E do

if e matches whitelist then
remove e from user link graph.E

end if
end for
for v in user link graph.V do

if v has no edges then
remove v from user link graph.V

end if
end for
spammers detected ← list()
for v in user link graph.V do

if sum edge weights(v) > w then
spammers detected.append(v)

end if
end for

The UNIK spam detection algorithm is shown by Algo-
rithm 1.

5. PERFORMANCE EVALUATION
We have evaluated the unsupervised spam detection

scheme UNIK with our dataset shown in Section 2.1. Ta-
ble 1 shows the statistics of the social graph and user-link
graph (constructed with a linear number of edges) built with
the dataset.

Table 1: Statistics of social blog dataset
Type Nodes Edges Spammers
Social Graph 141,619 474,701 206
User-link Graph 176,692 578,862 79,344

As UNIK applies whitelist and edge-weight-sum threshold
to detect spammers, both of which can have different choices
and both of which can be used independently, we first eval-
uate their different choices individually in order to find the
best suitable ones.

5.1 Evaluation of Whitelist and Edge-weight-
sum Threshold
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Figure 7: Whitelist and edge-weight-sum threshold
evaluation

We first evaluate the spammer detection effectiveness by
only applying different types of whitelist, including URL-
based, host-based, and domain-based whitelist. We also
evaluate Host+1Path based whitelist, where the whitelist
matches the hostname and the first path in the URL. For
example, if the whitelist pattern is http://a.com/service,
then URLs like http://a.com/service/1.html or
http://a.com/service?q=1 will be matched. Host+1Path
whitelist is a hybrid between URL-based and host-based
whitelist. Lastly, we evaluate the approach of not using
whitelist to trim edges, but only removing identified
non-spammer nodes, namely the WhiteUser approach.

Figure 7(a) shows the spammer detection results after ap-
plying the whitelist or WhiteUser only. Because WhiteUser
only covers identified non-spammers and the URL-based
whitelist has the narrowest coverage of non-spam URLs, the
user-link graph still has a number of non-spammers remain-
ing, which results the highest false positive rate, but the
lowest false negative rate as most spammers are still re-
maining. The domain-based whitelist and the host-based
whitelist further decrease the false positive rate, since the
coverage of non-spammers increases. However, any errors in



the whitelist may result in a higher false negative rate as the
spammers will be removed from the graph. The Host+1Path
based whitelist outperforms the URL-based whitelist in
terms of the false positive rate, and its false negative rate
is also smaller than that of the host-based whitelist. Fig-
ure 7(a) also shows that if we include all URL hosts of identi-
fied non-spammers in the whitelist (all-host-based whitelist),
the false negative rate increases substantially. This indicates
that it is necessary to check whether the URL is mainly
shared among identified non-spammers to avoid the inclu-
sion of spam link in the whitelist.

We then evaluate applying the edge-weight-sum threshold
alone on the original user-link graph to detect spammers.
The threshold increases exponentially (base 2) from 1 to
16,384, and nodes are detected as spammers with the sum
of their edge weights larger than or equal to the threshold.
Figure 7(b) shows that applying this threshold alone could
detect spammers with a false positive rate of 10.7% and a
false negative rate of 3.6% when the threshold is set to 256.
Although the performance of applying the threshold alone is
not satisfactory, it does show that using this threshold can
help improve the detection performance.

5.2 UNIK Evaluation
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We now evaluate the effectiveness of UNIK with the
help of the whitelist and the edge-weight-sum threshold
together. Figure 8(a) shows the spammer detection re-
sults. The Host+1Path based whitelist detects spammers
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Figure 9: Evaluation of UNIK

with a false positive rate of 0.6% and a false negative rate
of 3.7% when the edge-weight-sum threshold is 256. The
host-based whitelist has a false positive rate of 0.5% and
a false negative rate of 4.0% with the same threshold. In
contrast, WhiteUser and the all-host-based whitelist show
worse performance. For WhiteUser, only non-spammers
identified based on the social graph are removed from the
user-link graph, and no edges are further removed for other
non-spammers. As a result, applying the edge-weight-sum
threshold can only help improve the performance to a lim-
ited extent.

Figure 8(b) shows the distribution of the sum of edge
weights for spammers and non-spammers in the user-link
graph using the host-based whitelist. Most spammers have a
sum of more than 64, while more than 70% of non-spammers
have a sum less than 64 before the edge trimming. After
the edges are trimmed by the whitelist, more than 80%
of non-spammers have a sum less than 64. This means
the whitelist could help further differentiate spammers with
non-spammers when applying the edge-weight-sum thresh-
old. Note that although the threshold cutoff still marks
20% of non-spammers in the user-link graph as spammers,
the small number of non-spammers remaining in the graph
results in a small number of false positives in the spam detec-
tion. Figure 9(a) shows that if we apply the edge-weight-sum
threshold earlier before applying the whitelist, the perfor-
mance is worse than applying the threshold after applying
the whitelist. This further validates that trimming edges
by the whitelist in advance is helpful to applying the edge-
weight-sum threshold in detecting spammers. On the other
hand, WhiteUser does not trim any edge, so it is indifferent
to applying the threshold earlier or later.

5.3 Comparisons with Other Schemes
Our UNIK scheme can detect spammers with a false posi-

tive rate of 0.6% and a false negative rate of 3.7%. In terms
of the spam post being detected, the false positive rate is
3.7% and the false negative rate is 1.0% as shown in Fig-
ure 9(b). This suggests that UNIK is able to achieve the
same level of detection performance as SD2. Figure 9(b) also
shows that FBCluster [6] has high false positives. When we
apply the suggested (5, 1.5 hrs) thresholds, the false posi-
tive rate is 39.3% while the false negative rate is 0.2%. We
also have evaluated the AutoRE algorithm used in [19] by
replacing the AS with the user account, which however has
a 26.8% false negative rate when applying the suggested 20-
AS and 5-day thresholds. Section 2 shows that tuning the



threshold for FBCluster and AutoRE still cannot improve
their performance.

5.4 Social Network Sybil Attack
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Figure 10: Evaluation of UNIK under attacks

Although UNIK works well in the evaluations with our
dataset, its effectiveness is still subject to other possible en-
hanced attacks launched by spammers. To investigate the
robustness of UNIK under attacks, we first evaluate UNIK
performance by launching sybil attacks to the social graph
of our dataset. To do so, we randomly select 10% of users
in the social graph, and add the same number of spammers
connecting to these users, forming a scale free social network
among them. Then we double the number of spammers con-
nected to the social network.

Figure 10(a) shows the impact of this sybil attack on
UNIK spammer detection performance. We observe that
the host-based whitelist is subject to sybil attacks: the false
negative rate increases substantially when the sybil attack
increases. This is because an increased level of sybil attacks
increases errors in generating the host-based whitelist, trim-
ming corresponding spam URL edges, and resulting in false
negatives. However, if the whitelist is based on Host+1Path,
then the errors are limited to URLs strictly matching the
prefixes, which effectively limits the false negatives. In fac-
ing such attacks in the social graph, we should choose to
limit the whitelist coverage for better performance. The
false positive rate is 0.6% and the false negative rate is 4.3%
for Host+1Path based whitelist with the edge-weight-sum

threshold of 256, when the sybil attack intensity is 20% of
social network users. This indicates that UNIK overcomes
the limitation of SD2 when sybil attacks increase in the so-
cial network.

5.5 Legitimate URL Inclusion Attack
Similar to the sybil attack occurred in the social graph,

spammers can include legitimate URL in the spam so that
they can escape from being detected. Such inclusion in-
creases the connectivity of the spammers and non-spammers
in the user-link graph. For this kind of attacks, spammers
need to crawl legitimate URLs of non-spammers in the user-
link graph, which is often limited in crawling speed or scope.

We simulate legitimate URL inclusion attack to our
dataset by assuming the spammers have made the effort
crawling a major portion of total legitimate URLs in the
user-link graph, and have inserted the crawled legitimate
URLs into every spam posts. Since the total number of
legitimate URLs is much larger than that of spam URLs,
each spam post in this simulated attack only contains a mi-
nor fraction of spam URLs while the majority of URLs are
legitimate.

Figure 10(b) shows the evaluation results of UNIK under
such attacks. For a legitimate URL being attacked, it will
not be included in the whitelist, as the majority of sharing
users of that URL are mainly spammers after the attack.
However, the host or Host+1Path prefix of the URL may
still be included in the whitelist, because it is unlikely that
other URLs with the prefix are all attacked. Even if the URL
prefix is not included in the whitelist, the edges of attacked
non-spammers will still be trimmed by the whitelist if not
all URLs are attacked. As shown in Figure 10(b), the host-
based whitelist shows slightly better performance due to its
wider coverage which is harder to be defeated by the attack.
The Host+1Path based whitelist still has a false positive rate
of 2.7% and a false negative rate of 1.9% (applying the edge-
weight-sum threshold of 256) even if 50% of legitimate URLs
are attacked by spammers. In summary, UNIK works well
under legitimate URL inclusion attacks for different kinds
of whitelist.

5.6 Limitations of UNIK
We have shown the promising performance of UNIK eval-

uated with our social blog dataset. And we also have shown
the stable performance of UNIK facing difference scales of
spam attacks. However, because UNIK is based on applying
sybil defense scheme to detect spammers, UNIK has limi-
tations in facing some types of spam attacks. For example,
we have seen reports from [6] and [7] that a high percentage
of spammers are using compromised user accounts to post
spam in private social networks. The reason is that in pri-
vate social networks, users primarily interact with a small
list of other users, so spammers have to compromise nor-
mal users’ accounts to widely promote their spam content.
In this case, UNIK will have trouble to detect such com-
promised accounts as spammers since they are an integral
part of the social graph. Therefore, UNIK is more suitable
for fighting spam in an open social network such as groups,
forums, or blogs, where the spamming activities are more
intensive.

UNIK also needs to address the issue of URL shorten-
ing that is widely used in Twitter-like social networks. In
facing shortened URLs, UNIK may need to fetch the final



destination redirected by such a URL, so that the user-link
graph can correctly represent the link sharing activities of
different users. This increases the complexity of the sys-
tem implementation of UNIK by introducing the cost of re-
solving URL redirects. In practice, we have seen systems
incorporated such mechanisms in fighting social spam with
reasonable cost [17].

6. SPAM CLUSTER ANALYSIS
Based on the UNIK scheme presented in the last section,

we are able to group spammers into different clusters in the
user-link graph in our dataset. Each of these spammer clus-
ters represents a group of spammer accounts that are inter-
connected with shared URLs in their posts, corresponding
to different spam campaigns. Studying the spammer clus-
ters can enable us to understand the patterns of different
spam campaigns, and can also help develop spam signatures
in fighting against future spam.

We first plot the number of spammer cluster sizes in Fig-
ure 11(a). Interestingly, the cluster size distribution follows
power law, indicating that spam campaigns also have a nat-
ural distribution on their sizes. We are interested in the
largest clusters, so we pick the top-4 clusters to study their
characteristics. The top-4 clusters have 63699, 6634, 3159,
and 724 spammer IDs, respectively. Figure 11(b) shows the
number of new accounts created over time for each of the
top-4 clusters. We observe that in #1 cluster new accounts
were continuously created over the trace duration, while new
accounts were created at different periods in other clusters.
This clearly indicates that different spammer clusters have
different activities patterns. There exists some correlation
between the #1 cluster and the #3 cluster as their ID cre-
ation activities are both bursty around day 50.
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Figure 11: Spammer cluster size and activity over
time

We also study the user activities of each spammer ID in
the top-4 clusters. Figure 12(a) shows the median of posting
interval for each user in the top-4 clusters. The #4 cluster
demonstrates the shortest interval distribution: more than
90% IDs have a median of interval within 1 minute. On the
contrary, the #3 cluster shows the longest interval distri-
bution: most IDs have a median of interval larger than 40
days. Figure 12(b) shows the active duration of each ID in
the top-4 spammer clusters. The #4 cluster shows a very
short active duration while the #2 cluster shows a median
duration of 100-day per user ID. The active duration distri-
bution of #3 cluster shows three discretely stages including
0, 50, 137 days. The significant differences between differ-
ent clusters imply that the behavior of spammer ID varies

substantially. Therefore it is highly difficult to capture the
spammer behavior with only a handful patterns.
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Figure 13 shows the sharing intensity of each host in the
top-4 clusters. The sharing intensity of a host is defined as
the number of users that ever posted link(s) pointing to the
host, which captures the intensity of advertising activities of
a spam host. The # 2 cluster shows the strongest sharing
intensity of the advertised spam hosts, while the other clus-
ters show similar intensity distributions. This is correlated
with the longest active duration distribution of # 2 cluster
as shown in Figure 12(b). This finding implies that the host
sharing intensity is increased with the increase of spamming
activity by spammers over time.

7. OTHER RELATED WORK



Spam in online social networks has been actively studied
through measurement-based analysis recently. For example,
Thomas et al. [17] proposed a real-time system Monarch to
detect spam based on URL-related features, and they found
Twitter spam campaigns are long lasting than email spam
campaigns. Grier et al. [7] analyzed spam in Twitter with
public blacklists, and showed that 8% of all URLs are on
popular blacklists, although the blacklists are too slow in
preventing the damage of harmful URLs. Gao et al. [5] pro-
posed social network features such as social degree for online
spam filtering based on Facebook and Twitter datasets.

Several other approaches have been proposed to detect
spam in emails with spam templates, network-level features,
shared IP addresses, or email target domains. Qian et al. [14]
proposed an unsupervised learning based email spam fil-
ter since spam from the same campaign often contains un-
changed textual snippets by using the same template. Hao
et al. [8] studied using network-level features to distinguish
email spammers from non-spammers as the first level de-
fense since it is difficult to maintain IP-based blacklists.
BotGraph [21] evaluated a graph-based approach with the
MapReduce model to cluster millions of bot-users observing
that bot-users share IP addresses to log in or send emails.
SpamTracker [15] tried to catch email spammers earlier than
traditional IP-based blacklists do by using the target do-
mains that a IP address sends emails to as a behavioral
feature to cluster IP addresses.

8. CONCLUSION
Albeit a number of spam detection schemes have been de-

signed, spam in online social networks increases significantly
in recent years. In this study, we first analyze the limitations
of existing representative schemes, and then design a sybil
defense based spam detection scheme, SD2. SD2 is an unsu-
pervised scheme, which outperforms existing unsupervised
schemes significantly with the help of the social network
graph. But it suffers from escalating sybil attacks to the so-
cial network. Thus, we further propose UNIK that is highly
robust to an increased level of spam attacks. UNIK differs
from existing schemes in that it detects non-spam URL pat-
terns from the social network instead of spam URLs directly,
because the non-spammer patterns are relatively more stable
than spammers. UNIK demonstrates its performance with
a 10-month social network dataset. Based on UNIK detec-
tion, we have also analyzed spammer clusters in the dataset,
and find distinct spamming patterns of different spam cam-
paigns, indicating the volatility of spamming patterns.
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