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Abstract

Buffer caches in operating systems keep active file blocks in
memory to reduce disk accesses. Related studies have fo-
cused on minimizing buffer misses and the resulting per-
formance degradation. However, the side effects and perfor-
mance implications of accessing the data in buffer caches
(i.e. buffer cache hits) have been ignored. In this paper, we
show that accessing buffer caches can cause serious perfor-
mance degradation on multicores, particularly with shared
last level caches (LLCs). There are two reasons for this prob-
lem. First, data objects in files normally have weaker locali-
ties than data objects in virtual memory spaces. Second, due
to the shared structure of LLCs on multicore processors, an
application accessing the data in a buffer cache may flush
the to-be-reused data of its co-running applications from the
shared LLC and significantly slow down these applications.

The paper proposes a buffer cache design called Selected
Region Mapping Buffer (SRM-buffer) for multicore systems
to address effectively the cache pollution problem caused by
OS buffer. SRM-buffer improves existing OS buffer man-
agement with an enhanced page allocation policy that care-
fully selects mapping physical pages upon buffer misses.
For a sequence of blocks accessed by an application, SRM-
buffer allocates physical pages that are mapped to a selected
region consisting of a small portion of sets in the LLC. Thus,
when these blocks are accessed, cache pollution is effec-
tively limited within the small cache region. We have im-
plemented a prototype of SRM-buffer into the Linux kernel,
and tested it with extensive workloads. Performance eval-
uation shows SRM-buffer can improve system performance
and decrease the execution times of workloads by up to 36%.

Categories and Subject Descriptors D.4.2 [Operating Sys-
tems]: Storage Management—Main memory
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1. Introduction

The CPU cache and the operating system buffer cache are
two critical layers in the memory hierarchy to narrow the
speed gap between CPU and memory and the speed gap
between memory and disks. Since the CPU cache is at the
hardware level while the buffer cache is a part of operating
system, these two layers are designed independently with
no necessary awareness of each other. However, with the
prevalence of multicore architectures and large increases in
main memory capacity, severe performance degradation may
be incurred if these two layers do not work cooperatively. On
a multicore processor, a thread accessing a large set of data
cached in the OS buffer may significantly slow down its co-
runners because this can easily pollute the shared hardware
cache(s) in the processor. This problem needs to be given
serious attention by OS researchers.

An OS buffer cache keeps recently accessed file system
data blocks in memory. Thus, future accesses to these blocks
can be satisfied from the main memory without long-latency
disk accesses. It also buffers recently generated data blocks
to delay corresponding disk writes and to absorb rewrites.
As the main memory size continues to grow, an increasingly
large number of data blocks can be buffered in memory to
serve file accesses of running applications.

Data in OS buffer cache usually have much weaker tem-
poral localities than that in virtual memory spaces [Leung
2008, Roselli 2000]. One of the major reasons is that files
are often used by applications for data storage rather than as
a working space. For example, an application processing an
array of records in a file iteratively reads a record from the
file into an object in its virtual space and works on the object
before it moves forward to the next record. In the applica-
tion, the object is repeatedly used and has strong temporal
locality, and the records in the file have weak temporal lo-
cality (they are accessed only once during every execution
of the application). For simplicity, in this paper, we refer to
the data in buffer cache as buffer data and the data in appli-
cation virtual spaces as VM data, and we refer to the CPU
cache as the cache and the OS buffer cache as the buffer.



File accesses are usually bursty [Gribble 1998]. Thus,
when an application accesses buffer data or generates a large
amount of buffer data, it evicts to-be-reused VM data from
caches and pollutes the caches with buffer data. CPU cache
pollution may significantly increase the number of cache
misses and lead to serious performance degradation.

Though the cache pollution problem incurred by the OS
buffer also exists on single-core processors, it is particularly
serious on multicore processors, where the shared last level
cache architecture is a conventional design. As we will show
later in section 2, a thread reading or writing blocks in the
OS buffer can slow down a concurrently executing thread
significantly by a factor of two. The main reason for the
performance degradation is that cache pollution leads to
severe thrashing in the cache shared by the threads. When the
thread accessing buffer data evicts to-be-reused VM data of
its co-running threads from the shared cache, the co-running
threads keep reloading the evicted VM data into the shared
cache. The cache thrashing caused by evicting and reloading
the VM data significantly degrades application performance.

On a multicore system, through a shared cache, a thread
can be influenced by and influence the execution of mul-
tiple co-running threads sharing the cache. This intensifies
the degree of cache thrashing and also the degree of perfor-
mance degradation. For example, on an Intel Core i7 proces-
sor, four cores share the same L3 cache. Thus, a thread ac-
cessing buffer data may slow down the other three running
threads. With more cores sharing the same cache on future
processors, cache pollution may degrade performance more
seriously.

Cache pollution incurred by the OS buffer in existing
systems has its root in the page allocation policies, which
target to minimize disk accesses caused by paging and OS
buffer misses, without taking into account how much cache
pollution may be incurred by accessing the blocks in the
allocated pages. Upon buffer misses, OS buffer management
allocates physical pages to hold the demanded disk blocks.
It selects physical pages holding the virtual pages or disk
blocks that are not likely to be used in near future, and
evicts the virtual pages or blocks to vacate the physical pages
for the demanded blocks. The selected physical pages are
“randomly” mapped to different regions of the shared cache,
which makes it difficult to control the cache pollution caused
by accessing the data in the pages.

To address the cache pollution problem, we have de-
signed a buffer management scheme called Selected-Region-
Mapping-Buffer (SRM-buffer). SRM-buffer effectively re-
duces cache pollution with an enhanced page allocation pol-
icy. Unlike the buffer management in existing OS’s, SRM-
buffer carefully selects physical pages as buffer misses hap-
pen. For the related blocks that might be repeatedly accessed
in sequence, SRM-buffer refers to them as a sequence and
allocates physical pages that are mapped to a small region
consisting of a small collection of sets in the shared cache,

leveraging the fixed mappings between physical pages and
cache sets. Thus, when these blocks are re-accessed, cache
replacement is limited to this cache region, and cache pol-
lution can be alleviated. Operating systems assign a distinct
color to each cache region and the physical pages mapped
to the region. Thus, physical pages allocated to the blocks in
the same sequence are in the same color in SRM-buffer.

Two technical issues are addressed in SRM-buffer. One
issue is how SRM-buffer predicts which blocks are related
and accessed together in sequence so that SRM-buffer se-
lects physical pages of the same color for them. To address
this issue, we have developed a few heuristics based on the
information passed down from the scheduler and file system.

The other issue is how to coordinate different require-
ments of buffer management and virtual memory manage-
ment on physical page allocation, while retaining the hit
ratio of OS page cache. To reduce cache conflicts, vir-
tual memory management prefers to allocate evenly phys-
ical pages in all available colors. To reduce paging activity
and buffer misses, OS page replacement prefers to reclaim
the physical pages holding inactive virtual pages and stale
blocks that might not be reused. However, to reduce cache
pollution incurred by the OS buffer, SRM-buffer prefers to
allocate physical pages in the same color. As we will explain
later in Section 3, exhaustively allocating pages in one color
may hurt the page hit ratio because memory for active vir-
tual pages or non-stale blocks may be reclaimed. At the same
time, this action causes an uneven color distribution among
available physical pages, and thus increases the difficulty to
allocate evenly physical pages to virtual memory.

To satisfy and balance the above requirements on physical
page allocation, SRM-buffer makes a trade-off among the
OS buffer reducing cache pollution, virtual memory man-
agement reducing cache conflicts, and page replacement
maintaining high hit ratios. SRM-buffer does not exhaus-
tively allocate physical pages in one color. Instead, SRM-
buffer uses different colors for blocks in different sequences,
and for a long sequence, SRM-buffer switches colors regu-
larly each time when an appropriate number (e.g. 256 in
our current design) of physical pages in a color have been
allocated. As we will show in section 4, the trade-off has
a minimal effect to the capability of SRM-buffer to reduce
cache pollution, but it can effectively avoid the negative ef-
fects on virtual page allocation and OS page replacement.

The contributions of the paper are threefold. First, this
is the first work that identifies and studies the performance
degradation problem caused by bursty OS buffer accesses
on multicore systems. Second, we have proposed an effec-
tive solution to address the problem by carefully selecting
physical pages to buffer disk blocks. Finally, with a proto-
type implementation based on Linux kernel 2.6.30, we have
tested our solution with extensive experiments, which show
our design can effectively improve system performance and
decrease the execution times of the workloads.



The rest of the paper is organized as follows. Section 2
briefly introduces the CPU cache designs in common multi-
core processors and explains how bursty OS buffer accesses
may cause performance degradation on multicore systems
with an illustrative example. Section 3 describes the design
of SRM-buffer. Section 4 provides a comprehensive eval-
uation of SRM-buffer. This is followed by a related work
session where we also discuss other techniques that may ad-
dress the problem. Section 6 concludes the paper.

2. Background and Motivation

In general, multicore processors have shared last level
caches (LLC). Examples include Intel Core 2 and Nehalem,
AMD Opteron and Phenom, Sun Niagara, and IBM Power7.
Figure 1 illustrates the shared cache structures with Intel
Xeon 5355 processors (Core 2 architecture) and Intel Core
17 860 processors (Nehalem architecture), which are used in
our experiments. On a Xeon 5355 processor, each core has
private L1 caches, and every two cores share an L2 cache.
On a Core i7 processor, four cores share the same 1.3 cache,
and each core has private L1 caches and an L2 cache.

by increasing the number of records. The working set size
of mergesort is about two times of the array size, which is
smaller than the L2 cache size on the Xeon 5355 processor.

To measure how much mergesort is slowed down by grep,
for each size of the array, we run mergesort and grep together
for two times. We first run the applications on two cores that
do not share L2 cache, and collect an execution time 77 of
mergesort. Then we run them on two cores sharing the same
L2 cache, and collect another execution time 75 of merge-
sort. We also collect the number of last level cache misses
(denoted LLCM) incurred by every million instructions of
mergesort. Finally, we calculate the slowdown of mergesort
(i.e. (T — T1)/T1), and show the changes of the slowdown
and LLCM in Figure 2a and Figure 2b, respectively.
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Figure 1: Hardware caches in Intel Xeon 5355 (Core 2) and
Core 17 (Nehalem) multicore processors

Compared to private cache architectures on single-core
processors, shared cache architectures reduce cache coher-
ence overhead and increase cache space utilization with
space sharing and data redundancy reduction. However, pol-
lution in a shared cache may cause cache thrashing, and lead
to more significant performance degradation than it does in
private cache architectures. In this section, we present an
experimental case to demonstrate that the cache pollution
problem caused by visiting buffer data in the OS buffer can
significantly degrade application performance. In the exper-
iment, we run two applications on a Xeon 5355 processor.
Application grep looks for a randomly-generated charac-
ter string in a tarball containing Linux kernel source code.
Before the experiment, we warm up the OS buffer so that
accesses to the tarball are satisfied in the OS buffer. The
other application mergesort sorts an array of 64-byte records
with a non-recursive 2-way mergesort algorithm. In the ex-
periment, we vary the array size from 256KiB to 1.5MiB

curred by every million instructions

of mergesort
Figure 2: A comparison of the performance degradation of
mergesort due to the co-running grep polluting the shared
L2 cache on the existing Linux system that does not control
the pollution (solid lines) and on an improved system that
controls the pollution (dotted lines). The array size is varied
from 256KiB to 1.5MiB in mergesort.

When we increase the number of records in mergesort,
it becomes more possible for the records to be evicted from
the last level cache by grep, because the temporal locality
of the records gets weaker. As a result, we see the LLCM
of mergesort increases significantly and the slowdown in-
creases accordingly. When the array size is increased to
1.5MiB, mergesort is slowed down by as much as 114%.
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Figure 3: Physical address in the page coloring technique

The performance degradation can be reduced by carefully
selecting physical pages to hold the blocks in the tarball vis-
ited by grep. The selection is based on the page coloring
technique, which was proposed in operating systems to re-
duce cache misses through careful mapping between virtual
pages and physical pages [Kessler 1992]. The logic of the
page coloring technique is shown in Figure 3. Memory man-
agement in operating systems uses the most significant bits



of a physical address as the physical page number. When
the address is used in a cache lookup operation, some bits
in the middle (cache set index in the figure) are used to de-
termine the cache set to look up. There are several common
bits between the cache set index and the physical page num-
ber. These bits are referred to as cache color, or color for
brevity. Cache sets with the same color value in their cache
set indexes form a cache region. Physical pages mapped to
the same cache region also have the same color.

Due to the fixed mapping between physical pages and
cache sets, there are a fixed number of physical pages in
each color. For example, there are 64 different cache col-
ors on Intel Xeon 5355 processor with a page size of 4KiB.
These colors evenly divide the last level cache into 64 non-
overlapping regions and divide physical pages into 64 dis-
joint groups. If the physical memory size is 4GiB, there are
16384 pages (i.e. 64MiB physical memory for 4KiB pages)
in each color.

Virtual memory management prefers to allocate physical
pages in different colors to virtual pages consecutively ac-
cessed by an application, so that these pages can use dif-
ferent cache regions to reduce cache conflicts. In the experi-
ment, instead of manipulating the mapping between physical
pages and virtual pages, we improve the mapping between
physical pages and buffer pages. We use physical pages in
the same color to hold the file blocks visited by grep. Thus,
grep only pollutes the corresponding cache region, and other
cache regions are not affected.

To confirm the effectiveness of this method, we re-run the
applications on two cores sharing the same LLC. We show
the slowdowns in Figure 2a with the dotted line. We observe
that the slowdowns are significantly reduced, compared to
the cases in which the improvement has not been made.
At the same time, the execution of grep is not affected.
Figure 2b explains the reason by showing the significant
LLC miss reduction for mergesort. When the array size is
1.5MiB, the LLC misses can be reduced by 78%. As a result,
the slowdown is reduced from 114% to 30%.

The above example shows the serious performance degra-
dation caused by visiting weak locality buffer data and
demonstrates the effectiveness of improving the OS buffer
page allocation scheme to address this problem. This case
study motivates our SRM-Buffer design that will be de-
scribed in the next section.

3. Selected Region Mapping Buffer Design

In the simple example in last section, cache pollution is
restricted within a small cache space by allocating physical
pages in the same color to hold buffered blocks. However, to
use the similar method in production systems, some practical
issues must be addressed. These issues arise because there
are only a fixed number of physical pages in each color. In
this section, we first describe these issues and explain how

we address them. Then we introduce the design of SRM-
buffer.

3.1 Technical Issues in SRM-buffer Design and
Implementation

A straight-forward method for the OS buffer to reduce cache
pollution is to use only physical pages in a few dedicated
colors for the OS buffer and physical pages in other col-
ors for other purposes. Though this solution can limit cache
pollution within the corresponding cache regions, it is not
practical due to the large sizes of OS buffers and the fixed
number of physical pages in each color. The OS buffer usu-
ally accounts for a large percent of memory usage in mod-
ern computer systems. We have examined the memory us-
age on 24 machines in our department with the free com-
mand. On average, OS buffers occupy 62% of the physical
memory on these machines. This is consistent to the obser-
vation in previous work [Bi 2010, Lee 2007]. Given the large
sizes of OS buffers, it is not viable to reserve a small num-
ber (e.g. 1 or 2) of colors for an OS buffer because there
are not enough physical pages in these colors to hold the
buffer. Nevertheless, it is not reasonable to dedicate a suffi-
cient amount of colors (e.g. half of the colors available on the
system) to the OS buffer either, because this would shrink the
cache space available to virtual memory and hurt the perfor-
mance of computation-intensive applications accessing last
level caches with strong localities.

(b) Time

Figure 4: Buffer pages consecutively accessed by an appli-
cation with a conventional OS buffer (in subfigure a) or an
SRM-buffer (in subfigure b). Each subfigure shows the cache
regions in the LLC on the top, the buffer pages accessed by
the application at the bottom, and the mappings between the
cache regions and buffer pages in the middle. The numbers
distinguish the colors.

SRM-buffer does not reserve dedicated colors for OS
buffer pages. To control cache pollution, for the consecu-
tively accessed buffer pages over a period of time, it tries
to minimize the number of colors of the physical pages as-
signed to them, and thus minimizes the number of cache re-
gions being polluted. This is illustrated by Figure 4 with an
example comparing the colors of buffer pages accessed by
an application in a conventional OS buffer (Figure 4a) and



in an SRM-buffer (Figure 4b). In an SRM-buffer, the appli-
cation accesses a batch of buffer pages in color #1 in the first
time period. Then, in another time period, it accesses pages
in colors #3 and #4. After that, it accesses a batch of pages in
#n. Thus, only one or two cache regions are polluted in each
time period. In comparison, in a conventional OS buffer, the
buffer pages visited by the application are randomly mapped
to the cache regions in the LLC. In each time period, any
cache region may be polluted.

To achieve the objective described above, SRM-buffer
identifies groups of related blocks that are usually accessed
in sequence. Then it assigns physical pages in the same
color to the blocks in the same group. For example, files are
usually accessed sequentially from beginning to end. Thus
the blocks in the same file are usually in the same group. In
Figure 4b, blocks in color #1 are in one group, and blocks in
color #4 are in another group. For simplicity, we denote each
block group as a sequence and the group size as its sequence
length in the rest of the paper. Because accessing the blocks
in the same sequence only pollutes a single cache region,
SRM-buffer is more effective in controlling cache pollution
with longer sequences. When the length of each sequence is
1, an SRM-buffer becomes a conventional OS buffer.

With appropriate sequence lengths, SRM-buffer reduces
cache pollution in three ways: (1) If an application only ac-
cesses a few sequences, cache pollution is limited within
a few cache regions. For the example in Figure 4b, if the
application does not visit other buffer data besides that in
four sequences, it pollutes only four cache regions with the
SRM-buffer, instead of all the cache regions with a conven-
tional OS buffer. (2) If an application accesses many block
sequences (e.g. more than the number of cache regions in the
LLC), in each time period, cache pollution is limited within
a few cache regions because consecutively accessed blocks
are usually correlated and are in same sequences. Thus, most
cache regions can still be efficiently used without suffering
from cache pollution at any time. (3) The total size of the
buffer pages in a sequence is usually larger than the size of
a cache region. Mapping the pages in the same sequence to
the same cache region makes later-accessed buffer data evict
previously-accessed buffer data from the cache region, and
thus reduces the chance to replace VM data.

The implementation of SRM-buffer into operating sys-
tems needs to address two technical issues. One is how
to detect block sequences. To avoid the high cost associ-
ated with re-mapping a page to a new cache region [Zhang
2009], SRM-buffer must identify blocks belonging to same
sequences when they are loaded into the OS buffer and pro-
vide them with physical pages in appropriate colors. Though
an OS buffer can observe which, and in which order, file
blocks are accessed, it is not effective to detect sequences
based only on the temporal order of the accesses. For exam-
ple, when multiple running applications access file blocks
concurrently, their access streams are mixed together. The

consecutively accessed blocks in the mixed stream may not
be taken as a sequence, due to the lack of logical correla-
tions. They are accessed consecutively only because the ap-
plications happen to run together. Next time, if the applica-
tion mix changes or the applications proceed with different
speeds, the temporal order of the blocks will change accord-
ingly. To detect sequences, SRM-buffer uses a few heuris-
tics based on some scheduling and file system information,
which are to be introduced in Section 3.2.

The other issue that SRM-buffer must address is how to
coordinate different requirements of buffer management and
virtual memory management on physical page allocation,
while retaining a high hit ratio of the OS page cache. In many
current systems, the OS buffer and virtual memory system
are integrated into a page cache [Pai 1999, Silvers 2000].
SRM-buffer allocates physical pages in the same color to the
blocks in the same sequence. When SRM-buffer allocates
physical pages to long sequences, active pages in desired
colors may be reclaimed prematurely, despite the availability
of free pages or inactive pages in other colors. This reduces
the hit ratio of the page cache.

MRU LRU

Free List

”
oJololon
Page Faults Buffer Misses
Figure 5: An example illustrating the conflicting require-

ments on page allocation among different components in OS
memory management

Figure 5 illustrates this issue with an example, in which
physical pages are allocated upon a series of page faults and
buffer misses. In the figure, each rectangle is a physical page.
The number in each rectangle is the color of the page (we
assume there are four different colors in the system indexed
from 1 to 4). An LRU list is on the top of Figure 5, which
is used by the page replacement component to organize
non-free pages in the page cache and to make replacement
decisions !. On the LRU list, active pages are organized on
the MRU end and inactive pages are on the LRU end. Below
the LRU list, the figure shows a free list, which organizes
free physical pages 2. Pages on the free list are allocated to
hold virtual pages on page faults or to hold file blocks on OS
buffer misses. When the number of free pages drops below
a threshold, inactive pages on the LRU list are reclaimed to
refill the free list. The page faults and buffer cache misses
are shown at the bottom of Figure 5 with circles. The arrows
show which physical pages are allocated to resolve the page
faults and buffer misses. The numbers in the circles show
the colors of the physical pages allocated. As shown in
Figure 5, when SRM-buffer allocates physical pages in color
#2 to a sequence, active pages are reclaimed though there
are inactive pages in other colors (shadowed rectangles in



the figure) that are less likely to be reused in the future. This
may hurt the hit ratio of the page cache.

Virtual memory management prefers to allocate evenly
physical pages in different colors to consecutively accessed
virtual pages to reduce cache conflicts. However, the alloca-
tion of physical pages in the same colors in SRM-buffer
causes an uneven color distribution among the physical
pages available to virtual memory. In SRM-buffer, blocks in
the same sequence usually have same access pattern. They
are loaded into the OS buffer together. Allocating physical
pages in the same color to them may exhaust free pages or
inactive pages in that color. At the same time, their pages
are accessed and may be released together. When the blocks
become inactive, their pages move gradually to the LRU end
of the LRU list. When the blocks are released, their pages
move together onto the free list. Thus, when the blocks in
a few long sequences become inactive or are released, the
LRU end of the LRU list or the free list may be dominated
by pages in the corresponding colors. This makes it difficult
for virtual memory management to allocate evenly physical
pages in different colors on page faults.

This problem is also illustrated in Figure 5. In the figure,
the LRU end of the LRU list and the free list are dominated
by pages in color #4 and pages in #3. Thus, only pages in
color #3 and #4 are allocated to resolve page faults. This
increases cache conflicts, because the accesses to these pages
can only use cache regions in colors #3 and #4, instead of
all the cache regions. To prevent this problem, an OS may
search the LRU list for pages in desired colors and reclaim
them. However, the overhead can be high, and the hit ratio
of the OS page cache may be reduced if active pages are
reclaimed prematurely.

3.2 The Design of SRM-buffer

The allocation of physical pages in the same colors to se-
quences may increase cache conflicts and reduce the page
cache hit ratio. To minimize the impact, SRM-buffer first
sets a threshold (77) on sequence length. It breaks down se-
quences longer than 7; into multiple shorter sequences, and
allocates pages in different colors to them. We will show in
Section 4 how to select an appropriate 7; to minimize cache
pollution and at the same time to avoid impacts on the page
cache hit ratio. Then SRM-buffer uses a data structure called
colored zone to coordinate the allocation of physical pages
for the OS buffer and for virtual memory.

SRM-buffer divides physical memory space into two
zones, as shown in Figure 6. The normal zone is managed
by OS replacement with its data structures (e.g. the active
list and inactive list in Linux OS). Active pages and most
inactive pages are managed in the normal zone to maintain

! A production system may use other replacement algorithms, e.g. CLOCK.
We use LRU in the example just to simplify the illustration with no loss of
generality.

2 Buddy allocation system may be used in production systems. Using the
free list is just for illustration.
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Figure 6: Data structures used in SRM-buffer to organize
physical pages.

the hit ratio of the OS page cache. The colored zone man-
ages free pages and a small number of inactive pages. To
facilitate the physical page allocation for the OS buffer and
virtual memory, SRM-buffer organizes the pages in the col-
ored zone into multiple lists, and each list links the pages
in the same color. When a page in the colored zone is hit,
it is moved to the normal zone. On page faults or OS buffer
misses, SRM-buffer reclaims pages in the colored zone.

DATA STRUCTURE:
#define THRESHOLD 256
#define NR_COLORS 128 /+ Num of colors in system=*/
#define FILE_SIZE_THRESHOLD (THRESHOLD%4096)
STRUCT process{ ...
int color, vm_color, nr_block; }
STRUCT file{ ...
int color, nr_block; }
FUNCTION:
update_color (int *c, int *nr_block) {
(*nr_block) ++;
IF (*nr_block mod THRESHOLD == 0) {
remove the mark on the list in color c;
search colored zone for a unmarked list with \
more pages than THRESHOLD
if nothing is found, replenish colored zone \
and repeat the search;
1 = the list found;
mark 1;
*c = the color of 1;
*nr_block = 0;
}
}
ON A BUFFER CACHE MISS:
f = the file the demanded block is in;
IF ( sizeof (f) > FILE_SIZE_THRESHOLD) ({
/+ Same-file Heuristic =/
update_color (& (f->color), &(f->nr_block));
alloc page in color f->color;
return;
}
/* Same-application Heuristic x/
p = the process read/write the block;
update_color (& (p—>color), & (p—>nr_block));
alloc page in color p->color;
return;
ON A VM PAGE FAULT:
p = current process;
allocate a physical page in color p->vm_color;
p->vm_color = (p->vm_color++) mod NR_COLORS;

Figure 7: The page allocation algorithm in SRM-buffer

Figure 7 shows the algorithm that SRM-buffer uses to
allocate physical pages. On page faults, it reclaims physical
pages on different lists (i.e. in different colors) for virtual
memory management to reduce cache conflicts. On a buffer
miss, it first determines which sequence the demanded block
is in. Then it allocates a physical page in the same color as



that of other blocks in the sequence. If the demanded block
is the first block in a sequence, SRM-buffer selects a list in
the colored zone with more pages than 7;, and reclaims a
page on the list to hold the demanded block. When such a
list cannot be found or a list becomes empty, SRM-buffer
refills the colored zone by fetching some inactive pages from
the normal zone untill the shortest list has more pages than
T;. For example, in Linux OS, SRM-buffer moves inactive
pages from the LRU end of the inactive list to the colored
zone.

SRM-buffer relies on the following two heuristics to form
sequences.

e Same-file Heuristic: blocks are considered to be in the same
sequence because they are in the same file. Most files, es-
pecially large files, are sequentially accessed [Leung 2008,
Roselli 2000]. Thus, SRM-buffer allocates physical pages
in the same color to every 7; consecutively accessed blocks
in the same file to prevent accesses to these blocks from
polluting the CPU cache. SRM-buffer only applies this
heuristic to files larger than 7; blocks. This is to prevent
SRM-buffer from generating too many short sequences, in
case applications access a large number of small files, be-
cause short sequences negate SRM-buffer’s ability to re-
duce cache pollution.

e Same-application Heuristic: blocks that are consecutively
accessed by the same process are considered to be in the
same sequence. In a system, the same application might be
executed multiple times on the same set of data. Thus the
blocks consecutively accessed by the same process might
be accessed together again in the next run. Based on this
heuristic, blocks in multiple small files consecutively ac-
cessed by the same application can be viewed as a se-
quence.

4. Performance Evaluation

We have implemented a prototype of the SRM-buffer into
Linux kernel version 2.6.30. With the prototype implemen-
tation, we tested the performance of SRM-buffer against
a set of micro-benchmarks, real applications, and database
workloads. In this section, we first introduce our experiment
setup. Then we present the experimental results.

4.1 Experiment Setup

We carried out our experiments on two machines. One
machine is a Dell PowerEdge 1900 workstation with two
2.66GHz quad-core Xeon X5355 processors, and the other
is a Dell Precision T1500 workstation with an Intel Core 17
860 processor. The architectures of the processors are de-
scribed in Section 2. The memory sizes of the two machines
are 16GiB and 8GiB, respectively. The operating system
is 64-bit Red Hat Enterprise Linux AS release 5. The file
system is ext3. We used pfmon [HP Corp. 2010] to collect
performance statistics such as last level cache misses. The
sequence length threshold 77 is 256.

4.2 Experiments with Database Workloads

In this subsection, we test SRM-buffer with a PostgreSQL
database server [PostgreSQL 2008] supporting data ware-

house workloads. Most data warehouses use a star or snowflake

schema, where join and scan are two most common opera-
tions [Ailamaki 2001, Qiao 2008, Stonebraker 2007]. Thus,
we created a database in a star schema structure, consisting
of a large fact table and several small dimension tables. The
size of the fact table is about 4GiB, and the record length is
128 bytes. The numbers of records in the dimension tables
range from 100,000 to 600,000, with each record of 256-
byte length. Thus the sizes of the dimension tables are from
about 24MiB to 146MiB.

We used a client program to issue both hash-join-based
queries and sequential-scan-based queries to the database
server. A sequential-scan-based query (sequential-scan for
simplicity) is to summarize the statistic information over
the fact table. It searches the records in the fact table, and
carries out a hash aggregate over the records that satisfy
the conditions specified in the WHERE clause. A hash-join-
based query (hash-join for simplicity) works on the fact table
and a dimension table. It selects the records in the dimension
table that satisfy the conditions in the WHERE clause. The
selectivity is about 10%. For each record in the fact table,
the query finds a matching record among those selected from
the dimension table based on the join predicate, and carries
out an aggregation operation over the matching record pair.
To accelerate the join operation, it builds a hash table for
the selected records from the dimension table with the key
specified in the join predicate so that a matching record can
be quickly located.

When a hash-join co-runs with a sequential-scan, the
PostgreSQL backend process serving the sequential scan
keeps loading the blocks in the fact table from the OS buffer
to its virtual space 3 and scans the records in the blocks.
Thus it pollutes the last level cache in the processor it runs
on. If the hash-join and the sequential scan run on the cores
sharing the same last level cache, due to the cache pollution,
the data in the hash table built for the dimension table may
be frequently evicted from the last level cache, and the per-
formance of the hash-join is degraded.

To show the effectiveness of SRM-buffer in reducing
cache pollution, we run hash joins and sequential scans on
the cores sharing the same last level cache with the vanilla
Linux kernel and the kernel with SRM-buffer enhancement,
respectively. We collected the response times and compared
them against those collected when each of them runs alone
(solo-runs). Due to the cache pollution and the contention for
shared resources (e.g. last level cache space, memory con-
troller and bandwidth), the response times collected when

3 PostgreSQL uses a buffer ring replacement strategy, which gives sequen-
tial scans a very small space in its buffer pool to avoid sequential scans
flushing to-be-reused pages in its buffer pool and to minimize double buffer-
ing.



the queries co-run are larger than those of their solo-runs. We
show the slowdowns of the sequential scans and the hash-
joins with different dimension tables in Figure 8.
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Figure 8: The slowdowns of hash-join-based queries and
sequential-scan-based queries (relative to their solo-runs)
when they co-run on the vanilla Linux kernel and the kernel
with SRM-buffer enhancement. The sizes of the dimension
tables are from 24MiB to 146MiB.

As the figure shows, compared to the sequential-scans,
hash-joins are slowed down by much larger percentages. On
average, when the Linux kernel without SRM-buffer is used,
hash-joins are slowed down by 42% on the PowerEdge 1900
and by 26% on the Precision T1500, and sequential-scans
are slowed down by 3% on the PowerEdge 1900 and by
1% on the Precision T1500. This is because sequential-scans
have weak temporal localities, and they are not affected by
cache pollution. The slowdowns of sequential-scans are due
to the contention on the hardware resources other than the
shared last level cache, e.g. the memory controller and mem-
ory bus. The slowdowns of hash-joins are largely caused by
the to-be-reused data in hash tables being evicted from the
last level cache.

We observed that hash-joins with smaller dimension ta-
bles are slowed down by smaller percentages. For example,
on the PowerEdge 1900, the hash-join with the 24MiB di-
mension table is slowed down by 17%, but the hash-join with
the 98MiB dimension table is slowed down by 58%. This is
because hash table sizes are roughly proportional to the di-
mension table sizes. Hash tables built for smaller dimension

tables are smaller and less likely to be evicted from the last
level cache than those built for larger dimension tables.

On both machines, SRM-buffer reduces the slowdowns of
hash-joins by reducing cache pollution caused by sequential-
scans. The slowdowns of hash-joins are reduced signifi-
cantly by up to 33% on the PowerEdge 1900 and by up to
24% on the Precision T1500. On average, the response times
of hash-joins are reduced by 17% on the PowerEdge 1900
and by 14% on the Precision T1500.

While in most data warehouses queries are simple due to
the use of star/snowflake schemes and materialized views,
there are complex data warehouse queries that need to be
considered due to their long execution times. To study the
performance of SRM-buffer with complex database queries,
we use TPC-H queries as our workload [TPC 2010]. The
data set size of the TPC-H benchmark is about 2GiB (scale
factor is 2). Two groups of queries are selected. Queries Q6
and Q15 are in the first group. They spend most of their exe-
cution time on sequentially scanning the fact table lineitem,
which incurs a large number of OS buffer accesses. Other
queries (Q5, Q7, Q8, Q10, Q11, and Q18) are in the second
group. These queries have mixed features. They spend a sig-
nificant portion of their execution time on operations such
as multi-level joins, index scans, and sortings. These opera-
tions mainly access PostgreSQL virtual memory space. On
the leaf nodes of their execution plan trees, there are opera-
tions that sequentially scan lineitem or major dimension ta-
bles and incur OS buffer accesses.

Before the experiment, we vacuum the database so that
query executions can be more efficient and the OS buffer
becomes warm. In the experiment, we run combinations of
two queries on the PowerEdge 1900. Each of the first three
combinations consists of a query from the first group and
a query from the second group. Each of the other combi-
nations consists of two queries from the second group. We
run each query combination on both the vanilla Linux kernel
and the kernel with SRM-buffer, and collect query execu-
tion times. Then we calculate the slowdowns of each query
relative to its solo-run.
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Figure 9: The slowdowns of TPC-H queries on the Pow-
erEdge 1900.

We show the slowdowns in Figure 9. Generally, SRM-
buffer cannot achieve as good performance with complex
queries as it does with simple queries. This is because the
query plan trees of complex queries are more complex than
those of simple queries, and complex queries spend more



time on the operations on the non-leaf nodes of their query
plan trees, which mostly access virtual memory. Thus, they
cause less intensive cache pollution and incur smaller slow-
downs than simple queries. This limits the potential that
SRM-buffer improves performance.

In the first three combinations, only the queries from
the second group (Q7 and Q8) suffer from cache pollution.
Thus, SRM-buffer reduces their slowdowns by 7%~10%.
The queries from the first group (Q6 and Q15) have similar
performance on both kernels. For the other three combina-
tions, both queries in each combination cause cache pollu-
tion and suffer from it. Thus, SRM-buffer can reduce the
slowdowns for both queries in each combination.

4.3 Experiments with Other Workloads

In this subsection, we select the following benchmarks,
which are briefly described as follows, and measure their
execution times in varying scenarios.

e grep is a tool to search a collection of files for the lines
matching a given regular expression. We run it to look for a
randomly generated word from the directory we have used
to compile and install PostgreSQL 8.3. The total size of the
files in the directory is about 100MiB.

e taris a tool that puts multiple files into a single archive.
We run it to put the files under the above mentioned Post-
greSQL directory into a tarball.

e PostMark is an industry-standard benchmark from Net-
work Appliance Inc, which is designed to emulate Internet
applications such as e-mail servers and news groups [Katcher
1997]. It conducts file accesses and operations, such as read-
ing or appending files, and creating or deleting files over
a pool of files. At the beginning of our experiment, Post-
Mark creates 1,000 files whose sizes range from 128KiB to
384KiB. Then a number of accesses and operations are per-
formed on these files. About 20% of file accesses are reads
and the rest are appends. Half of file operations create new
files, and the other half delete files.

e mergesort is a synthetic benchmark as described in Sec-
tion 2. The array size is 1.5MiB.

e FFT, MM, and LU are from NIST SciMark2 bench-
mark [Pozo 2000]. FFT performs one-dimensional fast
Fourier transformation. MM multiplies two sparse matrices
in compressed-row format. LU computes the LU factoriza-
tion of a dense matrix.

Among the benchmarks, mergesort, FFT, MM, and LU
focus on the data in their virtual memory spaces. For con-
venience, we call these benchmarks VM-intensive applica-
tions. In comparison, benchmarks grep, tar, and PostMark
focus on the data saved in files. These benchmarks read data
into their VM spaces from files, carry out some processing,
and save newly-generated data into files if there is any. We
call these benchmarks file-intensive applications.

e Experiments on PowerEdge 1900

We first carry out experiments on the PowerEdge 1900.

We select two cores sharing the same last level cache to

run the benchmarks. In each experiment, we co-run a VM-
intensive application with a file-intensive application on the
cores. Before the experiment, we run each of the applications
individually multiple times without the interference from the
other application to warm-up the OS buffer and to collect its
solo-run execution time.

Due to resource contention and cache pollution, co-
running the applications increases the execution times. In
Figure 10a, we show the performance slowdowns of the VM-
intensive applications on the vanilla Linux kernel and on the
kernel with an SRM-buffer enhancement. Without SRM-
buffer, the VM-intensive applications are slowed down by
64% on average due to co-running with file-intensive appli-
cations. With SRM-buffer, the slowdowns can be reduced
to 28% on average. The reduction of the slowdowns corre-
sponds to the reduction of execution times from 16% to 29%
(by 22% on average), which is shown in Figure 10b. For
the file-intensive applications, we have not observed notice-
able performance differences between the executions on the
kernels with and without SRM-buffer.
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Figure 11: The reduction of last level cache misses for VM-
intensive applications on the PowerEdge 1900.

The performance improvement comes from the signifi-
cant reduction of extra last level cache misses incurred by
cache pollution. We have collected the number of last level
cache misses with pfmon and found that last level cache
misses can be reduced by 34% to 85% for the VM-intensive
applications after adopting SRM-buffer in the kernel. This is
shown in Figure 11.

e Experiments on Precision T1500

On the Precision T1500, there are four cores sharing the
same last level cache. Thus, we co-run four applications
on them. Before each experiment, we run the applications
individually to warm-up the OS buffer and to get their solo-
run execution times as we have done in the experiments on
the PowerEdge 1900.

We select FFT, MM, LU, grep, and tar in the experi-
ments. We first run the three selected VM-intensive appli-
cations with each of grep and tar on both the vanilla Linux
kernel and the kernel with SRM-buffer. The slowdowns of
the VM-intensive applications on both kernels (compared
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Figure 10: The slowdowns of VM-intensive applications compared to their solo-runs, and the performance improvement of
these applications achieved by using SRM-buffer to reduce cache pollution on the PowerEdge 1900.
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Figure 12: The slowdowns of VM-intensive applications compared to their solo-runs, and the execution time reduction and last
level cache miss reduction of these applications achieved by Linux with SRM-buffer on the Precision T1500.
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MM has the weakest temporal locality. When the three VM-
intensive applications co-run with grep or tar, the data sets
in the working set of MM are most likely to be evicted by
the buffer data loaded by grep or tar, and the data sets in the

Figure 13: The slowdowns of MM and LU (compared to their
solo-runs) when each of them co-runs with a varied number
of grep (from 1 to 3).

working set of FFT are least likely to be disrupted. th? slowdowns of MM and. LU vyhen each of them co-runs

Figure 12a also shows that SRM-buffer helps to reduce w¥th grep on both the vanilla Linux kern.el and the kernel
the slowdowns of all the VM-intensive applications, but with SRM-buffer enhancement. When we increase the num-
at different degrees. SRM-buffer reduces the slowdown of ber of grep processes f?om 1 to 3, the slowdowns of MM
MM by the largest degree because MM suffers most from j‘m‘_j LU increase accordingly. We see the slowdown of MM
the cache pollution caused by the OS buffer. As illustrated 1 increased from 32% to 84%, apd the slowdown of LU is
in Figure 12c, for MM co-running with grep, SRM-buffer increased from 24% to 88%. With SRM-buffer, the slow-
reduces the LLC cache misses of MM by 90%. This reduces downs can be s.ign.iﬁcantly reduced. Even co-running with
the slowdown of MM from 60% to 2%, which corresponds to three grep applications, the slowdowns of MM and LU can
a 36% execution time reduction, as illustrated in Figure 12b. still be limited below 26% with SRM-buffer.

To demonstrate how the performance of a VM-intensive 4.4 Experiments on Access Pattern Changes

application is degraded by multiple file-intensive applica- The performance of SRM-buffer relies on allocating physi-
tions, we co-run a VM-intensive application with a varied cal pages in the same color to hold the blocks in the same se-
number of file-intensive applications. In Figure 13, we show quence. The sequence detection and subsequent buffer page

allocation in a prior run of an application are expected to



effectively reduce cache pollution for its later runs, because
the blocks in the same sequence are likely accessed in the
same order from the OS buffer as that in the sequence. How-
ever, a reasonable speculation is that the sequences detected
for an application and the corresponding page allocation do
not fit the access patterns of other applications, and cannot
reduce cache pollution they incur.

To investigate the interference effect caused by the dif-
ferent access patterns in different applications, we designed
experiments in which two applications access the same set of
data with different access patterns on the PowerEdge 1900.
We use grep and diff as file-intensive applications, and use
FFT, MM, and LU as VM-intensive applications. Diff is a
tool that compares two files or two directories in a byte-by-
byte manner. Grep and diff scan files in different access pat-
terns. Grep scans files basically in the order of their layout
in the file system, but diff visits files in the alphabetic order
of directory names and file names. In this subsection, we use
diff to compare two identical PostgreSQL directories, which
are also used by grep to search for a randomly generated key.
Most files in the PostgreSQL directories are source files and
object files with sizes less than 100KiB.

In the experiments, we run one of grep and diff to load
the file blocks in the two PostgreSQL directories into the
OS buffer, and then use the other to co-run with each VM-
intensive application on the cores sharing the same last level
cache. Specifically, in one experiment, for each of the vanilla
Linux kernel and the kernel with SRM-buffer, we execute
diff to load the file blocks into the OS buffer. The sequence
detection and buffer page allocation are based on the ac-
cess patterns in diff. Then we co-run grep with each VM-
intensive application, and collect the execution times of the
applications. For each VM-intensive application, we calcu-
late the execution time reduction achieved by the kernel
adopting SRM-buffer. In the other experiment, we switch
grep and diff. On each kernel, we execute grep to load the
file blocks into the OS buffer. Then we co-run diff with each
VM-intensive application, and collect the execution times.
We also calculate the execution time reductions for VM-
intensive applications.

Figure 14 compares the execution time reductions ob-
tained in the above experiments against those obtained in
the cases where the same file-intensive application loads the
file blocks into the OS buffer and then co-runs with a VM-
intensive application. The comparison confirms that the ac-
cess pattern changes of the file-intensive applications can re-
duce the effectiveness of SRM-buffer.

The experiments also show that SRM-buffer can still
achieve decent performance improvements despite the ac-
cess pattern changes. This is because the blocks in each file
are accessed in the same order by grep and diff, though files
are accessed in different orders. Thus, to some degree, the se-
quences detected during grep warming up the OS buffer can
help reducing the cache pollution incurred by diff accessing
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Figure 14: The execution time reductions of FFT, MM, and
LU achieved by SRM-buffer. The names in brackets indi-
cate the file-intensive applications loading the data set into
the OS buffer, and the names outside of brackets indicate the
file-intensive applications co-running with VM-intensive ap-
plications.

these blocks, and vice versa. In the experiments, most files
in the PostgreSQL directories are small. With larger files,
the access pattern changes would have less impact on SRM-
buffer’s performance. Please note that in most cases files are
accessed sequentially from beginning to end [Roselli 2000].
This makes SRM-buffer have good resistance to access pat-
tern changes under normal workloads.

4.5 Experiments with Contrived Adverse Workloads

To demonstrate the extent to which SRM-buffer could be
ill-behaved, we have designed a few arguably worst-case
scenarios. In the first scenario, a synthetic workload reads
the blocks in a 512MiB file with a random access pattern.
Each time it reads 4096 bytes from a file, and there is no
think time between consecutive reads. In this case, no matter
how SRM-buffer assigns physical pages, it cannot reduce the
cache pollution incurred by the workload. In the experiment,
we first scan the file sequentially to warm up the OS buffer.
Then we co-run the workload with VM-intensive applica-
tions, including MM, LU, and FFT. Our experiments show
that the performance of the VM-intensive applications does
not change, whether SRM-buffer is enabled or not. Though
SRM-buffer cannot improve performance in this scenario, it
does not cause performance degradation because of its low
overhead.

In the second scenario, we use an application to scan a
file repeatedly. The file size is 3.4MiB on the PowerEdge
1900 and 7.4MiB on the Precision 1500. Without SRM-
buffer, the data set in the file can fit into the last level cache.
Thus, accessing it does not incur last level cache misses after
the data set is loaded into the cache during the first scan.
However, with SRM-buffer, the buffer pages are mapped to
only a few cache regions (4 on the PowerEdge 1900 and 8
on the Precision 1500), which cannot hold the data set. Thus,
each scan may incur a large number of misses in the last level
cache, and execution is slowed down.

We compare the execution times of the application on
the vanilla Linux kernel and the Linux kernel with SRM-
buffer. The application is slowed down by 12% on the Pow-



erEdge 1900 and by 17% on the Precision 1500 with SRM-
buffer enabled, which represent a substantial performance
loss. However, the performance loss could often be avoided
at application level by copying the data set to virtual memory
space first and using the copy in virtual memory space.

When the system is close to running out of free pages,
SRM-buffer moves inactive pages to fill the colored zone.
These inactive pages may be reclaimed prematurely. When
physical memory size is large, the colored zone accounts for
a small percentage of physical memory space. For exam-
ple, on the PowerEdge 1900, when T} is equal to 256, the
colored zone usually occupies less than 0.8% of the phys-
ical memory. Thus only a relatively small amount of cold-
est pages may be moved to the colored zone because SRM-
buffer moves coldest pages first (e.g. pages on the LRU end
of the inactive list in the Linux OS). Changing the reclama-
tion order of these pages will not hurt the OS page cache hit
ratio. However, if the physical memory size on a system is
small, the colored zone may account for a nontrivial portion
of physical memory. For example, when physical memory
size is 1024MiB, the colored zone can occupy about 12% of
the physical space, assuming the number of colors is 64 and
T; is 256. Thus active pages may be used to fill the colored
zone and be replaced prematurely.
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Figure 15: Page cache hit ratios of PostMark on the Linux
systems with and without SRM-buffer when memory size is
varied from 512MiB to 4GiB. The numbers in brackets are
sequence length thresholds.

To study how SRM-buffer affects the OS page cache hit
ratio, in the last scenario, we reduce physical memory size
gradually from 4GiB to 512MiB and compare the page cache
hit ratios of PostMark benchmark on the Linux kernels with
and without SRM-buffer. In order to change the physical
memory size, we carry out the experiments in a virtual ma-
chine. To stress the page cache, we increased the number of
files in PostMark to 32,000.

Figure 15 shows the hit ratios. When memory size is
large, SRM-buffer has little impact on hit ratio. However,
when memory size is smaller than 1GiB, the hit ratio may
be reduced by a non-trivial percentage. For example, the hit
ratio is reduced by 11% when memory size is 512MiB and
sequence length threshold 7 is 256. To reduce the penalty on

the page cache hit ratio on the systems with a small amount
of physical memory, one can reduce the sequence length
threshold 7;. As shown in Figure 15, when memory size
is 512MiB, with 7} lowered to 128, the hit ratio difference
between Linux systems with and without SRM-buffer can
be significantly reduced to 3.8%. We will show in the next
subsection that SRM-buffer can achieve decent performance
improvement even when 7j is reduced to 16.

4.6 Parameter Sensitivity

In SRM-buffer, the sequence length threshold 7; is an im-
portant parameter. With larger thresholds, SRM-buffer can
form longer sequences, and thus can reduce cache pollution
more effectively. However, forming long sequences may re-
duce the hit ratio of the OS page cache. With the experiments
in this subsection, we show that there is a range of 7; that can
effectively reduce cache pollution with minimum impact on
the page cache hit ratio.
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Figure 16: The execution time reductions of FFT, MM, and
LU achieved by SRM-buffer. The sequence length threshold
T; is varied from 16 to 512.

In the experiments, we vary the value of 7; from 16 to
512, and co-run each of FFT, MM, and LU with grep or tar
on the PowerEdge 1900. In Figure 16, we show the execution
time reductions of the VM-intensive applications achieved
by SRM-buffer. When 7j is less than 128, increasing 7} sig-
nificantly improves the performance of SRM-buffer. When
T; is increased from 16 to 128, the average execution time re-
duction of the VM-intensive applications increases quickly
from 14% to 24%. However, when T; is greater than 128,
increasing it only yields incremental performance improve-
ments. When 7; is increased from 128 to 512, the average
execution time reduction is increased by only 1.7%. Thus, a
system with a reasonable physical memory size can choose
a desired sequence length threshold between 128 and 512 to
reduce effectively cache pollution without reducing the OS
page cache hit ratio.

4.7 Experiments with More Cores

When more cores share the same cache, more applications
may access the OS buffer and pollute the cache. Thus, appli-



cation performance is degraded more seriously. To show this
trend, we select a micro-benchmark, which sorts the records
saved in files. For each file, it reads the records from the file,
sorts them with a blocked mergesort algorithm, and saves
the sorted records into the file. File sizes are from 32MiB to
64MiB, and record size is 32B. We select a Core i7 processor
with a 8MiB L3 cache shared by 4 cores and a Xeon 7560
processor with a 24MiB L3 cache shared by 8 cores. The
cores in the processors have same private cache resources.
On each processor, we run multiple instances of the bench-
mark simultaneously, one on each core. When one instance
is reading or writing records, it pollutes the shared cache and
slows down other instances. To calculate the slowdowns, we
also run one instance of the benchmark alone on each pro-
cessor. When the block size is 0.5MiB, the average slow-
down is 11% on the Core i7 processor and is 13% on the
Xeon 7560 processor. When the block size is increased to
0.75MiB, the average slowdown increases to 15% on the
Core i7 processor and to 25% on the Xeon 7560 processor.
The slowdowns are higher on the Xeon 7560 processor be-
cause cache pollution happens more frequently with more
instances running on the Xeon 7560 processor.

5. Related Work

With the prevalence of multicores, the performance issues
with shared resources on multicores, especially the shared
last level caches, have attracted much attention. To ad-
dress these issues, a few researchers develop sophisticated
scheduling policies for multicores to co-schedule threads
that can efficiently use the shared resources [Fedorova 2005,
Knauerhase 2008, Zhuravlev 2010]. Cache pollution in-
curred by the OS buffer can be reduced by improving the
OS scheduling policy to avoid co-running VM-intensive ap-
plications and file-intensive applications or to run them on
the cores that do not share the last level cache. However,
such policy makes VM-intensive applications share the last
level cache and the caused space contention degrades their
performance. Meanwhile, enforcing such scheduling policy
depends on the availability of cores not sharing caches and
the classification of applications, which is not always avail-
able.

Besides improving thread scheduling, some efforts have
been focused on cache partitioning to provide each of the
running threads with a chunk of dedicated cache space to
avoid interference from other co-running threads [Lin 2008,
Tam 2007, Zhang 2009]. They only target private data sets in
each thread’s virtual space. The data sets shared by multiple
threads, including the data sets in the OS buffer, are largely
ignored in their designs.

Based on the page coloring technique, there are methods
proposed to reduce cache pollution introduced by visiting
weak locality data in application virtual memory [Lu 2009,
Soares 2008]. These methods keep weak locality data within
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physical pages in a few dedicated colors. These methods
are proposed for virtual memory management, and cannot
be adapted to alleviate the cache pollution problem caused
by an OS buffer, because the OS buffer is in kernel space
and does not belong to any applications. At the same time,
these methods require the total size of weak locality data
not exceeding a small percentage of physical memory size.
This requirement is not practical for an OS buffer, which
usually accounts for a large percentage of physical memory
in a computer system.

There are other techniques to avoid memory accesses pol-
Iuting CPU caches with the facilities provided by proces-
sors, such as noncacheable memory supports and streaming
load/store supports [Intel 2010]. Cache pollution can also be
reduced by invalidating the cache lines holding weak local-
ity data promptly after their data usage. However, our experi-
ments discover that using the techniques to reduce cache pol-
lution incurred by a buffer cache can significantly impact the
throughput of the buffer cache (Limited by space, results are
not included in the paper). There are various reasons. For ex-
ample, setting buffer pages noncacheable reduces through-
put because memory controller prefetching is prevented and
spatial locality cannot be exploited.

Improving I/O performance of the OS buffer has been one
of the most actively researched areas. Intelligent replace-
ment algorithms have been proposed to keep active blocks
in memory to minimize I/O operations (e.g. 2Q [John-
son 1994], MQ [Zhou 2004], ARC [Megiddo 2003], and
LIRS [Jiang 2002]). A few works reduce the power con-
sumption of OS buffers [Bi 2010, Lee 2007]. However, we
have not seen any work focusing on addressing the CPU
cache pollution problem caused by the OS buffer.

6. Conclusion

On a multicore system, a thread accessing a large data set in
the buffer cache can slow down its co-running threads signif-
icantly by a factor of two because it flushes the to-be-reused
data of its co-running threads from the shared last level cache
on the processor. SRM-buffer addresses the problem by en-
hancing the page allocation policies in the OS buffer. It lever-
ages the fixed mapping between physical pages and cache
regions. On OS buffer misses, it carefully selects physical
pages to resolve the misses. The selection is to ensure that
the buffer pages in an OS buffer are mapped to appropriate
cache regions, such that, when a thread accesses a large data
set in the buffer cache, every group of buffer pages consec-
utively accessed by the thread are mapped to a few cache
regions. Thus, during the time period in which the buffer
pages in the same group are accessed, cache pollution is
limited within the corresponding cache regions. To achieve
the objective, SRM-buffer detects block sequences and al-
locates physical pages mapped to the same cache region to
the blocks in each sequence. Our evaluation with a prototype
implementation in the Linux kernel shows SRM-buffer can



improve application performance and decrease the execution
times of workloads by up to 36%.
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