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Abstract
The benefits of virtualized IT environments, such as com-
pute clouds, have drawn interested enterprises to migrate
their applications onto new platforms to gain the advantages
of reduced hardware and energy costs, increased flexibility
and deployment speed, and reduced management complex-
ity. However, the process of migrating a complex application
takes a considerable amount of effort, particularly when per-
forming post-migration testing to verify that the application
still functions correctly in the target environment. The tra-
ditional approach of test case generation and execution can
take weeks and synthetic test cases may not adequately re-
flect actual application usage.

In this paper, we propose and evaluate a black-box ap-
proach for post-migration testing of Web applications with-
out manually creating test cases. A Web proxy is put in front
of the production application to intercept all requests from
real users, and these requests are simultaneously sent to the
production and migrated applications. Results generated by
both applications are then compared, and mismatches due
to migration problems can be easily detected and presented
to testing teams for resolution. We implement this approach
in Splitter, a software module that is deployed as a reverse
Web proxy. Through our evaluation using a number of real
applications, we show that Splitter can effectively automate
post-migration testing while also reduce the number of mis-
matches that must be manually inspected. Equally impor-
tant, it imposes a relatively small performance overhead on
the production environment.
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1. Introduction
The maturity of virtualization technology, along with the
emergence of cloud computing service offerings [Hayes
2008], has driven a renewed interest in enterprises to mi-
grate their IT operations to new (more capable) platforms.
These new virtualized environments strengthen the value
proposition of traditional server consolidation initiatives by
offering improved flexibility and faster deployment, reduced
energy costs, and potentially lower management costs.

While the end-state of such transformation efforts promises
many benefits, the cost and effort required to migrate enter-
prise applications from their original legacy environments
onto new target platforms (or into the cloud), can be daunt-
ing. The migration process is complex and labor-intensive,
and typically requires a number of steps, including: col-
lecting information about the source operating environment,
readying the target environment, performing the migration,
testing the application on the target environment, and finally,
cutting over to the new environment. Several of these steps
involve tasks that can be automated using existing manage-
ment tools, such as application and system configuration
discovery [BMC, IBM a], provisioning planner [IBM b],
software patching, and sometimes even the migration itself
(e.g., using P2V transformation tools [Novell]).

Relatively little automation or tooling exists, however,
to automate post-migration testing which is crucial to en-
sure that an application functions and performs adequately
in the target environment. In our experience, migration is
an error-prone process. Even though code change is usually
not needed for migration, many applications often require re-



configuration or tweaking after they are migrated to accom-
modate changes in the target environment such as changes
in middleware and library, operating system, and hardware
setup. These configuration tweaks are often the common cul-
prits to migration problems.

The current practice in post-migration verification of
applications centers around functional verification testing
(FVT), in which individual test cases are specially created
for each migrated application. Clearly, FVT can be very time
consuming to design and implement (in our experience, we
have observed that some applications require up to 6 weeks
in testing before they are ready for cut-over to production).
For enterprise applications that have more complex inter-
actions with other applications or services, more time is
often needed. Although there have been some efforts to re-
duce testing time by automating test generation and execu-
tion (e.g., [Benedikt 2002, Elbaum 2003, Lucca 2002, Ricca
2001]), there is still a significant level of human involvement
when preparing inputs for test cases and examining outputs.
Moreover, existing approaches usually generate test cases by
modeling and analyzing applications, e.g., at the source code
level, and thus, the generated test cases might not reflect how
real users interact with applications.

To reduce the human efforts required in testing, we pro-
pose a new testing approach that uses actual user activities
to test migrated applications against their production coun-
terparts. We treat both production and migrated applications
as black boxes, and use identical workloads to exercise them
simultaneously during the testing phase. The response from
the migrated application is compared to the production ap-
plication’s response, and if they are identical, the migrated
application is assumed to be working correctly. Sometimes,
even when responses are not identical, the migrated applica-
tion may still be operating correctly due to normal variances
that exist among different application instances. As a result,
we also developed heuristics to properly handle these dis-
crepancies.

Our primary focus in this paper is on testing Web-based
applications, and proposed techniques are specifically tuned
to HTTP protocol. Our methodology, although, can be used
to test other types of applications, middlewares, and systems,
the actual implementation will be significantly different due
to protocol differences, e.g., replicating a HTML request
with all the correct session information is very different from
replicating a SQL command.

We believe the benefits of our approach are three-fold.
First, and most significantly, there is no need to design or
generate test cases, which saves considerable time and effort.
Second, because the migrated application is tested with real
user workloads rather than synthetic test cases, the results are
more likely to represent how applications will be exercised
in a production environment. Finally, since we perform the
testing of the migrated application while the production ap-
plication is still active and authoritative, there is less manual
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Figure 1. Splitter system architecture.

analysis needed to determine whether a response is in fact
correct or not.

We implement this testing approach in a tool called Split-
ter. Using five Web-based applications, we evaluate Splitter
in terms of i) its ability to correctly flag different types of
migration problems, ii) its performance impact on the pro-
duction application, and iii) its ability to identify false pos-
itives. Based on our fault injection experiments, we found
that Splitter is able to successfully detect different classes of
migration errors that are often encountered in practice. Split-
ter only introduces a relatively small impact on throughput
(less than 5% in our tests) in the request forwarding path,
which should be sufficiently small for deployment in all but
the most delay-sensitive production environments.

In the next section, we give an overview of the design and
implementation of Splitter. Splitter is put to test on several
applications and workloads, and the results are given in Sec-
tion 3. This is followed by a discussion section (Section 4),
where we discuss our deployment experience of the tool and
some of its limitations. Related work is discussed in Sec-
tion 5, and finally, we summarize and conclude in Section 6.

2. Design and Architecture
Splitter tests migrated applications by observing their exter-
nal behaviors, i.e., their responses for HTTP requests. This is
not only because the external behaviors of an application can
reflect its functionalities, but also because the external inter-
face is usually less complicated than the internal running en-
vironment that involves various hardware and software com-
ponents. As we will show later, Splitter also leverages the
well-defined syntax and semantics of HTTP requests and re-
sponses to reduce testing complexity and to improve testing
quality.

To observe the external behaviors of Web applications,
Splitter provides 3 capabilities: i) capture and replicate user
requests, ii) instrument the replicated requests so they are
meaningful to the migrated application, and iii) identify mi-
gration problems from inspecting application responses. Fig-
ure 1 shows the overall architecture of Splitter. It consists



of three components: a Proxy that sits in front of the pro-
duction application, a Session Manager that manages vari-
ous aspects of instrumenting HTTP requests, and an Anal-
ysis Engine that analyzes responses and provides a user in-
terface to test engineers for identifying migration problems.
Additional details of these components are described in the
following sections.

2.1 Proxy
Splitter first needs to intercept HTTP user requests to repli-
cate them. Since many Web proxies already provide this ca-
pability by interposing between users and application / Web
servers, we simply added the request replication capability
into a widely used Web proxy—Squid [Squid].

We call this component of Splitter a Proxy. This is the
simplest of the 3 components. Due to it being placed on
the critical path to the production application, it should only
impose minimal impact to the application. Upon receiving
a user request, Proxy immediately passes the request to the
production application without any delay. Once the request
is sent, it then makes a replica of the request and sends
it to the Session Manager, which, in turn, will inspect the
replicated request and make any necessary instrumentations
before passing it to the migrated application.

User User
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Figure 2. To allow visibility into encrypted payloads, we
use three secure connections centralized at Proxy.

2.1.1 Encrypted Payload
SSL protocol is commonly used to support encrypted HTTPS
traffic between users and Web applications to avoid eaves-
dropping of sensitive information, commonly found in busi-
ness applications. This poses a problem for us as we need to
“clearly” see all the traffic, not only so we can meaningfully
compare returned responses but also for correctly replicat-
ing user requests. The key to solve this problem is to gain
visibility into the request and response payload.

Our solution makes use of 3 separate secure connections:
(i) between users and Proxy, (ii) between Proxy and the pro-
duction application, and (iii) between Proxy and the mi-
grated application, as illustrated in Figure 2. This allows
Proxy to see all user traffic in clear text as we needed.
However, to achieve complete user-transparency, appropri-

HTTP/1.0 200 OK 

Content-Type: text/html;charset=ISO-8859-1

…

Set-Cookie: JSESSIONID=0000z9rbieWUY5j8g-

KIhDS9DWw:-1; Path=/

Connection: Keep-Alive

…

HTTP/1.0 200 OK

Content-Type: text/html;charset=ISO-8859-1

…

Set-Cookie: JSESSIONID=0000viCcA66Naa2i48 

r7hP8YndC:-1; Path=/

Connection: Keep-Alive

…

Response from production app Response from migrated app

Cookies in HTTP headers.

Client IP Production app’s cookie Migrated app’s cookie

9.2.18.222 JSESSIONID=0000z9rbieWUY5j8g-KIhDS9DWw:-1 JSESSIONID=0000viCcA66Naa2i48 r7hP8YndC:-1

Cookies mapping table

GET /products/hardware/index.wss

…

Cookie: JSESSIONID=0000z9rbieWUY5j8g-

KIhDS9DWw:-1; Path=/

…

GET /products/hardware/index.wss

…

Cookie: JSESSIONID=0000viCcA66Naa2i48 

r7hP8YndC:-1; Path=/

…

Request for production app Instrumented request for migrated app

Figure 3. Building HTTP cookies mapping table and using
it to instrument replicated requests.

ate SSL certificate needs to be installed on Proxy (otherwise,
client browser will prompt users with a warning message).

2.1.2 Compressed Payload
Traffic between user browser and a Web server is sometimes
compressed to reduce network load and to improve response
time. Similar to encrypted traffic, comparing and instrument-
ing compressed payload are also not meaningful. Therefore,
we de-compress and re-compress packets as needed.

The additional encryption/decryption and compression
/ decompression work inevitably adds more overheads. In
practice, however, we were able to show that Proxy intro-
duces only small impact to the production application, as we
will show in Section 3.

2.2 Session Manager
Directly forwarding replicated HTTP requests to the mi-
grated application will often yield unexpected result as
requests sometimes contain user-specific and/or server-
specific state information. An example of this is HTTP
cookie. In this section, we describe how we handle HTTP
requests containing cookies, followed by other situations
where HTTP requests require instrumentations.

2.2.1 HTTP Cookies
HTTP cookies are commonly used by Web applications to
uniquely identify users during each session and/or across
different sessions. They are generated by Web applications
and are only recognizable by the application instance that
generated them. For example, if we denote the production
application as P and the migrated application as Q, and
having Splitter forwarding a request containing a cookie Cp

(generated by P ) to Q, Q will not recognize the request and
will generate an error.

This problem can be solved by substituting Cp with Cq

(cookie generated by Q) before forwarding the request to Q.
To do so, we keep a lookup table as shown in Figure 3. New



…

<a href="./product_detail_servlet?_flowEID=4B4 

27C22D1D3C88F25D70C5499C4E957&productID=

IBMDS8000_xyz"> IBM DS8000 </a>

…

…

<a href="./product_detail_servlet?_flowEID=5B9 

1EED2F2337ED50573C06B2CBE7A1&productID=

IBMDS8000_xyz"> IBM DS8000 </a>

…

Session specific information embedded in URIs

Response from production app Response from migrated app

Client IP Production URL Migrated URL

9.2.18.222 _flowEID=4B427… _flowEID=5B91E…

Production URL param-to-label table

Prod Label Migrated Label

IBM DS8000

Client IP

9.2.18.222 IBM DS8000

… … … … … …

Migrated Label-to-URL param table

Figure 4. Building URL parameters mapping table and us-
ing it to instrument replicated requests.

entries are entered into the table by inspecting COOKIE: and
SET-COOKIE: fields in HTTP headers. This makes the table
essentially a mapping from Cps to Cqs. On subsequent user
requests containing Cp, we find its corresponding Cq in the
mapping table and replace it with Cq in the replicated user
request before sending the request to Q. The mapping table
is further indexed by clients’ IP addresses since there might
be simultaneous users.

2.2.2 URL Parameters
In addition to HTTP cookies, there are other types of ele-
ments for which instrumentation is needed. One such type of
element is URL parameter. Web applications often include
session identifying information within URL parameters, as
shown in Figure 4.

Similar to cookies, some URL parameters like session
IDs are also generated by Web applications and are specific
to the application instance that generated it. We can use the
same cookie substitution method to handle URL parameters,
but the substitution is a bit trickier here. Instead of using only
one mapping table for cookies, we need to use two mapping
tables to handle the substitution. The first table is a mapping
between URL parameters and labels (e.g., for HREF, label
is the text between <A> and </A>) generated by the pro-
duction application. The second table is a mapping between
labels and URL parameters generated by the migrated appli-
cation. An example is shown in Figure 4. In this example, if
the user clicks on the link associated with the HREF tag, the
browser will generate a GET request. After the GET request
is replicated by Splitter, URL parameters of the request are
looked up in the first table to find the label of the link. In
this case, it is “IBM DS8000”, which is used subsequently
to look up in the second table to find the URL parameters we
should substitute before sending the request to the migrated
application.

The trickier part comes in when there are multiple labels
that are identical as shown in Figure 5. This will break the
substitution method described above. We briefly explored
the idea of enumerating all the URL links with parameters in
a page and using the count as the index to the mapping tables
as opposed to Labels. However, we quickly found this would

…

<a href="./product_detail_servlet?_flowEID=4B4 

27C22D1D3C88F25D70C5499C4E957&productID=

IBMDS6000_abc"> Add Options </a>

<a href="./product_detail_servlet?_flowEID=4B4 

27C22D1D3C88F25D70C5499C4E957&productID=

IBMDS8000_xyz"> Add Options </a>

…

… 

<a href="./product_detail_servlet?_flowEID=5B9 

1EED2F2337ED50573C06B2CBE7A1&productID=

IBMDS6000_abc"> Add Options </a>

<a href="./product_detail_servlet?_flowEID=5B9 

1EED2F2337ED50573C06B2CBE7A1&productID=

IBMDS8000_xyz"> Add Options </a>…

…

Response from production app Response from migrated app

… …

Session specific information embedded in URIs

IP Production URL Migrated URL

… _flowEID=4B427…IBMDS6000_abc

Production URL param-to-label table

Prod Label Migr Label

Add Options

IP

… Add Options

Migrated Label-to-URL param table

… _flowEID=4B427…IBMDS8000_xyz Add Options … Add Options

_flowEID=4B427…IBMDS6000_abc

_flowEID=4B427…IBMDS8000_xyz

Figure 5. An example illustrating a potential problem with
labels being the same.

not work as links sometimes would get out of order due to
some contents being dynamically generated at runtime.

Our solution is fairly simple. We do the first table lookup
as described before. When we get the label from the first
table, we proceed to do another lookup in the second table
and find all entries with that particular label. Finally, we do a
string comparison of the original URL parameters being re-
quested to all the URL parameter list entries we found in the
second table. The one that matches the closest to the origi-
nal URL parameters is the one we use to perform the final
substitution. In the example shown in Figure 5, if the user
clicks on the DS6000 link, using the parameters in this link,
we find the label “Add Options” label in the first mapping
table. This label has two corresponding entries in the second
mapping table. The session ID part (i.e., flowEID) of the
two entries is equally different from the original flowEID.
However, the first entry has the same productID value as the
original request, and therefore, it is used in the substitution.

2.2.3 POST Parameters and Javascript
POST parameters embedded in HTML forms can also be
substituted similarly as URL parameters since one can easily
convert POST parameters to GET parameters and vice versa.

Javascript and AJAX are used very commonly nowadays
to offload workloads from server side to client side. Their
relevancy to this work is that they can construct a URL with
a dynamic set of parameters, e.g., a Javascript builds a new
URL by appending the sessionID to one or more other pa-
rameters to perform a particular action within the session.
This list of parameters cannot be substituted using the map-
ping tables described above. To correctly substitute a dynam-
ically generated list of parameters, we build a finer grained
lookup table. For example, in Figure 5, we would build an
entry for flowEID and a separate entry for productID. When
a new request comes in, we would first break down its list of
parameters, and then consult this table to substitute each pa-
rameter one by one.

2.2.4 Request and Response Synchronization
The substitution method requires all the mapping tables to
be correctly built. The entries in the mapping tables are built



from parsing responses from production and migrated appli-
cations. We observed that to correctly make a substitution,
some synchronization is required amongst the traffic streams
of the production and migrated applications.

For example, assume in the ith transaction, its request Ri

(and its replica R′
i) contains parameters / cookies and they

were generated in a previous transaction j, for which, we de-
note its response from the production application as Qj , and
the migrated application as Q′

j . To correctly substitute pa-
rameters in R′

i, we must have received both Qj and Q′
j and

populated the corresponding mapping tables. This means we
need to queue up some replicated requests until all the nec-
essary information are arrived. Since most requests have no
parameters or cookies, this queuing only applies to a small
percentage of requests. Furthermore, this does not impact
the production application in any way since its request and
response packets are simply handled as pass-thrus.

2.3 Analysis Engine
Analysis Engine compares and analyzes responses from the
production and migrated applications to help test engineers
to determine if the migration is successful. If a Web applica-
tion only contains static data, the migrated instance should
produce identical responses as the production application.
However, most enterprise Web applications nowadays also
support dynamic contents. The challenge in response com-
parison is to differentiate differences that are a result of mi-
gration errors from those that are a result of normal appli-
cation variance, such as timestamps, advertisements, etc. To
achieve this, we developed a content-based comparison al-
gorithm and two heuristics to rank differences according to
how likely they are caused by migration problems. These
differences are further categorized and grouped for test en-
gineers to analyze for finding root causes. The content-based
comparison and categorization process is intended to be
done offline due to the processing time required to parse
complex Web application responses. However, we also pro-
vide a coarse-grained online screening mechanism to reduce
both storage space required to collect request and response
data and the offline processing time.

2.3.1 Online Screening
The online screening mechanism does a quick string com-
parison of HTTP headers and bodies at runtime. This is in-
tended to throw away any data that is not useful to analyze
afterwards, and thus, reduces storage requirements.

When comparing HTTP headers, we focus on three key
fields, Status Code, Content Type, and Content Length, and
we skip fields such as Date, Cookies, Server, etc. since dif-
ference of these fields do not imply incorrect behaviors of
the application. This simple mechanism saves a significant
amount of storage space as most of responses are identi-
cal. This mostly benefits large objects, such as images, doc-
uments, audio, and video files, which are often static and
identical on both the production and migrated applications.

These objects have been seen to account for over 85% of
Internet Web traffic [Williams 2005]. We do not, however,
screen and store any objects larger than a certain size (user
customizable) due to both processing and storage overheads.

2.3.2 Finding Differences
The offline technique we use to compare responses depends
on their MIME content types. For binary contents, we only
need to know whether two binary objects are same or not. As
the byte-to-byte comparison of binary objects has been car-
ried out with online screening, binary contents are not future
compared in this step. For text/plain and text/HTML con-
tents, we do a more in-depth analysis as some differences
are indications of migration problems and others just appli-
cation normal variance.
• Text: for plain text response, Analysis Engine computes
the distance between a pair of responses using Shorted Edit
Script (SES) algorithm [Chawathe 1996]. Distance of two
documents is defined as the number of characters to be
inserted and/or deleted to change a document into the other.
The distance value is divided by the total length of the HTTP
body from the production application to yield a metric we
called Relative Distance. We rank differences in Text data
according to this metric—the higher the relative distance
value, the more severe a problem is likely to be.

<html> 

<head> <title>Some Title</title> <!-- some text --> </head>

<body> <a href=http://www.mylink.net>mylink</a></body>

</html>

<HTML>

<HEAD>

<TITLE>Some Title

<HTML>

<TITLE>Some Title

</TITLE>

<!-- other text -->

</HEAD>

<BODY>

<A HREF=http://www.mylink.net> 

mylink</A>

</BODY>

</HTML>

<HEAD> <BODY>

<TITLE>

Some Title

<A>

mylink

http://www.

mylink.net

Figure 6. An example of comparing HTML contents with
DOM trees

• HTML: SES is not very useful for comparing HTML
pages since two HTML documents can be semantically the
same at the HTML level even with many differences in the
actual text, such as white spaces, comments, etc. There-
fore, we convert HTML data to Document Object Model
(DOM) [Wood 2000] tree format in which HTML tags are
represented as nodes and their contents as leaves. An exam-
ple of HTML DOM tree is illustrated in Figure 6. Analysis
Engine compares two trees node-by-node in a breadth-first
manner. Two nodes are said to be different if they have dif-
ferent tags or texts, or different number of child nodes. If two
nodes are different, their sub-trees are not further compared.
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Directory does not 

exist
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…

Figure 7. An example illustrating the structure heuristic. DOM trees are of the responses generated by the production
application (A), a correctly-migrated application (B), and a problematic application on target system (C) for a same request.

2.3.3 Ranking Differences
To differentiate differences that are due to legitimate appli-
cation variances from those that are caused by migration, we
develop two heuristics to rank them, with higher ranked ones
being more likely to be actual problems.
• Structure heuristic: when there are differences in the
structure of the DOM trees in two HTML documents, it is
almost always an indication of a real problem. As an exam-
ple, Figure 7 shows responses of a real Web forum page. The
responses are generated by i) the production application, ii)
a correctly-running migrated application, and iii) a problem-
atic migrated application for the same request. The first two
responses have different jsessionid parameters embedded in
their links (the attributes of <A> tags) and a different cre-
ation time associated with the links (shown on the right of
the <A> tags). Both differences are legitimate runtime vari-
ations as the DOM tree structure is unchanged, indicating
that the migrated application is probably working correctly.
On the other hand, the response generated by the problem-
atic migrated system has a completely different DOM tree
structure, hinting a more likely problem. Of course, it is pos-
sible that a problematic application can generate a response
with the same DOM tree structure as the production applica-
tion and the only differences are textual differences within
nodes. We identify such problems using another heuristic
that we will describe shortly.

The relative importance of a particular difference is cal-
culated as a function of its position within the DOM tree.
The closer to the root node of the DOM tree, the more im-
portant a difference is since it affects all its child nodes in
the tree. Specifically, the relative importance is calculated
by counting the number of descendant nodes of the differing

node and then dividing it by the total number of nodes in the
DOM tree. This calculation is performed on the DOM tree
generated by the production application.
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Figure 8. Two examples illustrating the distribution heuris-
tic. Differing data are in shadow boxes, and are indexed. KS-
test shows that differing data in example in sub-figure(A)
may follows different distribution and differing data in ex-
ample in sub-figure (B) may not.

• Distribution heuristic: if the only differences between
a response pair are on the leaf nodes of the DOM trees (as
opposed to structural differences), we cannot conclude the
response is erroneous because it might be just normal vari-



ance such as timestamps. Distribution heuristic examines the
value distribution of leaf nodes for similar requests of the
entire testing period. If the distribution of the data in the re-
sponses from the migrated application is different from that
of the production application, this indicates that the target
system may not be working correctly. Figure 8 illustrates
the distribution heuristic with two examples. In example A,
data from the production application always changes, from
“Jerry” to “Alice”, to “Bob”, et. al, while corresponding data
from the migrated application only shows “John”. The in-
variance of the migrated application suggests that it may not
be performing identically as the production application. In
example B, the “jsessionid” fields in the responses from both
applications change frequently, indicating that they may fol-
low similar distributions. Changes of such a data field may
be caused by normal runtime variations, thus they are less
interesting for test engineers to examine.

We use two-sample Kolmogorov-Smirnov statistical test
(KS-test) [Young 1977] to quantify the differences. KS-test
computes a distance, called D statistic, between the cumu-
lative distribution functions (CDFs) of the values in two
datasets, and compares to a critical value Dα(m,n) for a
given significance level α and the datasets of sizes m and n.
If the D statistic is greater than Dα(m,n), the two datasets
are considered to have different distributions.

To apply KS-test, Analysis Engine maintains all of the
distinct values of the data field, and assigns an index to each
of the values. Then it calculates CDF of the indexes, com-
putes the D statistics, and compares it with the correspond-
ing Dα. In our experiments, we set α to 0.1. In example A,
the D statistic is 0.9, which is greater than D0.1(10, 10) =
0.6, suggesting that the response data follows a different dis-
tribution. In example B, the D statistic is 0.1, and is less than
D0.1(10, 10), implying that the two data sets have very sim-
ilar distributions.

2.3.4 Categorizing Differences
We observe that requests are highly repetitive in Web appli-
cations, leading to redundant alerts. Moreover, the number
of erroneous responses could be enormous if an application
is not correctly migrated. Even with the help of Analysis
Engine, it is still very time-consuming for test engineers
to review all the errors. We try to alleviate this problem by
grouping related problems into smaller number of categories
using the following steps. (1) group together all responses
triggered by the same request URI. (2) For URLs with pa-
rameters, we put those having the same keys (but may be
with different values) into one category. For example, re-
sponses for http://foo.com/service?category=business&id
=BUS074 are classified into the same group with responses
for http://foo.com /service?category=business&id=BUS661.
However, responses for http://foo.com/service?category=
education&state=NY would be in a different category be-
cause it has a different parameter key state. For some special
applications, key values also matter if they can affect the
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Figure 9. Analysis Engine’s browser rendered view.
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Figure 10. Analysis Engine’s raw HTML view.

overall structure of response pages. For example, responses
for http://foo.com/service?action=NewOrder and responses
for http://foo.com/service?action=CancelOrder can be very
different, and thus should be put into different categories.
Fortunately, such keys can be easily identified as they usu-
ally have much smaller cardinalities than other keys (e.g.
customer ID and item ID). (3) For the responses in the same
group, we further categorize them by the positions where
differences occur, e.g. similar HTTP header fields or DOM
tree nodes. (4) We rank the responses in each group accord-
ing to their relative distances or relative importance.

2.3.5 Analysis Engine User Interface
To help test engineers interpret test data, in addition to con-
sole outputs presenting the detailed differences in responses,
we also implemented a user interface to present these anal-
ysis results in an intuitive way. Test data can be viewed by
test engineers in multiple perspectives. First, we present the
data in a Rendered View as if the data was viewed by real
users. A screen-shot of this view for a real application is
shown in Figure 9. This view allows test engineers to get
an at-a-glance view of a side-by-side comparison of the re-
sponse data from the production (left) and migrated (right)
applications.



When this view is insufficient to identify what exactly
the differences are (some differences might not be apparent
at the rendered view, e.g., Javascript), we provide a Raw
HTML View to get the next level of details. A screen-shot
of this view is shown in Figure 10. This is also a side-
to-side comparison, but at the raw HTML level. We use
various color coding to indicate different types of differences
at the HTML code level to help test engineers to pinpoint
migration problems.

3. Evaluation
In this section, we evaluate Splitter in terms of correctness,
effectiveness and overheads by using a set of real Web appli-
cations and workloads. We first examine false positives, then
describe experiences by injecting faults, finally evaluate per-
formance overheads.

3.1 Experimental Setup
We used three machines in our experiments, all within the
same LAN. Two Dell Optiplex 620 desktops (3GHz P4 CPU
and 3GB memory) are used as production and migrated
systems. Splitter is deployed on a Dell Dimension 3100
desktop (3GHz P4 CPU and 1GB memory). All systems
are installed with RedHat Enterprise Linux Workstation 4.0.
We use Apache 2.0.52 as Web server and Tomcat 5.5.27 as
application server.

We select 5 Web applications in our experiments, each
representing a different type of Web application. TPC-
W [Marden 2001] is a transactional Web benchmark that
simulates the activities of a business oriented transactional
Web server. Bookstore is a fully functional online store ap-
plication and represents a typical e-commerce application.
Portal is an online Web portal application. Forum is an on-
line discussion board that supports features such as interac-
tive discussion threads, keyword search, and column sort-
ing. Yellow Page is a Web-based yellow page system that
supports information listing, searching, and administration
of listings and users.

For TPC-W, we use its client software RBE (Remote
Browser Emulator) to generate workloads. For other appli-
cations, we use DejaClick [AlertSite] to record multiple user
sessions and replay them as our workload. DejaClick is a
plug-in for Firefox.

3.2 False Positives
We first evaluate Splitter’s ability to correctly replicate re-
quests and to handle normal application variances when an
application is correctly migrated. Two instances of each ap-
plication are identically setup on both the production and mi-
grated systems and their databases populated with the same
data. We expect that either responses are the same and Anal-
ysis Engine would not flag any transactions, or responses are
different but Analysis Engine is able to suppress them suffi-
ciently so they are not presented to test engineers.

The comparison confirms that most responses are identi-
cal. However, Analysis Engine still detects some minor dif-
ferences. In TPC-W, the differences are in the promotion
banner where randomly selected books are recommended to
clients and in the jsessionid parameter string embedded in
URI links. In other applications, these differences include
advertisements displayed in ads banners and timestamps of
some events, e.g. the time when an order was placed in an
online store, the time when a message was posted on a fo-
rum. Different advertisements are displayed because the ap-
plications randomly choose advertisements when they gen-
erate dynamic pages. Timestamps are different because the
clocks on the two systems are not strictly synchronized (al-
though it would not help if they did). These differences
are normal variations across different application instances.
They do not indicate any problems of the web applications.
This confirms that Session Manager correctly handled all of
the request instrumentations, because user requests in these
experiments contain a mixture of GET and POST parame-
ters, and HTTP cookies.

As discussed in Section 2.3, we use several heuristics to
handle these normal variances so that they can be precluded
from the list of potential problems that is presented to test en-
gineers at the end of a testing period. The heuristics analyze
differences in HTML page structures and the value distribu-
tion of the differing HTML nodes. For these applications,
even though there are differences in response, HTML page
structure stayed the same and the values of the differing node
had a rather random distribution, and thus, Splitter had no
problem suppressing these false positives.

Even though we suppress these differences as lower
ranked, we nonetheless give an option for the test engi-
neers to inspect them. In Table 1, we show the number of
requests that were used to exercise each application, and out
of them, the number of differences Splitter has found. Even
though this is a relatively short test, we still found a large
number of differences per application, which are too many
to be useful to the test engineers if we present them as per
URI level. We verify that Splitter is able to categorize these
differences using Analysis Engine. In the Portal application,
most of the differences are in the ads banner of the page De-
fault.jsp. By looking at where these differences are within
the pages, we can place them into the same category. Now, a
test engineer only needs to check a few differences in each
category to determine if the differences in the category are
true errors or not. In the last column of Table 1, we show the
number of problem categories Splitter has classified. This
dramatically reduces the human efforts required to examine
the differences. TPC-W has much more problem categories
because jsessionid parameter strings appear in almost in ev-
ery URI link and a page may have up to 58 such links in
different places. However, by consolidating the cases to less
than 300, it is fairly reasonable for test engineer to manually
verify.



Application Num. of Num. of Num. of
Requests Differences Categories

TPC-W 118554 408320 277
Bookstore 5971 184 4

Portal 4527 272 2
Forum 3614 238 15

Yellow Page 2181 75 1

Table 1. Categorization of differences.

3.3 Working with Real Applications & Fault Injection
We have used Splitter in a few internal enterprise applica-
tion migration projects. One of the migrated applications is
IBM’s Alphaworks which is a Web application for hosting
trial projects and technical forums. We have encountered a
few dozens of problems ranging from hardware problems
to software errors. However, most of the problems are rela-
tively easy to identify, e.g., hardware failure, because these
problems either lead to the application not being able to
launch or not performing at all. The more complicated prob-
lems are various configuration errors. These problems may
only affect some of the requests or manifest themselves only
under certain conditions. Splitter is particularly designed for
such cases where the application is running but not produc-
ing all the correct contents. From working on several migra-
tion projects, we found a few categories of problems to be
rather common during migration. One of them is related to
files and access permissions, with problem descriptions such
as “Missing jar files” and “Directories created with wrong
permissions”. Another type of common migration problem
is related to authentication, with problem descriptions such
as “errors with user ID management process” and “XYZ IDs
are not functioning on server”. Besides these configuration
problems, we also noticed that database inconsistency and
performance problems are also common causes for migra-
tion failure.

In order to illustrate how Splitter detects these common
problems without releasing sensitive enterprise information,
we manually inject different types of migration problems
and evaluate Splitter’s ability in detecting them. The injected
faults affect different components in the system, including
file system, application server, database server, and Web
server.

For each application, we first deploy it on both platforms
correctly. Then we manually inject faults to induce migra-
tion problems. After that, we replay the recorded user re-
quests and use Splitter to detect the problems. Analysis En-
gine reveals a migration problem by showing the differences
between the responses produced by the migrated platform
and the original platform.

• Type 1: Files and Access Permission

One of the common mistakes during migration is not
having all the needed files migrated and/or not correctly

Differences in HTTP Headers:
URI: /Portal/images/sign.gif
HTTP status: "200 OK" ==> "404 Not Found"
Content-Type: "image/jpeg" ==> "text/html"

Other Differences:
URI: /Portal/images/sign.gif
Different response bodies.

Figure 11. An example of missing files in Portal.

configured their access permission in the target system. In
our experiment, we simply deleted some files or disabled
read permissions of some files in the migrated system. As a
result, when a client requests an affected file, the Web server
will respond with an error code indicating the file is missing.
This is easily identifiable by inspecting the HTTP headers.
A sample Analysis Engine output of this type of problems
is shown in Figure 11. The first part of the output shows
the differences identified in HTTP headers (differences here
are given a high rank), in particular, HTTP status code and
content type fields.

• Type 2: User Credential and Authentication

Differences in HTTP Headers:
URI: /bookstore/ShoppingCart.jsp
HTTP status: "200 OK" ==> "302 Moved Temporarily"
Location: " " ==> "http://NewPlatform/bookstore/Login.jsp"

Structural Differences in HTML Pages:
URI: /bookstore/ShoppingCart.jsp
-Node: html

Figure 12. An example of misconfigured client credentials
in Bookstore.

Problems related to user credentials and authentication
are also commonly found in Web application migration.
They can be caused by a wide array of configuration mis-
takes, e.g., wrong SSL certificates, out-of-sync user creden-
tial information in databases, misconfigured trust policy be-
tween web server and application server. This type of prob-
lems usually cause the responses from the production and
migrated applications to differ significantly in their page
structures and have very distinct characteristics in HTTP
header fields.

To simulate this type of problems on the migrated envi-
ronment, we disabled HTTP cookies in Tomcat (by modi-
fying context.xml). Splitter successfully detects the problem
for all applications, except for Forum. Splitter does not de-
tect any problem for Forum because it does not use cook-
ies and thus it runs correctly on the migrated system with
cookies disabled. For other applications, Splitter observes
abnormal responses for the requests asking for user creden-
tial, such as shopping carts, user accounts, and administra-
tive pages. For Bookstore, a client has to log into her account
to check the items in her shopping cart. On the production
system, the application can correctly identify the client with
the cookie in her requests, and retrieve the ‘shopping cart’
belonging to this person. However, on the migrated system,



the application cannot identify the client due to the missing
cookie. Instead of returning a correct shopping cart page, the
application sends the client a response to redirect the client
to the login page (Login.jsp). This is realized by setting the
HTTP status code and Location field in the HTTP header.
The HTTP status code is set to “302 Moved Temporarily”,
and the Location field is set to the URI of the login page.
Figure 12 shows the related console output of Splitter for
this problem. Besides the differences in response headers,
Splitter also shows structural differences in response bodies.

• Type 3: Data Inconsistency

Structural Differences in HTML Pages:
URI: /bookstore/ShoppingCart.jsp
*Node: html/body/table/

Different Number of Children
...

Figure 13. An example of data inconsistency problem.

Migrating databases usually requires a team of special-
ized DBAs, and even so, this is an error-prone process es-
pecially when migrating a complex database setup. An error
would cause persistent data to become different from that on
the production environment, which in turn, causes the mi-
grated application to behave differently. Such problems usu-
ally do not manifest themselves in response headers (as in
case of the two above mentioned problem types), but rather
in the response bodies. This problem is injected by popu-
lating two database instances differently. We show a part of
Analysis Engine’s console output for Bookstore in Figure 13.
The difference is caused by the shopping cart pages (Shop-
pingCart.jsp) displaying different number of products due to
the servlet populating the page with contents obtained from
the database.

• Type 4: System Resource Limitations

Early in the migration process, the target system is sized
and provisioned. However, if insufficient amount of resource
is provisioned or configured, e.g., amount of physical mem-
ory, open file descriptor quota, disk quota, etc., the migrated
application will run into both functional and performance
problems, especially under heavy load. To simulate such
problems, we reduce the size of the buffer cache used by
PostgreSQL in TPC-W, and we reduce the maximum net-
work connections (using ulimit command) for the other ap-
plications. For TPC-W, without sufficient system resources,
database server becomes a bottleneck. Splitter will eventu-
ally detect this problem by monitoring the queue length of
the replicated requests. Due to the performance difference
between the production and migrated versions of the appli-
cation, this queue will kept increasing under heavy load until
it hits a maximum allowable queue length, at which point,
we terminate testing as it is apparent that the migrated ap-
plication cannot keep up with the pace of the production ap-
plication. As for the other applications, Splitter will identify

these resources problems when it intermittently receives “In-
ternal Server Errors” when the application server is running
out of resources.

Splitter also supports rudimentary performance monitor-
ing as it can easily collect response times of all the traffic.
Due to space limitation, we will not discuss this capability in
details. However, combined with the functional testing capa-
bilities of Splitter, it can be quite powerful in detecting some
hard-to-reproduce performance problems.

3.4 Performance and Storage Overheads
In this section, we evaluate Splitter’s performance and stor-
age overheads. In Splitter, costly operations are to find de-
tailed differences in responses. These operations are carried
out off-line. Thus, sources of performance impact only in-
clude extra network hop between the production system and
clients and computation used to replicate and instrument re-
quests. For HTTPS traffic, it also incurs extra overheads on
encryption and decryption to see all traffic in clear text. Stor-
age requirement is because Splitter stores some request and
response data for off-line comparison.

We evaluate Splitter performance impact using the TPC-
W workload for both HTTP and HTTPS traffic. Among the
three types of workloads defined in the TPC-W specification,
we select its browsing workload to stress Splitter as it incurs
the highest number of transactions.
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Figure 14. Throughputs of TPC-W observed by clients with
and without Splitter. The number of emulated browsers
(EBs) is varied from 100 to 700 for HTTP traffic (sub-figure
a) and from 100 to 400 for HTTPS traffic (sub-figure b).

The throughput results are shown in Figure 14. Results
are shown for clients retrieving web contents with and with-
out Splitter. In both scenarios, we collect throughput data for
both HTTP and HTTPS traffic as we increase the workload
by increasing the number of emulated browsers (EBs) till the
production system is saturated.

As shown in Figure 14, Splitter incurs only a small per-
formance overhead, even for HTTPS traffic. The through-
put reduction is almost negligible (less than 2%) for HTTP
traffic and is less than 5% for HTTPS traffic. The reason is
that the delay and extra processing time that Splitter intro-
duces is much smaller than the time it would take for the
application server to service a request. Specifically, it takes
the application and Web server over 20ms on average to ser-
vice a TPC-W request even when the system is under a light



load (100 EBs), which is much longer than one network hop
latency (less than 100µs in our local network) or the time
used to replicate a request. Splitter incurs more performance
overhead for HTTPS traffic due to the extra work needed to
encrypt and decrypt HTTPS traffic.

To evaluate the storage overhead incurred by Splitter, we
collect the size of the data files used by Splitter to store re-
quest and response data for off-line comparison. On average,
the storage overhead for TPC-W is about 14.3KB per web in-
teraction without compression and about 1.6KB with com-
pression. One million web interactions, which are more than
enough to test an application, require less than 2GB space.
Considering the TB level of storage volume in modern hard
disks, the storage requirement of Splitter is quite reasonable.

4. Discussion
In this section, we discuss some of our deployment expe-
rience and a few limitations of our current prototype and
propose possible solutions. Work is currently underway to
incorporate these solutions in our implementation.

4.1 Deployment Considerations
4.1.1 Deployment Requirements
In our experience helping migration teams performing post-
migration testing, we learned that besides being useful,
Splitter also needs to be easily deployed and have mini-
mal impact to the existing environment. Specifically, Splitter
needs to meet the following three requirements.

• Minimum intrusiveness to existing infrastructure: Splitter
taps into the critical path between end users and the pro-
duction application, and therefore, would require some
changes to the existing infrastructure and even some ser-
vice down times, which should be minimized.

• Minimum performance impact: Splitter should not intro-
duce significant performance degradation to the applica-
tion perceived by end users, though some overhead is un-
avoidable since Splitter will be positioned within the crit-
ical path.

• User transparency: End users should not be aware of the
existence of Splitter. This means no changes to the end
user settings and no service disruptions.

User transparency and minimal performance degradation
can be easily achieved. Since Splitter is deployed as a re-
verse Web proxy that we embed in front of the application
server, it simply adds one extra hop in addition to many other
hops (network proxies, load balancer, switches, etc.) along
the path from end users to the application. However, hav-
ing a minimum impact on the existing infrastructure when
deploying Splitter is more challenging. We discuss the dif-
ferent deployment options and their pros and cons below.

DBApp

Listens on port 8080

DBApp

Port 8080

Splitter

Port 8080

Source system Source system

DB1App

Port 8080

Target system

Figure 15. Deployment option 1.

4.1.2 Deployment Options
Option 1: The first deployment option is illustrated in
Figure 15. Here we deploy Splitter onto its own system.
The greatest benefit of this approach is everything is self-
contained, and can be delivered as a (virtual) appliance.
However, there are several drawbacks with this approach.
First, the new system Splitter is on, whether it is physical or
virtual, will need its own IP address. And to insert it into the
path between the user and the application, system adminis-
trators would need to modify the network forwarding path,
firewall rules, SSL certificates, and sometimes even DNS
entries or IP addresses. That would take a non-significant
amount of time as these tasks often involve multiple sys-
tem admin groups, especially in a large enterprise. To re-
duce the time taken for the deployment, the databases on
the two systems can be synchronized online with tools such
as Data Mirror [Ghatare] and Splitter can be pre-configured
before dropped into the environment. Leveraging virtualiza-
tion technology makes this type of deployment even easier as
virtual machines can be provisioned and taken down quickly
and with low cost.

DBApp

Listens on port 8080

DBApp

Port 8080

Splitter

Port 9000

Source system Source system

DB1App

Port 8080

Target system

Figure 16. Deployment option 2.

Option 2: The second deployment option is shown in Fig-
ure 16. In this alternative approach, Splitter is co-located
with the production application on the same machine. There
are obvious cost and management benefits in not instantiat-
ing a separate machine to host Splitter. Additionally, having
Splitter listens to the same IP address and port of the produc-
tion application and reconfiguring the application to listen on
another port, no network reconfiguration is needed as in the
case of Option 1. Moreover, the performance overhead of the
“extra network hop” that Splitter introduces when co-located
with the production application is also lower.

From our perspective, it seems Option 2 is the better de-
ployment architecture. However, in practice, the first Op-



tion is more preferred because the changes in the produc-
tion environment would only involve system administrators,
whereas Option 2 would not only involve system adminis-
trators but also application owners as Splitter is co-deployed
on the same machine as their application.

In enterprise environments, it is common to use load bal-
ancers to distribute network traffic going to the destination
web servers. Usually the existence of load balancer implies
that the server may consist of multiple nodes and may sup-
port multiple applications. In such an environment, the de-
ployment of Splitter is a little more complicated. As one
choice, we can deploy Splitter in front of the load balancer
or integrate Splitter (only the Proxy and Session Manager)
within the load balancer. In this case, we only need one in-
stance of Splitter. But Splitter needs to detect and filter traf-
fic going to other web applications instead of the application
under test. If we deploy Splitter behind the load balancer, we
need one instance for each of the server node. This deploy-
ment may require more physical resource but traffic handling
is simpler.

4.2 Out-of-Order Requests
A web application is usually designed to support multi-
ple concurrent users. In our testing infrastructure, there are
3 separate streams of request-response traffic—(A) user to
Splitter, (B) Splitter to production application, and (C) Split-
ter to migrated application. Ideally, we would like to pre-
serve the order of requests in stream A to those of B and
C. However, this is sometimes not possible. For example, if
user U1 sends a request R1 and user U2 sends a request R2,
respectively, to Splitter, and then Splitter forwards them to
the production and migrated applications, R1 and R2 might
reach the two applications in different orders.

For some types of applications, servicing out-of-order re-
quests does not matter, e.g., web forums, social networking
sites, etc., however, for other applications such as banking
and online shopping, the order of requests is crucial to pre-
serve. Since we have done all our experiments in a LAN
environment, we have not seen any problems due to out-of-
order requests. One solution to this problem is to enumer-
ate the requests as they arrive at the Proxy and have a small
process that marshals the requests to the production and mi-
grated applications according to the order they arrived.

4.3 Visibility of Client IP Addresses
In some cases, client IP addresses are needed for purposes
such as logging and authentication. However, due to the in-
tervention of Splitter, client IP addresses are not available
directly to Web applications. There are two methods to solve
the problem, each of which has its advantages and disadvan-
tages.

One method is that Splitter passes client IP addresses
to Web application with the HTTP X FORWARDED FOR
header field, which is widely used by Web proxies and load
balancers to pass client IP addresses to the Web servers be-

hind them. However, this method requires an application
to handle the X FORWARDED FOR header field to get
client IP addresses. While most applications behind prox-
ies or load balancers meet the requirement, other applica-
tions may need some minor modifications to handle the
X FORWARDED FOR field in order to apply this method.

The other method is to carry out logging and authenti-
cation on Splitter as client IP addresses are available to it.
Splitter is based on a fully-functional Web proxy. It can be
configured to log client IP addresses and other request in-
formation. When testing finishes, client IP addresses logged
by Splitter can then be used to replace those on the produc-
tion and migrated systems after appropriate format conver-
sion. As for authentication, the access control list (ACL) of
Splitter can be configured to specify which IP addresses are
allowed by the application and which are not, so that only
requests from the allowed IP addresses are forwarded and
replicated by Splitter. This method does not require the ap-
plication to handle the X FORWARDED FOR header field.
However, the lists of IP addresses that are allowed or de-
nied should not be too complex to be described with the
ACL rules of Splitter. At the same time, because client IP
addresses are still unavailable to Web applications with this
method, it can hardly be applied in scenarios other than log-
ging or authentication.

4.4 Non-HTTP Channels
Other than HTTP traffic, some Web applications also gener-
ate and make use of other types of traffic, e.g., an online store
application generates a confirmation email after a client has
placed an order. Not being able to monitor SMTP or SMS
traffic prevents us from fully testing all functional areas of
an application. However, these types of traffic can be inter-
positioned similarly by using the proxy approach we have
shown here for HTTP traffic. Our implementation described
in this paper is not meant to be an all-encompassing solu-
tion, but rather one particular implementation (specifically
for Web application) of a testing framework. This implemen-
tation can be expanded to handle more complex application
types and protocols.

5. Related Work
5.1 Sandbox Validation
Maintenance and configuration tasks carried out by system
administrators may greatly impact system availability and
performance. It is important to validate these tasks to guar-
antee that the works performed have achieved the desired
results (e.g. better functionalities and/or performance) and
not resulted in unexpected downtimes or performance degra-
dation. For this purpose, several previous works [Nagaraja
2004, Oliveira 2006, Zheng 2009] have been conducted to
create a sandbox to run a copy of the system to be changed.
Instead of working on the original system, administrators
work on its replica inside of a sandbox. To drive the replica,



inputs are replicated and directed to the sandbox. To validate
the operations carried out by the administrators, outputs of
the replica are compared against those produced by the orig-
inal component.

Splitter also replicates inputs and compares outputs. In
this sense, testing with Splitter is similar to sandbox vali-
dation. However, a sandbox is usually tightly coupled with
other components in the system. To apply sandbox valida-
tion requires much modification or reconfiguration on the
current system. This makes it difficult to be applied to the
post-migration scenarios. Our Splitter infrastructure is de-
signed to minimize the intrusiveness to the current system
infrastructure.

5.2 Web Application Testing
Since Web applications have been widely used to support
a range of important activities such as online banking, on-
line store, etc., Web application testing has attracted much
attention. Basically, there are two approaches to test and val-
idate a web application. The first approach focuses on ana-
lyzing and modeling the structure of a web application and
helps tester with coverage testing [Lucca 2002, Ricca 2001].
However, this approach needs testers to generate test cases,
especially to prepare inputs for test cases. Moreover, human
inspection is usually needed to check the outputs of the tests.
The other approach records user requests and user sessions,
and transforms user sessions into test cases [Elbaum 2003,
Sampath 2004]. This approach also needs a lot of manual
intervention to check the outputs of test cases. The research
presented in paper [Sampath 2004] has some similarity to
our work, but test cases used in that work are still synthetic
and a simple “diff” is used for comparison.

The above techniques designed for web application test-
ing are mainly for checking the programming errors or bugs
before the applications are deployed. However, Splitter is de-
signed to test applications after they have been deployed, tar-
geting provisioning errors and configuration errors.

5.3 Change Detection
There have been research works done designing efficient
algorithms to detect changes in text files [Chawathe 1996]
and structured XML and HTML documents [Cobena 2002,
Khoury 2007, Leonardi 2005, Ohst 2003, Wang 2003]. One
of the challenges in our testing module is to detect response
changes in the migrated application. Thus the algorithms
(e.g. SES algorithm) developed in the area of change detec-
tion can be leverage by Splitter. But we still need to fine-tune
them to filter false alarms.

5.4 Byzantine Fault Tolerance
Byzantine fault tolerance (BFT) [Castro 1999] has been ex-
tensively studied to prevent malicious network attacks and
software errors. BFT requires all replicas to execute an iden-
tical sequence of client requests. In this sense, Splitter is sim-
ilar to BFT. However, BFT requires more than three replicas

to make consensus. Moreover, it usually requires non-faulty
replicas to produce same responses for same request. In con-
trast, Splitter deals with only two replicas. For the same re-
quest, they may produce different responses because web ap-
plications usually exhibit sophisticated non-determinism.

6. Summary and Future Work
In this paper we have described a new approach for post-
migration testing of Web-based applications. Our approach
uses the actual user workload in real-time to compare re-
sponses from the migrated application against those from the
original production application before cut-over to the new
platform. Our approach offers an appealing alternative to the
traditional FVT-based testing method which requires consid-
erable time and effort to develop and execute test cases.

We have implemented our approach in Splitter, a software
module which consists of a modified reverse Proxy, a Ses-
sion Manager, and an Analysis Engine. User requests are
duplicated and forwarded to both of the production applica-
tion and the migrated application. Besides being forwarded
back to the user, responses from the production application
are compared automatically with those from the migrated
application.

We have evaluated our prototype of Splitter using several
Web applications as migration candidates. While Splitter
does detect errors that are in fact normal, Analysis Engine
is able to group mismatches that are highly likely to have
the same root cause, which reduces the number of cases
that a tester must inspect. We also created a number of fault
injection cases that represent some of the errors observed in
actual migrations – Splitter is able to effectively detect the
errors we considered.

The complexity and overhead of Splitter is similar to
those of a Web proxy or a load balancer. Our evaluation
with TPC-W shows that Splitter incurs only small perfor-
mance and storage overhead. In Splitter, costly operations
are to find detailed differences between HTTP responses.
These operations are carried out offline. Operations that are
carried out online are similar to those in a Web proxy or a
load balancer, e.g., HTTP header parsing, URL rewriting,
and cookie handling. Splitter can be integrated with a Web
proxy or a load balancer that has already been deployed in a
production system to further reduce system complexity and
overhead. This can be our future work.

As a part of our ongoing work, we are continuing to
improve Analysis Engine. We want to test and improve its
detection algorithms by injecting additional classes of mi-
gration faults. We also plan to improve Analysis Engine to
make it accept plugins that handle additional response con-
tent types. With new plugins, we want it to be able to dis-
sect and to compare binary objects dynamically generated
by Web applications. Future Web applications may generate
responses with some new types of contents. To analyze and
to compare them also require Analysis Engine to be easily



extended to cover new content types. We also plan to ap-
ply Splitter to test migrations of more complex enterprise
applications which will potentially uncover new classes of
errors. Finally, we are implementing the solution outlined in
Section 4 to handle request ordering issue during the testing
phase.
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