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Abstract

Scientific applications face serious performance challenges on mul-
ticore processors, one of which is caused by access contention in
last level shared caches from multiple running threads. The con-
tention increases the number of long latency memory accesses,
and consequently increases application execution times. Optimiz-
ing shared cache performance is critical to significantly reduce ex-
ecution times of multi-threaded programs on multicores. However,
there are two unique problems to be solved before implementing
cache optimization techniques on multicores at the user level. First,
available cache space for each running thread in a last level cache
is difficult to predict due to access contention in the shared space,
which makes cache conscious algorithms for single cores ineffec-
tive on multicores. Second, at the user level, programmers are not
able to allocate cache space at will to running threads in the shared
cache, thus data sets with strong locality may not be allocated with
sufficient cache space, and cache pollution can easily happen.

To address these two critical issues, we have designed ULCC
(User Level Cache Control), a software runtime library that en-
ables programmers to explicitly manage and optimize last level
cache usage by allocating proper cache space for different data
sets of different threads. We have implemented ULCC at the user
level based on a page-coloring technique for last level cache usage
management. By means of multiple case studies on an Intel mul-
ticore processor, we show that with ULCC, scientific applications
can achieve significant performance improvements by fully exploit-
ing the benefit of cache optimization algorithms and by partition-
ing the cache space accordingly to protect frequently reused data
sets and to avoid cache pollution. Our experiments with various ap-
plications show that ULCC can significantly improve application
performance by nearly 40%.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel programming

General Terms  Algorithms, Design, Performance

Keywords Multicore, Cache, Scientific Computing

1. Introduction

Multicore processors have been widely used in all kinds of comput-
ing platforms from laptops to large supercomputers. According to
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the recently announced Top 500 supercomputer list, by June 2010,
85% of these supercomputers have been equipped with quad-core
processors and 5% use processors with six or more cores [27].
However, application programming is facing a new performance
challenge on multicore processors caused by the bottleneck of the
memory system (e.g. [19, 33]). On a multicore processor, the last
level cache space and the bandwidth to access memory are usually
shared and contended among multiple computing cores. The con-
tention for the shared cache increases the amount of accesses to
off-chip main memory, and the contention for memory bandwidth
increases the queuing delay of memory accesses. The accumulated
contention in the cache and the memory bus significantly delays the
execution time due to inefficient management of the shared cache
at runtime. Optimizing the performance of shared last level caches
can reduce both slow memory accesses and memory bandwidth de-
mand, which has become a critical technique to address the perfor-
mance issue in multicore processors.

Cache optimization at the user level has been one of the most
effective methods to improve execution performance for scien-
tific applications on the platforms with single-core processors. A
large number of research projects have been carried out to restruc-
ture algorithms and programming with cache optimization (e.g.
[5, 8, 12, 20, 28-31]). However, cache optimization in multicore
processors faces two new challenges due to architectural changes
in the memory hierarchy.

One important factor for cache conscious programming is the
available cache size for given data sets in order to fully utilize the
cache with minimum misses [33]. However, on multicores, due to
access dynamics to shared caches, the available cache space size for
each thread can be hardly predicted, particularly when an applica-
tion is programmed in a MPMD model (multiple programs co-run
on the same set of processors). Let’s take a blocking algorithm for
linear systems as an example. In such an algorithm, the block size is
an important factor affecting performance, and an unsuitable block
size causes extra cache misses, leading to poor execution perfor-
mance. An optimal block size is usually a function of the available
cache space size for blocking. On a single-core processor the last
level cache is not shared, and the available space for blocking is
determined by the cache size. However, on a multicore platform,
a last level cache is shared among multiple threads co-running on
multiple cores. How much cache space a thread can occupy is de-
termined by dynamic access patterns of the thread and other threads
sharing the cache with it. Thus, it is difficult for a programmer to
determine the available cache space for each thread to make effec-
tive blocking actions. In practice, a sub-optimal block size may be
selected, causing mediocre or even poor performance.

Another major source of poor performance in a multicore pro-
cessor is last level cache pollution, which is a more serious problem
than that on a single-core processor because multiple tasks are af-
fected. Cache pollution is incurred when a thread accesses a sizable



data set with weak locality (i.e. data with infrequent reuses or with-
out reuses), and consequently replaces data sets with strong locality
(i.e. data with frequent reuses in the cache). For threads running on
single-core processors, because of the private cache architecture, a
thread can only pollute the cache on one core (processor) and can-
not affect threads running on other cores (processors). However, on
a multicore processor, because of the shared cache architecture, a
thread can pollute the whole shared cache and affect all the other
threads sharing the cache. Furthermore, on a multicore processor,
multiple threads may access weak locality data sets simultaneously
and evict strong locality data sets very quickly.

Due to the above serious concerns, it is highly desirable for pro-
grammers to distinguish weak locality data sets from strong locality
data sets and explicitly specify different space allocation priorities
to them in shared caches on multicore processors. In other words,
a strong locality data set should be protected by allocating it with
sufficient space, while a weak locality data set must be carefully
watched by giving it limited space. Unfortunately, programmers
lack necessary system support to make effective allocation actions
even though the programmers are very knowledgeable about the
locality strength of each data set.

To address these two critical issues, we present ULCC (User
Level Cache Control), a software runtime library that enables pro-
grammers to explicitly manage space sharing and contention in last
level caches by making cache allocation decisions based on data lo-
cality strengths. With the functions provided by ULCC, program-
mers can hand-tune their programs to optimize the performance
of last level caches on multicores. Unlike database applications or
server applications, whose access patterns are dynamic and some-
times determined by the distribution of their data or requests, most
scientific applications have regular and consistent access patterns.
Thus, scientific application programmers can determine the sizes
and locality strengths of data sets based on their algorithms in the
programming stage. With the locality information and our effective
support from ULCC, programmers can make effective decisions
and enforce a necessary cache space allocation for their programs
that can facilitate cache optimization in the programming stage and
ensure that strong locality data stay in the cache during executions.

We make three major contributions in this paper. First, we have
carefully designed ULCC as a runtime library to enable user level
cache controls for application programming. We provide a set of
functions in ULCC to support different programming models, such
as MPI, OpenMP, and pthread, to tightly couple our ULCC im-
plementation with commonly used programming interfaces. With
these functions, ULCC allows programmers to manage cache space
allocation flexibly and effectively while it hiding most complex-
ity of the cache structure on multicore architecture and ULCC im-
plementation details. Thus, programmers can focus on analyzing
their algorithms and planning optimal cache space allocation; while
ULCC can focus on helping users making full utilization of cache
space with least overhead. Second, we have implemented a pro-
totype of ULCC at the user level based on operating system sup-
port. Though ULCC relies on the page coloring technique [15], it
does not require OS kernel modifications. This makes ULCC highly
portable. Finally, we have tested ULCC with extensive experiments
as to its effectiveness in improving the performance of scientific
programs. We have also evaluated the overhead of ULCC. Our ex-
periments show that ULCC can effectively and significantly im-
prove execution performance with negligible overhead.

The remainder of the paper is organized as follows. In Section 2,
we introduce the motivation and the background information of
ULCC. Then in Section 3 we present the overall structure of ULCC,
the design of its key components, and the implementation based
on the Linux system. We present our experience with ULCC in

Section 4. Finally, we discuss related works in Section 5, and
conclude the paper in Section 6.

2. Motivation and Background

In this section, with a motivating example, we illustrate the chal-
lenges a programmer may encounter in cache optimization. We
show how ULCC works to help the programmer address the chal-
lenges, and explain the underlying techniques ULCC relies on to
achieve this goal.
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Figure 1. An application sorting a large array with multiple
threads

The example program sorts elements in a large array with four
threads in parallel on a quad-core processor. The program first
rearranges the elements into a number of buckets according to
the values of their keys in a way similar to bucket sort. Then it
sorts the elements in every bucket with merge sort. To improve
cache efficiency, optimizations including blocking and multi-way
merging are applied as suggested in [13]. For each bucket, a thread
first partitions the elements into blocks. Then it sorts the blocks
one by one with merge sort. When a thread sorts a block, it uses a
sorting buffer to store the intermediate results of merge sort. The
buffer has the same size as the block size, and is reused for sorting
different blocks. The block size should be adjusted to guarantee
that sorting each block does not incur extra memory accesses after
the block has been loaded into the last level cache. After all the
blocks have been sorted, the thread merges the sorted blocks in
one pass with a multi-way merging by constructing a full binary
tree structure. Therefore, after the buckets are ready, each thread
repeatedly selects an unsorted bucket, sorts the blocks in it, and
merges the sorted blocks, as illustrated in Figure 1.

When the program runs on a quad-core X5355 processor in
which there are two pairs of cores and cores in each pair share an
L2 cache, the interference caused by cache contention and cache
pollution can significantly slowdown its execution. Cache pollution
happens when one thread is sorting blocks and the other thread
sharing the same L2 cache with it is merging sorted blocks. Most of
the data accessed by merging, including the sorted blocks and the
buffer saving the final results, will not be reused. Accessing them
means loading them into the L2 cache and evicting the to-be-reused
data, e.g. the block being sorted and the sorting buffer.

Cache space contention happens when both threads sharing the
same L2 cache work on sorting blocks. For the threads sharing the
same L2 cache, if the aggregated size of their sorting buffers and
the blocks they are sorting exceeds the L2 cache size, severe cache
contention will occur. To quickly sort the elements in each block,
the total size of the blocks being sorted and sorting buffers should
fit into the last level cache. However, cache contention still happens
when a thread finishes sorting a block and starts to work on another



block. Loading the new block into the L2 cache evicts the to-be-
reused data in sorting buffers and the block being sorted by the
other thread. This causes further performance degradation, as we
will show in Section 4.

With the support from ULCC, the program can separate the
cache space used by different threads and reserve separate cache
space slots in the last level cache for each block being sorted and
the sorting buffer for each thread, in order to avoid cache pollution
and cache contention. Thus, each thread can carry out merge sort
block by block without suffering interference from other threads or
from its own block switching. With this method, the performance
of the program can be improved by over 20%.
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Figure 2. Physical address in the page coloring technique

ULCC enforces a user demanded cache allocation based on the
page coloring technique. The page coloring technique was pro-
posed for operating systems to reduce cache misses through care-
ful mapping between virtual pages and physical pages for single-
core [9] and multicore processors [15]. The logic of the page col-
oring technique is shown in Figure 2. Memory management in op-
erating systems uses the most significant bits of a physical address
as the physical page number. When the address is used in a cache
lookup operation, some bits in the middle of the address (cache set
index in the figure) are used to determine the cache set to look up.
There are several common bits between the cache set index and
the physical page number. These bits are referred to as page color.
The page coloring technique assigns a page color to every physi-
cal page and cache set. Thus, it divides a cache into multiple non-
overlapping bins (denoted as cache colors) and separates physical
pages into disjoint groups based on their colors. Each cache color
or physical page group corresponds to a page color, and the phys-
ical pages in the same color are mapped to the cache sets in the
same color. By manipulating the mapping between virtual pages
and physical pages, the page coloring technique can control how
the data sets in application virtual spaces are mapped to cache sets,
i.e. how the cache space is allocated among the data sets. In the
above example, a ULCC supported program changes the layout of
its data on physical space, such that threads sharing the same L2
cache visit data on physical pages in different colors, and physi-
cal pages for blocks and physical pages for sorting buffers are in
different colors.

3. Overall Structure and Design of ULCC

ULCC first provides application programmers with an easy-to-use
interface to specify how cache space should be allocated among
their data sets for efficient use of the last level caches on multicores.
Then, in the execution of a program, it enforces a cache space
allocation by changing the mapping between virtual pages of the
program and physical pages. In this section, we explain how ULCC
achieves these objectives. We first introduce the general structure of
ULCC. Then we describe its interface and key components.

As shown in Figure 3, in the top layer of ULCC is a set of library
functions for programmers to specify desired cache space alloca-
tion. We will introduce how an application uses these functions in
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Figure 3. The overall structure of ULCC

Section 3.1. The Cache Space Allocator (Section 3.2) in the middle
layer manages and selects cache colors in the shared caches on a
multicore platform to make cache space allocation more efficient.
Actual cache space allocation is realized by the Remapping Com-
ponent, which allocates physical pages in the colors selected by the
Cache Space Allocator and remaps virtual pages over to these phys-
ical pages. We will describe this component in Section 3.3. The
last component, Memory Manager (Section 3.4) reduces the over-
head incurred by allocating pages in desired colors. It pre-allocates,
manages, and garbage collects physical pages in different colors.
When some physical pages in specific colors are required by the
Remapping Component, the Memory Manager can check the phys-
ical pages it manages and release the physical pages in the desired
colors to satisfy the requirements quickly.

3.1 Interface

ULCC provides a number of functions as its interface. With these
functions, an application can affect cache space allocation by first
defining some cache space slots and then specifying the mapping
between data sets and cache slots (i.e. which data set will use which
cache slot). To effectively allocate last level cache space among its
data sets, the application should specify the cache usage for the
data sets in its major data structures (e.g. data sets that account for
most accesses). The ULCC interface designs the functions using
the following rules.

o ULCC hides most of the complexity of the cache structure on a
multicore architecture.

Based on this rule, ULCC allows an application to describe its
desired cache allocation in a general way without dealing with
machine-dependent details, such as cache colors, associativity, or
which cores share the same last level cache. There are three reasons
for using this rule: i) Letting programmers explicitly deal with those
structural factors unnecessarily increases their burden because the
cache structure can be complex on a platform with multiple proces-
sors. ii) This rule provides underlying components with more op-
portunities and space for performance optimization. For example,
without specifying cache colors in the program, the Cache Space
Allocator can have multiple choices on cache colors and choose the
ones that can achieve better performance. iii) An application may
run on different platforms. Even on the same platform, the amount
of available resources for the application may vary across differ-
ent runs. For example, on a computer with four dual-core proces-
sors (each with a shared last level cache), a four-thread application
may use two processors or four processors in different runs. Hiding
detailed cache structure decouples the application implementation
from hardware architecture or configuration variations. Thus appli-
cation programs can be highly portable.

e The interface allows programs to pass necessary information
for underlying components to allocate cache space efficiently. For



example, when ULCC allocates cache space for a data set, it needs
to know which threads will access the data set so that it only
allocates cache space on the processors running the threads.

e The interface needs to maintain high flexibility for a program
to describe how cache space will be allocated among its data sets.
Through the interface, a program makes cache space requests, such
as how much cache space a data set can use, which data sets can
share the same cache space slot and which cannot.

/*%*xxx*% MASTER THREAD s**¥kkx*/

ULCC_Init (Num_Processors);

/*Available cache space size in KB for the application*/
Space_Avail_App=ULCC_Available_Space_App();

/*Cache space in KB for each thread on average*/
Average_Space=Space_Avail_App/Num_Threads;

fork slave threads;
wait for slave threads to complete;
ULCC_Exit();

/**xxxxkx SLAVE THREAD *****x*/

/*Define a cache space slot*/

Cache_Slot_ID = ULCC_Cache_Slot(Average_Space, private);
/*Define a set of threads*/

TG = ULCC_Thread_Group(NULL, My_Thread_ID);

/*Create a data set to use the cache space slot*/
Data_Set = ULCC_Data_Set(TG);

/*Include data in address ranges from Addrl

to Addr2 and from Addr3 and Addr4 into data set*/
ULCC_More_Data(Data_Set, Addrl, Addr2);
ULCC_More_Data(Data_Set, Addr3, Addr4);

/*Do the actual cache space allocation on the processor
that the thread runs on */

ULCC_Allocate(Data_Set, Cache_Slot_ID);

Figure 4. An example illustrating ULCC function usages

We use Figure 4 to illustrate how a program specifies the desired
cache allocation with ULCC functions. The program creates a
master thread and a number of slave threads. With ULCC functions,
the program evenly partitions the available last level cache space
among the slave threads, and in each slave thread it remaps the data
set accessed by the thread to the corresponding partition to avoid
inter-thread interference in shared caches.

As shown in the MASTER THREAD part, the program initiates
ULCC by specifying the number of processors the application will
run on. The ULCC_Init function initializes the ULCC data struc-
tures for the application and makes connection to the Memory Man-
ager. Then the program gets the size of the available cache space
the application can use by calling ULCC_Available_Space_App,
which calculates the size based on the cache structure of the target
platform and the number of processors the application uses. After
that, the program calculates the size of the cache space that each
slave thread can use.

In the SLAVE THREAD npart, to allocate cache space, a thread
first calls ULCC_Cache_Slot to define a cache space slot by spec-
ifying the properties of the slot, including the size and whether
it is “private” or “shared”. “Private” slot is usually for strong
locality data. The slot is dedicated to the data sets that are as-
sociated with it by the program calling ULCC_Allocate with its
slot ID (Cache_Slot_ID returned by the ULCC_Cache_Slot func-
tion). When the slot is shared by multiple data sets with strong
localities (by calling ULCC_Allocate multiple times with the same
Cache_Slot_ID), the application should guarantee that the data sets
time-share the slot without causing much contention (e.g. by visit-
ing data set A and then visiting data set B). Cache Space Allocator
in ULCC ensures that “private” cache slots are non-overlapping to

secure the cache space for the strong locality data sets. By contrast,
a “shared” slot is for weak locality data, and ULCC tries to reuse
the cache colors that are already allocated for other weak locality
data to make full use of the space in last level caches, as we will
explain in the next subsection.

After the cache slot is defined, the thread defines a data set to
be mapped to the slot. To define a data set, the thread calls ULCC
functions to provide information including which threads access
the data set and which data are included in the data set. After
that, the thread calls ULCC_Allocate to inform the Cache Space
Allocator to allocate cache colors and Remapping Component to
change physical pages holding the corresponding virtual pages. If
the data set will be accessed by multiple threads (defined in the
argument of ULCC_Data_Set), ULCC allocates cache space of the
specified size on all the processors that the threads run on.

For streaming data with weak spacial locality and randomly-
accessed data with weak temporal locality, loading them into
caches on accesses causes cache pollution. Making these data non-
cacheable can improve performance. Thus ULCC allows a program
to mark a data set noncacheable by calling the ULCC_Allocate
function with the second argument set to NULL.

3.2 Cache Space Allocator

The Cache Space Allocator (briefly Allocator) is in charge of man-
aging cache colors. When an application requests some cache space
for a data set, the Allocator decides which cache colors should be
allocated to fulfill the request. The Allocator makes the decision in
two steps. It first decides how many cache colors should be allo-
cated on each shared cache in the first step. Then it decides which
colors should be selected in the second step.

As we have explained in the previous subsection, a program
does not prescribe specific colors when it requests cache space.
Thus, the Allocator has opportunities to improve performance in
both steps. In the first step, the Allocator aims to maximize cache
space utilization and prevent space under-utilization. In the second
step, the Allocator selects cache colors carefully to reduce the
subsequent overhead incurred by ULCC enforcing the cache space
allocation.

To efficiently manage and allocate cache colors, the Allocator
maintains a data structure for bookkeeping the allocation of its
colors, for each shared cache on a multicore platform. The data
structure marks the status of a cache color to be either unspecified,
shared, or private. The cache colors under unspecified status are
not allocated yet. Cache colors under shared status are for weak
locality data and can be shared by the weak locality data sets
in different threads or even different applications. Because weak
locality data lack reuses, the sharing will not cause pollution or
contention. Instead, the sharing can minimize the cache space for
weak locality, and thus can maximize the cache space for strong
locality data to get better performance. The private status of cache
colors means that the colors are reserved for the exclusive use of
some strong locality data sets. Not sharing the colors secures the
space for these data sets to avoid cache contention or pollution in
these colors. The ULCC interface allows applications to use the
“shared” or “private” flag in function ULCC_Cache_Slot to denote
whether the cache space to be allocated is for weak locality data
or strong locality data, and the Allocator sets the allocated cache
colors accordingly.

In the first step, assuming a cache slot with size S is to be
allocated to a data set with size Sq and the size of each cache
color is S., the Allocator calculates the number of cache colors
that should be allocated on a shared cache, which is S/Sc. To
prevent under-utilization of cache space, it only allocates the colors
in the shared caches on the cores that access the data set, based
on the processor affinity information of the threads. For example,



an application will allocate 256KB cache space for a data set. Each
cache color is 64KB. If the data set will be accessed by four threads
running on two dual-core processors (each with a shared cache), the
Allocator decides that ULCC allocates 4 cache colors in each of the
two shared caches.

If the cache space to be allocated is of “private” type, the Allo-
cator continues with the second step to select cache colors. If the
cache space to be allocated is of “shared” type, the Allocator exam-
ines the status of the cache colors in the shared caches. If there are
already cache colors under the “shared” status, the Allocator will
try to “reuse” these colors for the data set. Thus fewer cache colors
can be allocated. In the above example, if the application specifies
the 256KB cache space as “shared” and there is already a cache
color in color 0 having been marked as “shared” in each shared
cache, the ULCC reuses the cache color and allocates another 3
cache colors in each shared cache.

In the second step, the Allocator carefully selects colors to
reduce the subsequent overhead incurred by ULCC enforcing the
cache space allocation. To enforce the cache space allocation, the
Remapping Component (to be discussed in section 3.3) needs to
acquire physical pages in the selected colors and use these physical
pages to hold the virtual pages of the designated data set. Acquiring
the physical pages in a certain color may become more difficult and
incur higher overhead when such physical pages become scarce in
memory. Thus it is desirable that the Allocator carefully selects
cache colors to minimize this overhead, especially when the data
set is large.

To achieve this objective, ULCC maintains an array to record
the number of physical pages in each color that are available in the
Memory Manager. The array is shared by Allocator and Memory
Manager. When a number of cache colors are to be allocated, the
Allocator first calculates the average number (/V) of physical pages
that are needed in each color, which is Sq¢ X S./S. Then it searches
the array and looks for the colors with more physical pages than
N. The Allocator does not select colors with fewer physical pages
than . The reason is that if these colors are selected the Memory
Manager would not satisfy the physical page allocation require-
ments with existing pre-allocated physical pages and it may take a
long time or may even be impossible for the Memory Manager to
acquire more physical pages. If the cache slot is “private”, among
the colors with more physical pages than N, the Allocator selects
the noncontinuous colors (e.g. colors 0, 3, 7, 9, instead of colors
0, 1, 2, 3) with the fewest physical pages. The Allocator does not
select colors with much more physical pages than N because the
extra physical pages in these colors become underutilized if there
are no other data sets being mapped to the colors. The reason why
the Allocator chooses noncontinuous colors is to take advantage of
the Memory Manager to accelerate physical page allocation as we
will explain later.

3.3 Remapping Component

The Remapping Component adjusts the mappings between virtual
pages and physical pages to implement actual cache space allo-
cation. It first acquires physical pages in the desired colors corre-
sponding to the allocated cache colors. Then it copies the data set
to the newly acquired pages to prevent data loss if the data set has
been initialized. Finally, it maps the virtual pages holding the data
set to the newly acquired physical pages. To prevent page swapping
from changing the physical pages used by the data set, ULCC locks
these pages and makes them memory-resident.

To acquire the physical pages in desired colors, the Remapping
Component first allocates a bunch of physical pages by malloc-ing
some virtual memory space and writing a byte into each page in
the space. Then the Remapping Component determines the physical
page numbers and the colors of these pages. In the current ULCC

implementation under Linux, the Remapping Component deter-
mines the physical page number of a page through the pagemap
interface, which allows an application to examine its page table at
the user level. The color of a page is equal to the physical page
number modulo the number of cache colors of a shared cache. In
a system without pagemap support, e.g. FreeBSD, Solaris, or Win-
dows, ULCC can use a kernel module or a pseudo-device driver
carrying out virtual-to-physical address translation to get physical
page numbers. After the Remapping Component has selected the
pages in the desired colors, it releases unneeded physical pages.

To map the virtual pages holding a data set to the physical pages
in the desired colors, the current ULCC implementation makes
mremap() system calls in Linux system. System call mremap() ex-
pends or shrinks a memory space, or moves a memory space to an-
other address by changing the mapping between virtual pages and
physical pages. On the systems where mremap() is not available,
ULCC changes the page mappings by creating a shared memory
segment and remapping the virtual pages holding the data set to the
physical pages in the shared memory segment with mmap() sys-
tem calls. After the virtual pages holding the data set have been
remapped over to the physical pages, subsequent accesses to the
data set will only use the cache space in the desired colors.

3.4 Memory Manager

The Memory Manager is a stand-alone process, independent of the
applications using ULCC. It pre-allocates, manages, and garbage-
collects physical pages to facilitate the allocation of physical pages
in the colors required by the Remapping Component.

The Memory Manager is started as a system service before users
run any ULCC-supported applications. When it is started, it first
acquires a number of physical pages (e.g. 1/2 of the available phys-
ical pages on the system). It organizes the pages into different lists
based on their colors, with pages in the same color on the same
list. When a ULCC-supported application requires physical pages
in specific colors, it notifies the Memory Manager. The Memory
Manager releases some of the physical pages it manages that are
in required colors to satisfy the application. Because the Alloca-
tor usually allocates noncontinuous colors, the released pages are
not continuous in physical memory space. Thus the buddy system
managing free physical pages in OS kernel puts the physical pages
at the head of the free list, which is the place the OS first tries to
allocate physical pages from. This makes it much easier for the ap-
plication to acquire the physical pages in the required colors. After
the Memory Manager has released the physical pages, the appli-
cation immediately begins requesting physical pages from the OS
and quickly obtains the physical pages the Memory Manager just
released to satisfy its requirements. ULCC maintains the informa-
tion on the mappings between data sets and the cache colors. Thus
when the memory space holding a data set is released, the ULCC
also notifies the Memory Manager to garbage-collect the physical
pages for future use.

The Memory Manager sleeps for most of the time, and is awak-
ened occasionally when a ULCC-supported application requests or
releases physical pages. The pages it manages are seldom accessed.
To avoid OS page swapping removing these pages, the Memory
Manager pins them into memory. However, this may increase the
memory pressure on the system. To solve this problem, the Mem-
ory Manager periodically wakes up and checks the amount of free
memory in the system. If the amount of free memory is below a
threshold, it proactively releases a part of the memory it holds.

4. Experiments and Case Studies

In this section, we explore a few case studies and present the
experiment results based on the ULCC implementation on a Linux
system. We aim to answer the following questions specifically.



¢ The usability of ULCC: Is it easy for a programmer to deter-
mine desirable cache allocation based on data locality analysis?
Can a programmer easily enforce the cache allocation with the
support of ULCC?

e The performance of ULCC: How much performance im-
provement can an application achieve by using ULCC?

e The overhead of ULCC: How much overhead does ULCC
incur?

4.1 Experiment Setup and Workloads

We carried out our experiments on a Dell PowerEdge 1900 work-
station with two 2.66GHz quad-core Xeon X5355 processors. Each
X5355 processor has two pairs of cores and cores in each pair share
a 4MB, 16-way set associative L2 cache. Thus there are 64 cache
colors in each shared L2 cache and each cache color corresponds
to 64KB of cache space. Each core has a private 32KB L1 instruc-
tion cache and a private 32KB L1 data cache. Both adjacent-line
prefetching and stride prefetching are enabled on the processors.
The workstation has 16GB physical memory with eight 2GB dual-
ranked Fully Buffered DIMMs (FB-DIMM). The operating system
is 64-bit Red Hat Enterprise Linux AS release 5. The Linux kernel
is 2.6.30. The compiler is gcc 4.1.2. The C language library is glibc
2.5. We used pfmon [6] to collect performance statistics such as L2
cache misses.

As case studies, we selected two computational kernels (Merge-
Sort [13] and MatMul [12]) implemented with pthread and two sci-
entific programs (CG and LU) from an OpenMP implementation
of NAS benchmarks [1]. The MergeSort is described in Section 2.
The MatMul implements a matrix multiplication algorithm similar
to that described in paper [12] but with multiple threads. Each pro-
gram has two implementations. One is the original program that
is designed to optimize cache performance for single-core systems
with techniques such as blocking and padding. The other is the im-
proved program with ULCC support to reduce cache contention
and pollution for its execution on multicore systems. We run each
program four times with one thread, two threads, four threads, and
eight threads, respectively. Because we were targeting the perfor-
mance of shared last level caches, for two-thread executions, we
used two cores sharing the same L2 cache, and for four-thread exe-
cutions, we used a pair of cores sharing the same L2 cache on each
processor. In each program, we used sched_setaffinity to pin each
thread to a computing core.

4.2 Case Studies

In this section, we use several case studies to illustrate how pro-
grammers identify data sets with different localities, determine de-
sired cache space, and use ULCC to enforce cache allocation. We
show the performance improvements for both single-thread execu-
tions and executions with multiple threads of the selected programs.
e MergeSort

In the experiment, we used the program to sort ten million data
elements in an array. Each data element has an integer key and a
56-byte content. To avoid severe cache contention, we selected the
block size such that the total size of a block and a sorting buffer
was equal to the L2 cache size in single-thread execution and equal
to half of the L2 cache size in executions with multiple threads.

The major data structures in the program include the original
array to be sorted, sorting buffers, the binary trees used by multi-
way merging, and the destination array to save final results. Among
them, the original array is divided into blocks and data elements
in each block are accessed multiple times before they are sorted.
Elements in a sorting buffer are accessed multiple times when the
program sorts each block until all the blocks have been sorted in
each bucket. Nodes in a binary tree are repeatedly used in each

multi-way merging. Data sets in these data structures have strong
localities. Each element in the destination array is written only
once. Thus, the destination array has weak locality. After a block
has been sorted, the elements in it are accessed for only one more
time in the multi-way merging. Thus elements in it become weak
locality data.

To avoid cache contention and cache pollution, the program
can protect strong locality data structures with ULCC by securing
sufficient cache space for them. Specifically, for the single-thread
execution, the program allocates half of the L2 cache space to the
original array (i.e. the blocks) and the other half of the L2 cache
space to the sorting buffer. When the program is doing multi-
way merge, both the original array and destination array have
weak locality. Thus they can share the cache space allocated to
the original array. Though the binary tree has strong locality, the
program lets it share the cache space with the sorting buffer because
they are accessed in different execution phases and do not compete
with each other for cache space. Similarly, in the execution with
multiple threads, for each thread, the program allocates 1/4 of an
L2 cache space to the buckets sorted by the thread and the part of
destination array saving its sorting results, and allocates another 1/4
of an L2 cache space to the sorting buffer and the binary tree used
by the thread.

4 @ Implementation w/o ULCC
3

25
2

15 o
1

: 1
0

1 Thread 2 Threads 4 Threads 8 Threads

Execution Time (s)

Number of Threads

Figure 5. The execution times of MergeSort implementations with
and without ULCC as the number of threads is varied from one to

eight.
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Figure 6. The percentages of miss reduction of MergeSort with
ULCC enforcing the desired cache allocation.

For this program, we show the execution times' for both its im-
plementations with and without ULCC in Figure 5 where we vary
the number of threads from one to eight. In Figure 6, we show
what percentage of L2 cache misses can be reduced by enforcing
the above cache allocation. The figures clearly show the effective-
ness of delicate user-controlled cache space allocation with ULCC.
Even one thread on a single processor can still get performance
improvement (execution time reduced by 5.4%) through reducing

'We only consider the time spent on sorting the data elements. Thus the
time spent on initializing the data array is not included.



L2 cache misses with ULCC optimizing the cache space alloca-
tion among its data structures. The reason is that even with a single
thread in the program, switching blocks would also evict part of
the space previously occupied by the sorting buffer from the L2
cache if the program does not use ULCC to separate the cache
space for the original array and the cache space for the sorting
buffer. With more threads in the same execution, due to the cache
sharing, cache contention and cache pollution further degrades per-
formance. Thus, in these cases cache optimizations supported by
ULCC achieve better performance. For example, ULCC reduces
the execution time by 22.7% when four threads are used.
e MatMul

The MatMul program multiplies two double precision matrices
A and B, and produces the product matrix C. The size of each
matrix is 2048 x 2048. To achieve necessary data reuses in L2
caches, the matrix multiplication is carried out block by block. For
the block a on the ith block row and jth block column of matrix A,
it is multiplied with all the blocks on the jth block row of matrix
B, and the results are accumulated into the blocks on the ith block
row of matrix C'. Before the program finishes the computation with
block a, it is desirable that the data in a can be kept in the cache.
However, without a dedicated space for block a, the data in it may
be repeatedly evicted from the cache before its next use every time
the program switches blocks in matrix B and matrix C, even with
a rather small block size. To reduce the chance that the data in each
block of matrix A is evicted from the last level cache prematurely,
we set the block size to 360 x 360 (about 1MB) for the single-
thread executions and 256 x 256 (512KB) for other executions.
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Figure 7. The execution times of MatMul implementations with
and without ULCC as the number of threads is varied from one to

eight.
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Figure 8. The percentages of miss reduction of MatMul with
ULCC enforcing the desired cache allocation.

Figure 7 compares the execution times of the original imple-
mentation and the implementation that allocates dedicated cache
space for the blocks in A leveraging the ULCC support. Though the
block size is much smaller than the L2 cache size, the extra cache
misses caused by data in blocks of matrix A being evicted from L2
caches can still degrade the performance of MatMul by over 30%.
With ULCC, the program allocates a 1MB cache space to matrix A,

and allocates the remaining cache space to matrices B and C, for
the single-thread execution. In the cases with multi-thread execu-
tions, for each thread, the program allocates a 512KB cache space
to the part of matrix A it uses. The remaining cache space is shared
by matrices B and C. With the dedicated cache space, each block
in A is protected after it is loaded into an L2 cache. This signifi-
cantly reduces L2 cache misses, as shown in Figure 8, and avoids
performance degradation.

e NASLU

NAS LU benchmark uses symmetric successive over-relaxation
(SSOR) to solve a block lower triangular-block upper triangular
system resulting from an unfactored implicit finite-difference dis-
cretization of the Navier-Stokes equations in three dimensions by
splitting it into block lower and upper triangular systems. In the
experiments, we run the benchmark with input class A.

Among the major data structures of the application, the data
structures for the three dimensional field variables and residuals
(arrays frct, flux, u, and rsd) have weak locality. They are referenced
with a looping access pattern, and their sizes far exceed the L2
cache size. In each time-step iteration, they are accessed only a few
times. By contrast, arrays a, b, ¢, and d have strong locality. Their
sizes are relatively small and fit into an L2 cache. In each time-
step iteration, they are repeatedly accessed multiple times for each
z plane. Accessing the data structures for the field variables and
the residuals causes cache pollution because it flushes the data in
arrays a, b, ¢, and d from L2 caches. To avoid cache pollution, with
ULCC, the program allocates dedicated L2 cache space to arrays
a, b, ¢, and d. This also keeps the arrays away from interference
incurred by the application accessing other data structures.
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Figure 9. The execution times of LU implementations with and
without ULCC as the number of threads is varied from one to eight.
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Figure 10. The percentages of miss reduction for LU with ULCC
enforcing the desired cache allocation.

Figure 9 shows the execution times for the implementation with-
out ULCC and the implementation with ULCC as the number of
threads is varied from one to eight. Figure 10 shows the percentages
of L2 cache miss reduction through the cache optimization. For the
execution with two threads and the execution with four threads, the
cache optimization supported by ULCC reduces L2 cache misses



by 54% and 62% respectively, and reduces the execution times by
31% and 32% respectively.

For the execution with eight threads, cache optimization cannot
achieve as much performance improvement as it does for the exe-
cutions with fewer threads. This is because arrays a, b, c, and d are
split among the threads in LU, and each thread only accesses a por-
tion of elements in each array. In the eight-thread execution, each
thread accesses a smaller portion of the data in these arrays than it
does in the executions with fewer threads. Consequently, data el-
ements in these arrays become less likely to be evicted from L2
caches by the accesses to weak locality data sets in the eight-thread
execution than they do in the executions with fewer threads.

For single-thread execution, the cache optimization helps to
reduce the execution time by 16%, which is less than that of the
execution with two threads. This is because cache pollution with a
single thread is not as intensive as that with two threads sharing the
same L2 cache.

e NAS CG
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Figure 11. The execution times of CG implementations with and
without ULCC as the number of threads is varied from one to eight.
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Figure 12. The percentages of miss reduction for CG program
with ULCC enforcing the desired cache allocation.

The CG benchmark spends most of its execution time on mul-
tiplying a sparse matrix and a dense vector. The non-zero elements
in the matrix are stored in array a, and the vector is stored in ar-
ray p. The program uses another array colidzx to hold the column
indexes for the non-zero elements in the matrix. Thus, for each el-
ement a[k]| in a, there is an element colidz[k] in colidx storing its
column number in the matrix.

When the program calculates the product vector, for each non-
zero element a[k] in the matrix, the program visits array colidx to
get the column index colidx[k] of the element, and multiplies a[k]
with the colidz[k]-th element in the vector, i.e. p[colidz[k]]. Thus,
during the matrix-vector multiplication, elements in a and colidx
are visited only once. However, elements in p are repeatedly visited
because the matrix have multiple rows. Obviously, a and colidx
are weak locality data structures, and p is a strong locality data
structure.

The implementation with ULCC limits the cache space for a
and colidx by allocating only a minimum number of cache colors

to these arrays. Thus accessing these arrays will not evict the data
in array p from L2 caches. As shown in Figure 11 and Figure 12,
the above cache optimization reduces L2 cache misses by 25% to
50%, and reduces the execution times by 8% to 16% accordingly
(input class is C). Among the executions with different number of
threads, cache optimization reduces the number of cache misses in
the single-thread execution by the largest percentage, but it cannot
reduce the execution time by the largest percentage. This is because
in a single-thread execution the L2 cache space is dedicated to one
thread. Thus the miss rate of a single-thread execution is lower than
that of multi-thread executions, and reducing cache misses does not
have as much impact on execution time as it does for multi-thread
executions.

4.3 Experiments to Measure Overhead

To optimize cache performance with ULCC support, an application
has to pay some overhead for acquiring physical pages in desired
colors, copying data, and changing the mapping between virtual
pages and physical pages. In this subsection, we measure the over-
head. We show that with the Memory Manager, the overhead can
be significantly reduced to a level comparable to that of memory
allocation, which is negligible for scientific applications.

We used a micro-benchmark to measure the overhead. The
benchmark allocates a cache slot to a 32MB data set with ULCC
functions and measures the time. We run the benchmark multiple
times, each time with a different cache slot size selected from 64KB
to 2MB. Figure 13 shows the times measured with the benchmark.
To highlight the benefit of using Memory Manager, we show the
times for the ULCC implementations with and without Memory
Manager.
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Figure 13. The overhead of ULCC implementations with and
without Memory Manager. Both axises are in log scale.

As Figure 13 shows, without Memory Manager, ULCC may in-
cur some overhead that is non-negligible for short-running appli-
cations. For example, it takes nearly 2 seconds to allocate a 64KB
cache space to the 32MB data set. The main reason is that without
the Memory Manager, the Remapping Component must spend long
time to acquire a large number of physical pages, from which it
selects physical pages in the required colors to finish remapping.
For example, when ULCC allocates 64KB cache space in a se-
lected cache color for the data set, it needs to acquire and examine
32M B x 64 = 2GB of physical memory (64 is the total num-
ber of cache colors in a shared L2 cache) on average to fulfill its
requirements (i.e. 32MB physical memory in the selected color).
According to our measurement, acquiring 2GB physical memory
takes about 1.6 seconds, while copying the data set into the se-
lected 32MB physical space takes only 0.02 second and adjusting
the mapping between the corresponding virtual pages and the phys-
ical pages takes only 0.03 second. Fewer physical pages are needed
when the benchmark allocates larger cache space to the same data



set. For example, if 512KB cache space (corresponding to 8 cache
colors) is being allocated to the data set, only 256MB physical
memory on average is needed to get 32MB physical memory in
the required colors. which takes much less time. Thus, a trend we
have observed is that the time spent on allocating cache space for
the data set decreases significantly when the size of the cache space
increases.

The Memory Manager can reduce overhead significantly, es-
pecially when the size of the allocated cache space is small. The
reason is that with Memory Manager, a ULCC-supported appli-
cation does not need to acquire so much physical memory to ob-
tain enough physical pages in desired colors. With the pre-allocated
physical pages and the knowledge of their colors, the Memory Man-
ager can “pass” physical pages in the required colors to the Remap-
ping Component without the overhead incurred by acquiring extra
physical pages. With the Memory Manager, the Remapping Com-
ponent can also reduce the overhead incurred by page remapping.
Without Memory Manager, the physical pages are mapped one by
one to the virtual space of the data set, and mapping each physical
page requires a mremap() call. By contrast, with the Memory Man-
ager, most physical pages obtained by the Remapping Component
are continuous in virtual space. The physical pages continuous in
virtual space can be mapped together with one mremap call.

To compare ULCC with the design from direct OS kernel sup-
port, we also modified the Linux kernel to allocate free physical
pages in the colors required by user level applications. We found
that ULCC with Memory Manager incurs comparable overhead to
that of OS kernel support. The overhead is also comparable to that
of allocating physical pages regardless of their colors and copy-
ing the data set to the newly allocated pages. For example, it takes
ULCC 0.1 second to allocate 256KB cache space to a 32MB data
set, while it takes Linux operating system 0.03 second to allocate
32MB memory regardless of page colors, and it takes 0.02 second
to copy 32MB data to the newly allocated memory space. These
experiments show that the overhead incurred by ULCC is reason-
able, especially for scientific applications whose execution times
are usually long.

In most cases, a programmer can specify the desired cache
allocation at the beginning of the program when the data structures
in the program have not been initialized or allocated with physical
space. Thus when the program allocates cache space to the data
structures, there is no need to copy any data over to the newly
allocated physical space. At the same time, because the physical
space for the data structures has been allocated by ULCC, there is
no need for OS to allocate physical space when the data structures
are being initialized. Thus ULCC incurs much less overhead in
these cases.

5. Related Work

Our work is related to the following research areas: cache conscious
program design and library design to improve the productivity of
parallel programming and efficiency of parallel programs, cache
partitioning to provide each of the running threads with a chunk of
dedicated cache space to avoid interference from other co-running
threads, and sophisticated scheduling policies for multicore or SMT
(Simultaneous MultiThreading) processors to co-schedule threads
that can efficiently use the shared resources in multicore/SMT
processors.

5.1 Cache Conscious Program Design and Library Design

As a major method to improve application performance in high
performance computing, restructuring algorithms and programs to
make an efficient use of CPU caches has been intensively stud-
ied [5, 12, 20, 28, 30, 32]. Common techniques exploit data access
locality by rearranging computing operations to improve temporal

locality, such as strip mining [28], loop interchange, blocking [12],
or reorganizing data layout for better spacial locality [5]. Libraries
that implement dense linear algebra operations in a cache conscious
way, such as BLAS [3], LAPACK [2], and ATLAS [29], have been
extensively used for performance programming.

However, the approaches above are designed for single-core
systems, and cannot address the cache contention and pollution
problems in shared caches on multicore processors. Addressing
these problems requires a high degree of synergy between the pro-
grams themselves and different system components. ULCC pro-
vides programmers with an easy-to-use interface to address the
problems effectively, while it hides and takes over the tasks of deal-
ing with complex structures and operations from the users.

There are other libraries or runtime systems that facilitate paral-
lel programming, such as PVM and MPI. However, they don’t han-
dle cache optimizations. ULCC can be an important supplement to
them.

5.2 Cache Partitioning

Cache partitioning has been confirmed to be an effective approach
to address cache contention and pollution problems. Various hard-
ware cache partitioning solutions have been proposed, which allo-
cate a chunk of dedicated cache space (partition) for each running
thread and dynamically adjust the sizes of the partitions according
to the cache requirements of the threads [10, 17, 21, 24]. Due to
the extra complexity and chip overhead to implement cache parti-
tioning in hardware, hardware supported cache partitioning has not
been available in commercial multicore processors. Thus several
studies use software approaches to separate the cache space used
by different running threads with the page coloring technique in
operating systems [14-16, 25, 34]. Recent research results have
confirmed that separating cache space used by data with different
localities reduces cache misses because it avoids cache pollution
incurred by weak locality data [18, 23].

However, there are no facilities for programmers to use to con-
trol directly the cache space allocation among the data structures in
a program. Existing work focuses on automatically detecting access
patterns with profiling or with hardware support, and lacks enough
flexibility needed by programmers to leverage their insightful un-
derstanding of the program to enforce the cache allocation they de-
sire. In addition, existing work focuses on single node system and
relies on heavy modification of operating system key components.
Their solutions cannot be portably used in existing high perfor-
mance computing environments. Thus a portable and flexible fa-
cility like ULCC addresses this concern to enable programmers to
exploit fully the benefits from optimizing cache space allocation.

5.3 Multicore/SMT-aware Scheduling

Threads co-running on an SMT or a multicore processor share
and compete for the shared resources on the processor such as
functional units, shared caches, and memory bus. How the shared
resources can be efficiently used becomes a critical issue. As one
of the major approaches to address this issue, scheduling has been
focused on by a large number of papers [4, 7, 11, 22, 26, 35].

These papers focus on general systems such as desktop systems
and server systems where scheduling plays an important role. How-
ever, scientific applications usually require only basic scheduling
functions, and in most cases, for better performance scientific ap-
plications statically map threads to computing cores by setting their
affinities.

6. Conclusion

We have proposed and implemented a user level facility called
ULCC that enables programmers to control explicitly cache space



allocation among the data structures in their programs to maximize
the utilization of shared last level caches on multicore processors by
reducing cache pollution and cache contention. ULCC provides an
easy-to-use interface for programmers to specify the desired cache
allocation without having efforts to deal with complex structures
and operations in the memory hierarchies on the systems with mul-
tiple multicore processors. In ULCC, the Cache Space Allocator
efficiently allocates cache colors to fulfill the requirements of a
program. The Remapping Component enforces the desired cache
space allocation by adjusting the mapping between virtual pages
and physical pages with existing operating system support. Thus
ULCC does not require modifications in operating system kernels.
To minimize the overhead of ULCC, the Memory Manager preal-
locates, manages, and garbage-collects physical pages, so that the
Remapping Component can acquire physical pages in desired col-
ors and adjust the mappings quickly.

The benefits to users for achieving high performance and high
throughputs may come from ULCC in two ways. First, ULCC-
based programming secures sufficient cache space for data struc-
tures with strong locality, and limits cache space for data structures
with weak locality. Second, ULCC can further help users to adjust
block sizes to maximize throughputs. Our experiments have shown
the effectiveness of ULCC with various applications. We will fur-
ther refine and optimize ULCC for its wide usage in application
communities.
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