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Abstract—BitTorrent (BT) has carried out a significant and
continuously increasing portion of Internet traffic. While several
designs have been recently proposed and implemented to improve
the resource utilization by bridging the application layer (overlay)
and the network layer (underlay), these designs are largely
dependent on Internet infrastructures, such as ISPs and CDNs.
In addition, they also demand large-scale deployments of their
systems to work effectively. Consequently, they require multi-
efforts far beyond individual users’ ability to be widely used in
the Internet.

In this paper, aiming at building an infrastructure-independent
user-level facility, we present our design, implementation, and
evaluation of a topology-aware BT system, called TopBT, to
significantly improve the overall Internet resource utilization
without degrading user downloading performance. The unique
feature of TopBT client lies in that a TopBT client actively
discovers network proximities (to connected peers), and uses both
proximities and transmission rates to maintain fast downloading
while reducing the transmitting distance of the BT traffic and
thus the Internet traffic. As a result, a TopBT client neither
requires feeds from major Internet infrastructures, such as ISPs
or CDNs, nor requires large-scale deployment of other TopBT
clients on the Internet to work effectively. We have implemented
TopBT based on widely used open-source BT client code base,
and made the software publicly available. By deploying TopBT
and other BitTorrent clients on hundreds of Internet hosts, we
show that on average TopBT can reduce about 25% download
traffic while achieving a 15% faster download speed compared
to several prevalent BT clients. TopBT has been widely used in
the Internet by many users all over the world.

I. INTRODUCTION

Peer-to-peer (P2P) systems have been widely deployed and

used to provide different services, such as file sharing, video

streaming, and voice-over-IP. According to a late report by

IPOQUE [1], P2P accounts for 73% of total Internet traffic.
In particular, BitTorrent (BT), a P2P file sharing application,

contributes 67% of this P2P traffic. BT gains an extreme user

popularity for file sharing due to its inherent scalability and

significantly reduced download time compared to the tradi-

tional client-server based downloading. Though BT has been

a successful Internet application, it raises various challenges
to network resource management, such as Internet Service

Providers (ISPs), and affect other online applications. Often

such a tremendous amount of P2P traffic has unnecessarily

consumed Internet bandwidth that could have been used by

other applications suffering from bandwidth shortage. For

this reason, some ISPs have attempted to shape, deny, or

suppress BT and general P2P traffic. For example, Comcast
started to throttle P2P traffic in late 2007 to prevent P2P

applications from significantly degrading the performance of

other applications [8].

In major P2P systems, including BT, there is mutual-

blindness between the application layer, known as overlay,

and its network layer, or underlay. A few designs, such as

Ono [7] and P4P [29], have been proposed to bridge the

communications and interactions between these two layers,
aiming to improve Internet bandwidth utilization and maintain

user-perceived performance at the same time for such P2P

systems. In these designs, a P2P client strives to connect to

and download from other peers in network proximity, often in

the same ISP. Although Ono and P4P have demonstrated the

benefits gained by integrating network layer routing informa-

tion into application design in real BT experiments, they have
the following limitations that may significantly hinder their

further deployment in the Internet and thus effectiveness from

user perspectives.

First, these designs require feeds from major Internet in-

frastructures. Specifically, Ono relies on existing Content

Distribution Networks (CDNs) to operate properly, imposing
a significant amount of traffic on CDNs that might not be

willing to offer such a free service constantly. On the other

hand, P4P requires ISPs to provide network-layer informa-

tion to applications, for which ISPs might not cooperate. In

general, a private or enterprise network does not publicize

its confidential internal network data due to security and

privacy concerns. Second, these designs depend on large-scale
deployments of their clients or interfaces. Particularly, Ono

peers have to exchange CDN based coordinates to calculate

network proximity. Given that the majority of BT clients

are not Ono-based, in practice, an Ono client may not be

able to accurately locate nearby non-Ono peers to establish

connections. Similarly, if the majority of ISPs do not deploy
P4P iTracker interfaces, P2P clients in those ISPs will not

be able to retrieve the necessary information required for

performance optimization. Third, these designs use metrics

indirectly related to performance optimization objectives of the

BT application. In Ono, peers measure their coordinates based

on CDNs, which optimize for lots of metrics. These metrics
do not reflect peer throughput that is critical to download time,

as evidenced by our measurement results. On the other hand,

P4P virtual topology information provided by ISPs might

be different from traffic optimization metric of applications

measured by routing hops. Finally, based on a trace analysis,

a recent study [22] shows that ISP-friendly based BitTorrent,

such as Ono and P4P, may have limited performance gain, and
may reduce robustness by focusing on reducing traffic for a

single ISP.

To address the above concerns, we have designed,
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implemented, and evaluated an infrastructure-independent,
topology-aware, and client-based BT system, called TopBT,

which can significantly improve Internet resource utilization

efficiency without degrading user downloading performance.

The unique feature of TopBT lies in its comprehensive peer

selection metric considering both the downloading speed and

network topology with a candidate peer simultaneously. More

specifically, a TopBT client launches lightweight pings or
traceroute probes to its connected peers periodically, and maps

connections to their corresponding link hops or Autonomous

System (AS) hops. By passively monitoring connection trans-

mission rates, a TopBT client always tries to unchoke peers

that have low routing hops and provide high downloading

rates. A TopBT client does not require feeds from ISPs or
CDNs, nor requires other clients to be TopBT for it to achieve

fast download time and reduce traffic. We have implemented

the TopBT client based on Vuze, BitTornado, and LH-ABC,

all are mainstream open-source BT clients written in Java

and Python, respectively. We have released TopBT software

for both Linux/Unix and Windows. Through distributed ex-

periments on hundreds of PlanetLab and residential hosts,
we observe that TopBT can reduce more than 25% traffic

and download 15% faster with lightweight overhead when

compared to a few popular BT clients.

TopBT has quickly attracted active attention in the BT

community to leverage its effectiveness to improve the down-
loading efficiency of P2P systems. For example, the TopBT

peer selection policy has been integrated into LH-ABC, a

widely used native BitTorrent variant based on open source

BitTornado with hundreds of thousands of accumulated down-

loads since 2006. So far, TopBT client has been widely used by

increasingly more users worldwide, since it was made publicly
available in August 2008. The quick and enthusiastic response

from the P2P community further confirms that there is a strong

demand to provide a client-based BT facility that can easily

benefit users and Internet with topology-aware optimization.

TopBT has also been independently evaluated and reported by

FileShareFreak [10] – a professional website for “BitTorrent
& P2P Tips and Information” as follows: “TopBT can not

only reduce unnecessary BitTorrent traffic that clogs up the

Internet, but it also downloads fast, even faster than µTorrent

in our test cases.”

The research and development of TopBT has made the fol-
lowing contributions.

1) We have developed a BT measurement framework, and

collected BT file sharing data on hundreds of PlanetLab

and residential hosts. With this data set, we have quanti-
tatively analyzed and demonstrated that a large amount

of Internet traffic is unnecessary.

2) By analyzing the collected BT workloads, we have

shown that several typical network-level metrics, such

as latency, when used for peer selection, would not be

able to balance user downloading performance and the

incurred network traffic.
3) We have designed a TopBT peer selection policy in

which a TopBT client utilizes widely available network

probing facilities to discover peers in proximity. Being

infrastructure-independent, a single TopBT client can
operate at user-level without requiring a large-scale

deployment of other peers in same type to gain per-

formance. TopBT aims at reducing the overall Internet

traffic, thus gaining benefits from its global optimization

and retaining the robustness of overlay topology.

4) We have implemented a new BitTorrent client software

that has been demonstrated to improve user download
time and reduce cross-ISP traffic simultaneously. The

TopBT software has attracted a significant number of

users all over the world. It has been integrated into Vuze,

a mainstream open source BT client.

5) Fast download speed and high traffic-efficiency do not

contradict each other in the TopBT environment. Our
experiments show that both objectives can be achieved

if a sufficient number of TopBT clients are deployed.

The remainder of the paper is organized as follows. In
Section II, we sketch BT background and related work. We

describe TopBT system design and implementation issues in

Section III. In Section IV, we elaborate the TopBT peer se-

lection policy. We evaluate TopBT performance in Section V.

Finally, we make concluding remarks in Section VI.

II. BACKGROUND AND RELATED WORK

BitTorrent (BT) is a widely used P2P based file sharing tool.

In BitTorrent, a file is divided into multiple small pieces so
that every client can exchange different pieces simultaneously,

and thus significantly speed up the downloading process. The

clients interested in a same file form a BitTorrent swarm, and

the downloading of these clients are coordinated by a tracker

site. In a swarm, peers with all file pieces are called seeds,

and other non-seed peers are leechers. On bootstrapping, a

peer connects to the tracker site based on the metadata in
the torrent files to locate other peers. Once having established

connections with other peers, a client can choose a subset of

these peers to upload pieces to (i.e., unchoked), while blocking

piece uploads to other peers (i.e., choked). Many popular

BitTorrent variants [2], [4], [5], [17], [27] have been used for

file distribution. Although these systems somewhat differ in
their implementation details, almost all of them adopt random

peer selection to establish and unchoke connections. Given

its high scalability and productivity of BitTorrent, a number

of studies have been focused on BT measurement, modeling,

and incentives. A comprehensive study of BT can be found

in [12]. Request distributions and statistical models of Internet
media contents shared by BT and other tools have been studied

in [13].

The significant amount of BT traffic on the Internet has

caused ISPs to throttle, shape, or even block it. Targeting

BT traffic reduction, researchers have proposed biased peer
selection for BT systems by using network intelligence. Pa-

pers [3] and [15] suggested to select peers in the same ISP.

The effectiveness of this approach is arguable considering that

most BT peers are not in the same ISP [22].

Aside from BitTorrent, coordinate based [16], non-
coordinate based [11], [28], and other locality-aware ap-

proaches [14], [18], [20] have been proposed for general

P2P and distributed systems. However, all these methods are
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designed to optimize network related performance factors such
as latency, rather than download time and traffic reduction that

we study in this work.

III. TOPBT SYSTEM FRAMEWORK

To address the limitations and concerns of existing ap-

proaches, we strive toward an approach that can be infrastruc-

ture independent (particularly ISP independent) and operates

independently to meet the optimization goal of reducing

BT traffic across transmission paths while maintaining fast
download speed. Our solution is TopBT, a topology-aware

BT client that comprehensively considers connection rates and

path topology when selecting peers to transmit data to/from.

A. TopBT Components

Fig. 1. TopBT structure and components.

TopBT consists of five components: AS-hop examiner, link-

hop examiner, rate monitor, peer selector, and file transfer

manager, as shown in Fig. 1. The AS-hop examiner and the

link-hop examiner are responsible for discovering path prox-
imity to connected peers; the rate monitor passively records

download/upload throughput on each connection; the peer se-

lector executes TopBT peer selection policy to choke/unchoke

peers; and the file transfer manager is the component re-

sponsible for downloading/uploading file pieces from/to peers,

managing connections, and writing data to I/O devices. We
describe these components in details in the following sections.

B. Discovering Path Proximity

It is important for a TopBT client to be aware of peer

proximities so that it can always download from close peers.
To measure path proximity, a TopBT client takes the following

steps.

Probing Connection Paths

A TopBT client probes its connected peers using network

troubleshooting tools such as “ping” and “traceroute” (on

Windows, “tracert”). Traceroute works by using the IP “time

to live (TTL)” field, which specifies the maximum number

of hops a packet may be forwarded by a router. In tracing

a host, the traceroute program constructs a packet (usually
UDP by default according to RFC 862, but Internet Control

Message Protocol (ICMP) ECHO packets can be used in

Windows) to an invalid port at the remote host, and sets

its TTL field to 1. The first router that gets the packet will
decrement its TTL field, check that it is zero, and return an

ICMP TIME EXCEEDED response to the originating host.

Traceroute then prints out the IP address of the router that

returned this message, creates a new packet with TTL 2, and

so on, until the TIME EXCEEDED message comes from a

router when the maximum number of hops is reached, or an

ICMP Destination Unreachable message is returned by the
destination host.

On the other hand, in most systems, ping is usually im-
plemented using the ICMP ECHO facility. A ping host sends

an ICMP ECHO REQUEST packet to the given destination.

When no filtering device drops the packet and it arrives

at the destination, the destination host creates an ICMP

ECHO REPLY packet with the same payload and sends it

back as a response message.

Due to the fact that ping and traceroute use different types

of packets, and routers along the path are capable of filtering

each of these packets, we choose both tools for path topology
discovery. In TopBT, its AS-hop and link-hop examiners

periodically send traceroute and ping packets to those newly

connected peers.

TCP Ping. Due to widely deployed firewalls and packet filters

on routers and end hosts, a TopBT client frequently gets no
response for traceroute and ping packets they send. To obtain

a high response rate, a TopBT client sends TCP pings instead.

That is, the client sends TCP SYN packets to peers, and

extracts TTL values of subsequent SYN/ACK or RST packets.

Calculating Link-hops. Ping and TCP Ping results returned

by remote peers contain TTL values when arriving at the

original probing host. Depending on the operating systems of

remote peers, the initial TTL values of a response packet can

be set to different values. Typical and common initial TTL

values are among 255 (most UNIX systems), 128 (Windows
NT/2000/XP), 64 (Linux and Compaq Tru64), and 32 (Win-

dows 95/98/ME) [26]. Early studies (e.g., [9]) have shown that

95% of Internet paths have link-hops of no more than 30, and

our measurement confirms this result. Therefore, based on the

TTL of the returning packet, we can infer the initial TTL of

the packet, and thus the link-hops.

Calculating Autonomous System (AS) Hops

After obtaining the traceroute paths between a pair of con-

nected peers, we use them to calculate AS-hops. We first

build a prefix-AS mapping table by downloading up-to-date

Border Gateway Protocol (BGP) routing table dumps from

several public repositories including RoutesViews, RIPE NCC,

and China CERNET, and merge all those BGP table entries.
After filtering out traceroute paths containing IP-loops, for

every non-looping traceroute path, we map each of its router

interface IPs to its corresponding AS by looking up the prefix-

AS table. Sometimes there are “*” hops on a traceroute path

due to non-responding routers, and we manage to map them

using several AS mapping techniques by considering previous

and next ASes [19], [25]. The prefix-AS table is embedded
into the AS-hop examiner, and can be refreshed once in several

weeks from the server. Note that we build this table off-line

in advance, and the client does not need to do any extra
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calculation at runtime. The client simply uses this table to
map IPs to their ASes. In other words, a client does not need

to contact these public repositories at runtime, and thus, is

independent of the infrastructure.

Asymmetric traceroute paths. The path from a TopBT

host to a remote peer on which traceroute packets traverse,

known as forward path, might differ from the reverse path

through which the remote peer reaches this host. This is

because routing tables on border gateway routers can dictate

different paths due to their autonomous nature. To address this
difference, two connected hosts can exchange AS-hop data

with each other, so that a host can use reverse path proximity

for its peer selection process.

MPLS networks. In large ISPs where Multi-Protocol Label

Switching (MPLS) is deployed, Label Switch Routers (LSRs)

exchange labels to decide forwarding paths for incoming

packets. The routers in the MPLS core network are hidden

from IP routing based traceroute and ping. Fortunately, as long

as ingress and egress routers in the MPLS network appear on
the traceroute path, the AS hops are not affected by MPLS.

On the other hand, MPLS pings, when available on a TopBT

host, can help calculate link hops to peers.

C. Monitoring Connection Rates

For every packet a TopBT client sends or receives, the client

tracks the specific peer that the data go to or come from.
Using a moving average method, in a time window that slides

forward, the client counts the total bytes being transmitted and

received, and divides the sums by the time window size to get

connection download/upload rates. TopBT inherits the default

configurable time window size used in the base BitTorrent

software, which is usually at the scale of seconds.

D. TopBT Software and Status

We have developed both Windows version TopBT with

installer and Linux version TopBT based on Vuze [2], LH-

ABC [17], and BitTornado [5], three mainstream BitTorrent

clients with millions of users. The initial version of TopBT was

released to public in August 2008, and it has been optimized

several times for better performance since then 1. TopBT has

attracted a significant number of active users from all over the
world since its release, as shown in Fig. 2.

IV. EXPLORING PEER SELECTION POLICIES

We use two factors, amount of traffic and download time,

to characterize BT performance from the perspectives of both

Internet and end users. Accumulated BT traffic, i.e., the total

number of BT bytes that have accumulated on different net-
work links and across ISP borders, reflects the stress to ISPs.

While download time, i.e., the duration from BT user starts

downloading to the time when the downloading completes,

reflects the user satisfaction. Our objective is to design a

strategic peer selection policy to reduce generated BT traffic

while maintaining fast download speed.
In order to meet this goal, we need to deeply understand how

BT traffic is transmitted, what factors affect user download

1Our TopBT client software and datasets are publicly available at
http://topbt.cse.ohio-state.edu and http://sourceforge.net/projects/top-bt/

Fig. 2. TopBT usage geo-distribution (as in March, 2010).

time, and how we can combine reductions of both traffic and

download time in our design. We first conducted a set of

distributed experiments on native BT clients, i.e., BT clients

that use the original BT peer selection policy, and analyzed
their results.

A. Native BT Measurements for Peer Selection

We implemented a measurement framework called BT-

Meter to conduct our experiments. BT-Meter is based on

BitTornado, an open-source BitTorrent software written in

Python. BitTornado uses the same peer selection policy as
the original BT protocol, and we refer BitTornado as native

BT. In all BT protocols, including both original one and its

variants, file chunks, or pieces, are further divided into smaller

slices. To measure native BT traffic and user download time,

we developed modules to record BT connections and file states

at the slice level.

Using TopBT’s components AS-hop examiner and link-

hop examiner, we measure the AS-hops and link-hops for

each connection. We also measure download/upload rates
using TopBT’s Rate Monitor component, as described in

Section III-C. In addition, BT-Meter uses the native BT peer

selection policy in its peer selector to select peers with higher

download rates first. We develop a slice monitor component to

periodically record BT context, such as the timestamp when

the slice is completely downloaded, the number of connections
of the host, and the other connected peers having the slice at

the current moment. The file transfer manager remains the

same for connection maintenance and file piece management.

name size (bytes) piece size (bytes) peers

Game 179.0 M 262,144 510

Music 97.4 M 262,144 3,015

TV-show 348.6 M 262,144 3,821
Ubuntu 695.8 M 524,288 933

TABLE I
TORRENT FILE SUMMARY.

To conduct measurements, we have chosen some hosts in

universities and residential networks, and have deployed BT-
Meter onto 106 PlanetLab (PL) [23] and residential hosts.

These hosts are instructed to participate in different torrent

swarms to download various files, which have different file

http://topbt.cse.ohio-state.edu
http://sourceforge.net/projects/top-bt/
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Fig. 3. Swarm peers distribution in ASes.

sizes and different peer population. Table I gives a summary
of the torrents. All files use a slice size of 16,384 (16K)

bytes. The experiments were conducted in April, 2008, and we

repeated once every day in a week, given that it took less than

one day to complete on all hosts. Then on every host, we use

the average of its values from the 7 runs to plot performance

curves in figures.

B. Peer Selection Metric

The BT traffic is mainly decided by the routing hops of

connected peers. The download time is determined by the file

size and the aggregated download rate, which is the sum of

all connections’ download rates of the host. Since the file size

is fixed, the file download time is thus affected by the number
of connections as well as download rate of each connection.

To design a peer selection policy that can balance both traffic

and download time, we need to study all factors that can affect

these two targets and derive an appropriate metric for peer

selection.

We use two metrics, link-traffic and AS-traffic, to char-

acterize the underlying traffic that could have been reduced.

Considering that a file consists of n slices of equal size δ, we

define link-traffic of an entire file transmission as the amount

of network traffic traversing all IP links. Considering that these
slices traverse l1, l2, . . . , ln link hops, respectively, then the

link-traffic is calculated as δ
∑

n

i=1
li. Similarly, we define AS-

traffic of a file transmission as the total amount of network

traffic across ASes (or ISPs) borders. Considering these n
slices traverse a1, a2, . . . , an different ASes, respectively, we

calculate the AS-traffic as δ
∑

n

i=1
(ai − 1). These calculations

indicate that the link- or AS-traffic is equal to the mean link-

or AS-hop times the file size. For a given file to download,

the link- or AS-traffic is proportional to the mean link- or

AS-hops, and mean link- or AS-hop reduction reflects link-

or AS-traffic reduction. Note that link-traffic characterizes the

average link traffic stress, and AS-traffic characterizes the

cross-AS traffic. Because most ISPs consist of only one AS,
and they are charged based on cross-ISP traffic, AS-traffic

reduction usually means less billing to them.

We first study two peer selection policies solely based on
traffic related factors.

Selecting Peers in the Same AS

One way to select close peers is to select peers from the

same AS, as suggested by a few studies [3], [15]. Fig. 3(a)

shows the number of swarming peers in different ASes for
the four torrents, and Fig. 3(b) shows a Zipf fitting for the

TV show torrent. In these figures, the x-axis is the AS index

in descending order of peer number, and the y-axis is the

actual number of peers. These results indicate that the number

of peers in different ASes roughly follows a Zipf distribution

with α close to 1. For any given client, although there are

peers in its own AS, most other peers reside in different ASes.
Therefore, the client’s own AS does not have enough peers to

be selected for fast downloading in most cases.

Selecting Peers with Lowest Hops

To study BT traffic upper bound, we quantitatively study what
if a peer in downloading these files had selected a nearby peer.

Fig. 4(a) shows the mean link-hop reduction of file trans-

mission processes in 4 different swarms. Note that all hosts

here have successfully completed their downloadings. These

4 swarms are independent, and their durations do not overlap
with each other. In this figure, the x axis is slice-level mean

link-hop reduction ratio, and the y axis is the cumulative

distribution function (CDF) of the experiment hosts. This is

calculated based on the following procedure: when peer p
selects a peer to download from (unchoke), it selects from

currently connected peers. The selected peer is not necessarily
the best peer that has the shortest link-hop distance from peer

p. Thus, by assuming the best peer will eventually have the

slice wanted by this peer, the link-hop reduction percentage is

calculated based on the difference between these two, divided

by the truly incurred link-hops. This figure shows that using

the shortest link-hop distance as the peer selection policy,

half of the hosts can achieve more than 20% mean link-hop
reduction for all four swarms.

If a peer does not constrain its selection among all connected

peers, but to all the available peers, the reduction could be

more significant. Fig. 4(b) thus shows the mean link-hop
reduction when a peer is allowed to do so. The total available

peer list is the combination of peer lists of all nodes in the

same swarm. If we compare Fig. 4(b) with Fig. 4(a), we

observe a much larger mean link-hop reduction across all

torrents: half of the hosts can achieve more than 50% mean

link-hop reduction. The average link-hop reduction per node

is about 60%. Note that the amount of reduction in this figure
indicates the upper bound. In practice, when the number of

peers in the swarm is very large, and link-hops between these

peers are very diverse, the traffic reduction could approach this
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Fig. 4. Link-hop reduction across the experiment hosts.

bound.

Fig. 4(a) and Fig. 4(b) show that in existing BT systems,

based on link-hops, a significant amount of network traffic

could have been reduced if the peer has carefully selected

peers to download from.

In addition to link-hops, we also use AS-hops as another

metric to study how much AS-traffic could have been reduced.

We found that, similar to the link-hop reduction results, about

half of the hosts can achieve more than 25% mean AS-hop
reduction using only connected peers. If using all available

peer list, half of the hosts can achieve more than 70% AS-hop

reduction. The average AS-hop reduction per node is about

74%. We observe from our collected data that more than 50%

of connections have AS-hops below 5. Thus, in practice, it is

very likely for a host to find peers within the same AS or in
nearby ASes that have less than 5 AS-hops.

The Comprehensive Unchoking Algorithm in TopBT

We have conducted a wide range of experiments to measure
and understand the relationship between transmission distance

(the number of routing hops) and transmission rates, and doc-

umented detailed results in [24]. In our measurement results,

we observe no strong correlations between the routing hops

(link- or AS-hops) and the transmission rate (downloading or

uploading rate) for a connection, as shown in Fig. 5.

Fig. 5 plots performance curves from more than 9000 P2P

connections collected in our experiments. We first sort the

connections by their number of link hops, and then sort con-
nections with the same number of hops by their downloading

rates. The x-axis is the rank number of each connection; the

left y-axis is the number of link hops, and the right y-axis

is the downloading rate. For example, Connection #3000 and

Connection #3800 have the same number of hops, since they

fall onto the same segment when projected vertically. However,

they have very different downloading rates.

Fig. 5 implies that a downloading-rate-driven peer selection

policy in native BT is not necessarily able to find a desirable

peer with a high uploading rate and small routing hops.
Similarly, traffic oriented policies may not find close peers

that also have high uploading rates. For a BT peer in a swarm,

there may exist multiple peers with similar downloading rates

but significantly different routing hops to this peer.

Motivated by our Internet measurement results, we propose

a comprehensive peer selection algorithm based on the col-

lected information of both traffic and transmission rate. In

this algorithm, peers are placed into four categories according

to their hops and downloading rates. The categories contaion
peers that are: fast&close, fast&far, slow&close and slow&far

respectively.

Fig. 6 shows how peers are categorized. Its x-axis is 1/(#

of Hops) and y-axis is the downloading rate a local client gets

from the peer. Peers that are both fast and close (upper-right

corner in Fig. 6) are the best candidates in TopBT, while slow

and far peers (lower-left corner in Fig. 6) are the worst.

TopBT unchokes peers within the “fast&close” category.

Due to the fixed size of the active set, the “fast&close”
category may contain more peers than required. In this case,

we select the most qualified peers in this category. It is also

possible that the “fast&close” category doesn’t have enough

peers. When this happens, it usually means that the P2P re-

source is not sufficient, and users may experience performance

degradation if they still insist on reducing traffic. In this case,
besides peers in the “fast&close” category, we choose the

fastest peers in the “fast&far” category (upper-left corner in

Fig. 6) to fill the rest of the unchoking slots.

Currently, the unchoking algorithm does not consider the

uploading rate at which data is transmitted from local client

to a remote peer, as is done in [21], because this will cause

connection fluctuations [6].

C. TopBT Peer Selection Policy

In TopBT, there are several places to incorporate topology-

awareness for effective peer selection: tracker returned peer

list, initial connection establishment, connection replacement,
and unchoking mechanism. As a standard terminology in BT

community, “unchoke” a peer means the client allows data to

flow to that peer. A TopBT client always aggressively retrieves

peer lists from the tracker site, so that it can get a large set

of peers. In this section, we focus on the TopBT unchoking

mechanism. As a principle can be applied to the other places

as well.

Unchoking Mechanism in TopBT

A TopBT client unchokes its connected peers round by round.

The round duration is configurable, and each round usually

lasts several minutes. At the end of each unchoking round, a
TopBT client computes hops and the transmission rate of each

connected peer. Once the best peers are determined, the client

unchokes them simultaneously.
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Fig. 5. No strong correlation between link hop and
downloading rate.

Fig. 6. Peers are placed into 4 categories in
TopBT.

At the starting phase before data transmission, a TopBT

client initializes the downloading rate of every connection

to its download capacity equal split, i.e., download capacity
divided by the number of connections;

Once connections are established, in each unchoking round,

the TopBT client can passively monitor downloading rates for

mutually unchoked peers, and measure link- and as-hops using

the link-hop examiner and the AS-hop examiner.

Handling Non-responding Peers

For those peers not responding to pings or traceroute probes,

we use the average routing hops of responding peers as the

estimation of their hops. Although it may possibly unchoke

faraway peers that provide moderate downloading rates, those
close and fast responding peers are guaranteed to be unchoked.

An alternative is to divide connected peers into two groups,

i.e., responding group and non-responding group. The client

then allocates upload caps to the two groups based on their

group sizes. For the responding group, it uses the comprehen-

sive metric to sort peers; while for the non-responding group,
it uses the downloading rates to sort.

Limitations With Tracker-Side Approach

Although one may argue to put the peer selection at the tracker
side, tracker is unable to measure the routing hops and real-

time connection rates between any two connected peers. Thus,

the tracker-side approach is difficult to implement in practice.

D. Benefits Gained From TopBT Deployment

Internet, including ISPs, can significantly benefit from a

wide deployment of TopBT clients so that both cross-ISP

traffic and average link stress can be reduced. From end
users’ perspective, download time is the most concern, i.e.,

how fast a file can be downloaded. Our experiments in the

next section show that TopBT can achieve comparable or

even better download speed than very fast BT clients, such

as BitTyrant, after a sufficient number of TopBT clients have

been deployed.

V. EXPERIMENTS AND EVALUATION

To evaluate TopBT’s performance, we conducted several
large scale distributed experiments and compared against

native BT and BitTyrant [21]. To sketch, a native BT client

unchokes peers with highest download rates until its upload

rate cap is reached, and a BitTyrant client unchokes peers with

highest download-rate/upload-demand ratios until the upload

rate cap is reached.

We deployed native BT, BitTyrant, and TopBT clients

onto hundreds of PL hosts on the Internet. These PL hosts

participated in downloading legal media files using an existing

popular torrent and a private torrent. For the popular torrent,

most peers in the torrent swarm are non-PL hosts, while for

the private torrent, the swarm contains only the hosts running
our selected BT client. In this way, we can study the scenarios

of mixed BT clients as well as the single BT client. We started

native BT, BitTyrant, and TopBT in random order: when one

completes, we randomly picked the next to start so that our

results do not favor any of the three clients, given that a

prior run can help proliferate the torrent pieces in the system,
and thus possibly improve the performance of later runs. The

PlanetLab experiments were repeated once every day from

May 20 to May 27, 2008. We also conduct experiments on 14

residential hosts and repeat experiments 7 times during one

week, using the same approach as our PlanetLab experiments.

The mean values are used in the following report.

In our experiments, most of nodes can finish downloading

in two hours, which is fast enough compared to the average

download time of more than one day for all Internet hosts

downloading the same torrent, as reported in the torrent tracker

site. We think this is relatively short and hope there is no

significant change on the Internet in the meantime.

Our performance metrics include download time, average

AS-hop, and average link-hop. The average AS-hop (link-hop)

is computed as the ratio of AS-traffic (link-traffic) over the file

size. We have also studied the effects of other factors relevant

to these performance metrics, including upload capacity, ratio

of seeds and leechers, node probing delay, and non-responding
peers. We evaluated TopBT overhead in terms of the amount

of probing traffic it triggers.

Traffic and Download Time

Fig. 7(a) shows that among the 100+ PL node experiments,

link-hop and AS-hop based TopBT always achieves a lower

number of AS-hops. Compared to native BT and BitTyrant,
30% TopBT PL nodes have 25% less number of AS hops.

Given the large size of the BT downloading file, it implies

that TopBT can reduce a significant amount of Internet traffic.
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Fig. 7. TopBT experiment results.
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Fig. 8. Real deployment results on PL nodes under upload capacity constraint (TopBT based on AS-hop).

Link-hop based TopBT can achieve a slightly lower number

of AS-hops than AS-hop based TopBT. This may be because

AS-hops cannot be obtained for a large fraction of peers due to
the fact that routers filtering traceroute packets, and the client

cannot use the comprehensive metric to unchoke them.
For the download time, Fig. 7(b) illustrates that both TopBT

and BitTyrant finish downloading about 15% faster than that of

native BT. AS-hop based TopBT can download slightly faster

than link-hop based TopBT, and TopBT’s download time on

all PL nodes is even slightly shorter than that of BitTyrant. We

believe the observed superior TopBT download performance
is contributed by our system environment where a sufficient

number of TopBT clients are deployed, such that unnecessary

traffic is minimized to benefit download time of each peer.

In contrast, if every user makes aggressive peer selection

operations, the accumulated bandwidth can be over-demanded

to eventually harm the average download performance among

the peers.
Again, for average link hop results, link-hop and AS-hop

based TopBT are always much lower than native BT and
BitTyrant, as shown in Fig. 7(c). This large difference is caused

by topology-unawareness of native BT and BitTyrant. Link-

hop based TopBT has a slightly lower link-hops than that of

AS-hop based TopBT, due to its accurate counting of routing

hops.

Effects of Upload Capacity
Fig. 8(a) shows that the upload cap does not affect the

average AS hops, while Fig. 8(b) shows that a higher upload

cap yields a shorter download time. When the upload cap

is under 200K bytes/s, this effect is more pronounced: the

average download time decreases quickly from 530 seconds

to 370 seconds, roughly 50% faster with a larger upload cap.

Effects of Seeds and Leechers
Fig. 9 shows that a higher seed/leecher ratio results in a

0.6 0.8 1 1.2 1.4 1.6
800

1000

1200

1400

1600

1800

2000

seed/leecher ratio

d
o
w

n
lo

a
d
 t
im

e
 (

s
e
c
o
n
d
s
)

Fig. 9. Seed/leecher ratio effect on TopBT download time.

lower download time for TopBT. The download time drops

from 1980 seconds to 833 seconds when the seed/leecher ratio

increases from 0.52 to 1.64. This is because seeds do not
consume the client’s upload bandwidth, and thus, can increase

the client download rate.

Effects of Hop Probing Delay

type avg min max

tcp ping 0.58 sec 0.13 sec 7.24 sec

traceroute 40 sec 18 sec 2 min

TABLE II
TOPBT CLIENT PROBING DELAY.

Table II shows that the TopBT probing process in each

round only takes seconds to finish. On average, TCP ping

based TopBT only takes about half a second to measure link-

hops, and traceroute based TopBT takes a longer time, about

40 seconds to complete probing. The probing process runs
in the background. Before any useful routing hop values are

measured, TopBT uses an unchoking mechanism similar to

BitTyrant. Therefore, the probing delay in TopBT does not
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affect its download time.

Non-responding Peers
With TCP ping, a TopBT client can measure link-hops for

about 95% peers, since the TopBT implementation utilizes

the listening or connection ports of remote peers for probing,

which bypasses most firewalls and NATs that regular ping can-

not bypass. While with traceroute, TopBT client can measure
AS-hops for only about 40% to 55% peers. Comprehensively

considering other factors, link-hop based TopBT is a better

choice than AS-hop based TopBT.

TopBT Overhead
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Fig. 10. TopBT ping messages generated during downloading.

Fig. 10 shows that a TopBT only generates a peak number of

ping messages at the start during its unchoking period (<16
in 5 minutes), and that number quickly drops to a few (2

in 5 minutes). For traceroute, the number is higher, as each

traceroute message triggers a sequence of ICMP packets. It

is about 20 times more than the number shown in the figure.

But overall, TopBT is light-weight in terms of extra probing

messages generated.

VI. CONCLUSION

The BitTorrent-based file downloading consumes a huge
portion of Internet bandwidth now. However, the current

BT applications have over-utilized too much the Internet

resource because of the lack of communications between the

overlay and the underlay. The issue on how to reduce BT

traffic without affecting user perceived download time remains

challenging. To address this challenge, we have designed,

implemented, and evaluated TopBT, a topology-aware and
infrastructure-independent BitTorrent client. TopBT is based

on open-source Vuze, BitTornado, and LH-ABC. We show

that TopBT can retain low download time, and can reduce

up to 25% induced Internet traffic, compared with several

other representative BT clients. TopBT has been integrated

into LH-ABC, a mainstream BT client, and has been widely
used all over the world. We are currently further optimizing

our comprehensive peer selection metric and relevant metrics,

in order to continue to increasing the usage scope of TopBT

for the benefits of both Internet and BT users.
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