
CUBS: Coordinated Upload Bandwidth Sharing in

Residential Networks

Enhua Tan1, Lei Guo2, Songqing Chen3, and Xiaodong Zhang1

1Dept. of Computer Science & Eng. 2Yahoo! Inc. 3Dept. of Computer Science

The Ohio State University 701 First Avenue George Mason University

Columbus, OH 43210 Sunnyvale, CA 94089 Fairfax, VA 22030

{etan,zhang}@cse.ohio-state.edu lguo@yahoo-inc.com sqchen@cs.gmu.edu

Abstract—
Millions of residential users are widely served by cable or

DSL connections with modest upload bandwidth and relatively
high download bandwidth. For the increasingly important and
demanding P2P applications such as VoIP, BitTorrent, and
Internet streaming, stable or high upload bandwidth is required.
Inadequate upload bandwidth degrades the performance of
these applications among residential users. On the other hand,
our Internet measurements show that plenty of idle upload
bandwidth (from 50% to 80%) is always available in a local
residential network. Based on this observation, we propose a
system prototype to Coordinate Upload Bandwidth Sharing
(CUBS) among neighboring residential users. Specifically, the
idle upload bandwidth of neighbors can be used upon a request
from a demanding user. Since it has become a common practice
to deploy wireless access points in a residential user’s home, we
have built CUBS by leveraging the support from the wireless
networks. In CUBS, to discover and manage idle bandwidth,
a localized overlay is constructed by the cooperative users.
CUBS is application independent as the bandwidth sharing is
implemented at the network layer. CUBS is also ISP transparent
because the sharing of neighbors’ bandwidth does not demand
any additional bandwidth supplies. We have evaluated the CUBS
system prototype with experiments on Internet. The experimental
results demonstrate that CUBS can effectively improve the
performance of upload intensive applications by more than 30%.

I. INTRODUCTION

With the significantly improved transmission speed and

falling prices, residential users have widely subscribed to

broadband services, such as cable or DSL, for Internet ac-

cesses. Recent studies by Internet World Stats [1] show that

there are over 70% Internet users of U.S. population, among

which the number of broadband subscribers has passed 60%

in November 2005 [2], and this number keeps increasing. In

addition, residential users commonly have the 802.11 WLAN

deployed at home to access the Internet. For example, Jupiter

Research estimates 65% of the U.S. households use Wi-Fi

access points [12].

A. Problems Caused by Limited Upload Bandwidth

For a residential user using broadband connections, the

download and upload bandwidth limits are normally asymmet-

ric, with a substantially lower upload bandwidth. For example,

a subscriber to DSL service can pay a flat fee to get up to 1.5

Mbps download bandwidth, but only up to 384 Kbps upload

bandwidth. While many residential users are satisfied with

the fast download speed offered by the broadband services

for their download-dominant Web accesses, more and more

residential users participate in increasingly demanding and

dependable P2P-based applications that prefer equal upload

to download bandwidth in principle. For example, BitTorrent,

the traffic of which accounts for more than 50% of Internet

traffic, applies a “tit-for-tat” policy to encourage each user

to contribute to other users by uploading content [16], and

a peer that could not upload sufficiently fast would suffer

slow download. Similarly, in P2P-based Internet live streaming

applications, the slow upload to other users leads to significant

streaming quality degradation. For a Skype conference call,

the conference host is required to relay packets for other

conference attenders, which also demands substantial and

stable upload bandwidth.

B. Would An Upload Bandwidth Increase Effectively Address

the Problems?

To answer the above question, our study starts by investigat-

ing upload bandwidth availability and distribution patterns in

residential networks. Having observed 25 residential networks

connected through large broadband service providers by active

probing from Planet-Lab for 21 days, we have had two main

findings summarized as follows. First, compared with the

download channel utilization (most users utilize the download

bandwidth fully and frequently), the upload channel utilization

is much more bursty and unbalanced. For example, less than

20% users highly demand upload bandwidth in the cable

network. This confirms the reported P2P user behavior [28]:

only a small percentage of peers make contributions in P2P

communications by uploading or relaying contents to others.

Second, we find that there always exists idle upload bandwidth

in a residential network. Overall, about 50% to 80% upload

bandwidth is idle in our observations. These two findings

imply that even if ISPs provide more upload bandwidth for

each user or reset the upload and download bandwidth limits

equally, it may still not satisfy the increasing demand of

active P2P users while more idle upload bandwidth in the

network would be underutilized, or the download channel

would be more congested. Thus, to simply increase the upload

bandwidth for each individual user is not a cost-effective way

to address the problems.

978-1-4244-4634-6/09/$25.00 ©2009 IEEE 193

��������	
 � �
����� � ��	�����

������	

����� �
��	�����

������
���

����
���

…...
...

Fig. 1. Cable Network Bandwidth Allocation (U.S.)

C. Our Solution: Coordinated Upload Bandwidth Sharing

(CUBS)

A major objective of this study is to enable the Internet to

provide residential users with demanded upload bandwidth for

their P2P related applications without demanding additional

bandwidth or infrastructure support from ISPs. Motivated by

our measurement results, we have built a system to Coordinate

the Upload Bandwidth Sharing (CUBS) in a residential net-

work. Since residential users commonly have wireless access

points deployed at home for Internet accesses, CUBS is built

with the support of wireless accesses. In CUBS, an overlay

network is formed to monitor the availability of the upload

bandwidth from all members. Once a user is unsatisfied

with the upload bandwidth from its local Internet access, she

can utilize the idle upload bandwidth from the neighboring

networks via wireless accesses. Such bandwidth sharing is

fair and flexible via our distributed idle bandwidth discovery

and management mechanisms. CUBS has two merits. First, it

is application independent as the bandwidth sharing is imple-

mented at the network layer. Second, CUBS is ISP transparent

as the sharing of neighbors’ bandwidth does not demand

additional bandwidth supply or infrastructure support from

ISPs. We have comprehensively evaluated our implemented

CUBS prototype. The experimental results demonstrate that

CUBS can significantly improve the performance of upload

intensive applications without affecting the performance of

neighboring networks.

The remainder of the paper is organized as follows. We

introduce the background of residential networks in section II

and present our Internet measurement results in section III.

We describe the design of CUBS in section IV. Based on the

implemented prototype, we evaluate CUBS in section V. Re-

lated work is presented in section VI and we make concluding

remarks in section VII.

II. BACKGROUND

Many applications, such as VoIP, P2P-based Internet

streaming, BitTorrent-like download, heavily rely on user’s

upload bandwidth to obtain satisfied quality of service. In

this section, we first briefly overview the basic background

regarding bandwidth caps in residential network, and then

present a set of experiments to demonstrate why insufficient

upload bandwidth and congested upload channel can signifi-

cantly degrade the performance of these applications perceived

by end users in residential networks.

A. Bandwidth Allocation in Residential Networks

In order to have high speed accesses to the Internet, most

residential users today are using cable or DSL modems

connecting to ISPs. Commonly, for a Internet subscription in

residential networks, the download bandwidth a user gets is

always much larger than the upload bandwidth (For example, 7

Mbps / 512 Kbps in a cable network) since normal residential

users usually download more contents than that they upload.

ISPs may also provide symmetric upload/download rate sub-

scriptions for business users with a higher price. Figure 1

shows the typical bandwidth allocation for the upstream and

downstream (or TV) channels in U.S. cable network [3]. The

upstream channel is 2 MHz, ranging from 5 to 42 MHz, while

the downstream channel is much larger (6 MHz), and has

a much wider range to select (42 to 850 MHz) besides the

allocated channels for TV programs.

A downstream or upstream channel is shared within a

residential neighborhood through setting download and upload

bandwidth caps over the cable modem by the ISP. Bandwidth

caps are used by ISPs in order to limit the speed of Internet

accesses. The total physical speed for the downstream or

upstream channels is much larger than the allocated download

or upload speed for each end user. For example, DOCSIS

1.x [4] can provide 38 Mbps downstream speed and limits

the upstream speed to 9 Mbps for each channel. For DSL

networks, the upstream channel is not shared among neigh-

bors, but the ISPs also have bandwidth cap settings in order

to provide a similar access speed to end users because the

distance of the DSL modem to the DSL Access Multiplexer

(DSLAM) affects the physical transmission speed substantially

(ranging from 800 Kbps to 25 Mbps).

Such a bandwidth limit policy thus leads to the following

unbalanced demand/supply situation: when most users are not

uploading, active users cannot use more than their upload caps

although there is idle upload bandwidth available in the same

network or neighboring networks. This situation has caused

several performance problems as we will demonstrate in the

next subsection. As the bandwidth cap is often implemented

with token bucket, one might suggests to increase the token

bucket size so that more upload bandwidth can be utilized for

a longer duration by active users. However, this approach is

infeasible at all in practice because most uploads last for hours

while the token bucket size cannot be that large.

B. Problems in Residential Networks

In this subsection, through experiments, we quantitatively

study existing problems of delay-sensitive applications and

P2P applications in residential networks.

1) Congested residential upload channel directly deterio-

rates delay-sensitive application’s performance: VoIP is a

dependable service on the Internet today. VoIP applications are

very sensitive to end-to-end transmission delay (for example,

one-way transmission time should be less than 150 ms in

order to have satisfactory conversation quality [8], [27]). For

VoIP applications in residential networks, the upstream voice

packets can be queuing in the long queue of cable/DSL

modem [17] and result in a large transmission latency when

194

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 50 100 150 200 250 300
 200

 250

 300

 350

 400

 450

 500

 550

 600
m

s

K
bp

s

Time (sec)

Ping RTT
Uploading Tput

(a) Stable Upload after Midnight

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 50 100 150 200 250 300
 200

 250

 300

 350

 400

 450

 500

 550

 600

m
s

K
bp

s

Time (sec)

Ping RTT
Uploading Tput

(b) Unstable Upload at 8:00 PM

Fig. 2. Round Trip Time Varies along Upload

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100 120 140

D
ow

nl
oa

d
T

im
e

(m
in

)

Upload Limit (KB/s)

Fig. 3. BitTorrent Download Time Decreases
with Larger Upload Bandwidth

the upload bandwidth is fully occupied by other applications

such as P2P streaming. That is, when a user in a home

network runs a VoIP client, the upload traffic from other active

applications on the same computer or from other users in

the same network, can easily delay the user’s upstream voice

packets due to the congestion in upload channel.

To demonstrate how upload traffic can deteriorate the voice

quality, we experiment by using a ICMP ping session to-

gether with an Iperf [5] upload session on a computer directly

connecting to a cable modem. The cap of upload bandwidth

for this subscription is 500 Kbps. The Iperf session uses the

TCP protocol to continuously generate upload traffic. We run

the experiments at different times of a day. Figure 2 shows

the ping round trip time along with the upload throughput.

On Figure 2, the left y-axis represents the round trip time

in milliseconds, while the right y-axis represents the upload

bandwidth in Kbps. As shown by Figure 2(a), for a relatively

stable upload session that is performed after midnight when

most neighboring users are inactive, the ping round trip time

increases from 28 ms to 1,000 ms steadily after the Iperf

session starts to upload. However, a round trip time larger

than 300 ms is not acceptable for VoIP sessions. We also

conduct the same experiments at 8:00 PM in the evening (peak

time). Figure 2(b) shows that when the achievable upload

rate is varying due to the competition from other users from

the same residential network, the ping round trip time varies

significantly, resulting in a larger standard deviation (jitter),

274 ms in this case. In fact, when the upload bandwidth

is highly demanded during peak time, an upload session is

often unstable and thus further deteriorates the VoIP quality

by increasing the transmission jitter.

2) Insufficient residential upload bandwidth hurts the per-

formance of P2P applications: For most P2P applications,

users are encouraged to upload to other users in order to

improve the scalability and download performance. The more

a user contributes (by uploading), the more likely the user

gets a better service quality. For example, in the widely

used BitTorrent protocol, a tit-for-tat mechanism is engaged

in order to suppress free riders [16], [20]. Although such a

design provides an effective incentive mechanism, for res-

idential BitTorrent users, this has posed a problem due to

the insufficient upload bandwidth. As a result, the perceived

download performance by residential users could have been

constrained by the cap of upload bandwidth.

To study the effect of insufficient upload bandwidth to

download performance, in our experiments, we run a BitTor-

rent client by restricting its upload bandwidth to a gradually

increasing threshold. As we can observe from Figure 3, the

download time generally decreases when the upload band-

width threshold increases. The trend is not strictly linear,

since for the torrent we tested, there existed more than 2,000

seeds (totally about 8,000 peers) that could help increase the

download speed for peers with low upload bandwidth. In

general, a slow upload speed results in being penalized for

download. In [26], the authors also show that the download

speed increases linearly when the upload capacity is less than

200 KB/s (and sub-linear growth after that).

III. USERS’ UPLOAD BANDWIDTH USAGE

In order to investigate the upload bandwidth usage of

broadband network users, we have collected a large number

of IP addresses of P2P users, by using a Gnutella network

crawler. We then reversely map each IP address to its corre-

sponding domain name, and identify the top 7 ISPs presented

in these domain names: Charter, Comcast, Cox, Road Runner,

Ameritech, Pacbell, and Verizon. The first four provide cable

services while the rest three provide DSL connections. Then

we randomly pick up 3 to 4 IPs from each ISP, and scan

the subnet corresponding to the IP address. In order to detect

available upload bandwidth of an end host, we send ICMP

echo request ping packets to the end host that can respond

with ICMP echo reply packets [13], [17]. For the subnets

we scanned, the responding hosts account for up to 78.8%

of the subnet IP range. We saturate the upload channel of

the destination by sending probing packets every 10 ms (or

smaller for hosts with higher upload bandwidth) for a very

short duration (typically 5 seconds), so that we can estimate

the available upload bandwidth by observing the number of

losses in the received packets. The packet size is 1,500 bytes.

The measurement is repeated every 30 minutes for each host

in a subnet.

Because ICMP ping packets directly compete with the ex-

isting upload traffic, the raw estimation of available bandwidth

based solely on probing packet losses may overestimate the

available bandwidth. To investigate the accuracy of the raw

estimation method, we did Internet experiments by tuning the

available upload bandwidth of the probing target host in our

control. In the experiments, the available upload bandwidth is

195

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500

A
va

ila
bl

e
B

an
dw

id
th

 (
K

bp
s)

Measured Available Bandwidth (Kbps)

Raw Result
Adjusted Result

Ideal Result

Fig. 4. Illustration of Our Available Bandwidth Estimation Adjustment
Method

set to 0, 100, 200, 300, 400, 500 Kbps. The distribution of

the raw estimation results shown in Figure 4 (rightmost curve)

confirmed that the raw estimation method overestimates the

available bandwidth, especially when the available bandwidth

is not sufficient. On the other hand, the experiments results

show that the raw estimation results have a close to linear

distribution. Based on this observation, we propose a raw

estimation adjustment method by linearly mapping the raw

estimation results from the numerical value range of [min,

max] to [0, max]. min and max are the minimum and

maximum values of the raw estimation results, which can be

obtained when the measurements are repeated for a number of

times. The leftmost curve in Figure 4 shows the distribution

of our adjusted estimation results, which sugguests that the

adjusted estimation method is much more accurate than the

raw estimation method. In fact, our adjusted estimation results

slightly underestimate the available bandwidth, which implies

that our available bandwidth estimation method is on the

conservative side.

We have probed 25 subnets with 2,040 IP addresses in 21

days (during February and March, 2008) altogether, with 23

senders distributed over Planet-Lab, and 2 senders locally.

Table I summarizes the statistics through our measurements

for the 14 subnets in a period of 21 days. For each ISP, we

present the results of 2 subnets. In this table, the last column

shows the average idle upload bandwidth (in percentage of the

median upload capacity) during the probing period. Compared

with cable services, DSL services have a higher upload

bandwidth utilization. In the following, due to the page limit,

we present the details of 6 subnets, three from cable and three

from DSL, starting from cable service providers.

Figure 5(a) shows the average and the standard deviation of

the available upload bandwidth of a Comcast subnet. There is

an amount of 64% of upload bandwidth available on average

for this Comcast subnet, and the average available bandwidth

shown on Figure 5(a) does not vary too much from day to day.

Figure 6(a) further shows the CDF (Cumulative Distributed

Function) of the average available upload bandwidth of each

host, and the corresponding minimum and maximum available

upload bandwidth of that host. The figure confirms that less

than 20% of the hosts in this subnet use more than half of

the upload bandwidth on average. Also, note that for users

of Comcast, the upload bandwidth of some subscribers could

reach 1.6 Mbps to 2.4 Mbps.

TABLE I
STATISTIC SUMMARY OF MEASURED 14 RESIDENTIAL NETWORKS

of Median Average Idle
ISP Measured Upload Upload

IPs Capacity Bandwidth
(Kbps) (%)

Charter 70 487 62
66 261 93

Comcast 63 1578 64
52 1593 75

Cox 36 544 69
32 536 71

Road Runner 35 444 77
34 359 72

Ameritech 159 343 52
79 352 57

PacBell 146 377 58
148 352 57

Verizon 193 558 59
16 379 83

Figure 5(b) shows that in a Road Runner subnet, 77% of

upload bandwidth is unused on average. The largest cap of the

upload bandwidth for users in this subnet is around 480 Kbps.

Correspondingly, Figure 6(b) demonstrates that less than 10%

of the hosts use more than half of the upload bandwidth on

average.

Figure 5(c) shows that in a Cox subnet, there is an amount

of 69% of upload bandwidth unused on average. Notice that al-

though the largest upload cap for users in this subnet is around

550 Kbps (comparable to that in the Road Runner subnet), the

available bandwidth changes significantly from time to time.

Consider what we have observed from Figure 5(a) and 5(b),

we tend to believe that users in this subnet is more active than

users in other subnets.

For DSL users, Figure 7(a) shows the available upload

bandwidth among the active hosts in an Ameritech subnet

during 21 days. As we can see, the average available upload

bandwidth shows little variation over time, and it is about 52%

of the maximum upload capacity, which is quite stable across

the 21 days we measured.

Figure 8(a) further shows the CDF of the average avail-

able upload bandwidth of each host, and the corresponding

minimum and maximum available upload bandwidth of that

host. The average idle upload bandwidth varies from each

other for the measured hosts. Our conjecture is that for DSL

networks, the different distance to the telephone company

leads to different physical upload (and download) speed for

each host.

We perform similar experiments for other residential net-

works serviced by DSL. Figure 7(b) and Figure 7(c) show

the corresponding results in a Pacbell subnet and a Verizon

subnet. The average available upload bandwidth is 58% for

Pacbell, and 59% for Verizon. We can also observe staircases

in Figure 8(c), which suggests that subscribers probably have

paid different fees to subscribe for different upload (and

download) rates in DSL as well. In this Verizon network, the

upload caps are around 350 Kbps and 750 Kbps.

Figure 9 shows the cumulative distributions of average prob-

ing ping round-trip time (RTT) for the measured residential

networks. This RTT distribution only reflects the RTT when

196

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 2 4 6 8 10 12 14 16 18 20

A
va

ila
bl

e
U

pl
oa

d
B

an
dw

id
th

 (
K

bp
s)

Time (Day)

Mean
Standard deviation

(a) Comcast

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10 12 14 16 18 20

A
va

ila
bl

e
U

pl
oa

d
B

an
dw

id
th

 (
K

bp
s)

Time (Day)

Mean
Standard deviation

(b) Road Runner

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10 12 14 16 18 20

A
va

ila
bl

e
U

pl
oa

d
B

an
dw

id
th

 (
K

bp
s)

Time (Day)

Mean
Standard deviation

(c) Cox

Fig. 5. Cable: Available Upload Bandwidth during Measurement Period (day)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500

F
ra

ct
io

n
of

 S
am

pl
ed

 H
os

ts

Available Upload Bandwidth (Kbps)

Mean (with Min, Max)

(a) Comcast

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450 500

F
ra

ct
io

n
of

 S
am

pl
ed

 H
os

ts

Available Upload Bandwidth (Kbps)

Mean (with Min, Max)

(b) Road Runner

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700

F
ra

ct
io

n
of

 S
am

pl
ed

 H
os

ts

Available Upload Bandwidth (Kbps)

Mean (with Min, Max)

(c) Cox

Fig. 6. Cable: Average Available Upload Bandwidth for Each Host (CDF)

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10 12 14 16 18 20

A
va

ila
bl

e
U

pl
oa

d
B

an
dw

id
th

 (
K

bp
s)

Time (Day)

Mean
Standard deviation

(a) Ameritech

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10 12 14 16 18 20

A
va

ila
bl

e
U

pl
oa

d
B

an
dw

id
th

 (
K

bp
s)

Time (Day)

Mean
Standard deviation

(b) Pacbell

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10 12 14 16 18 20

A
va

ila
bl

e
U

pl
oa

d
B

an
dw

id
th

 (
K

bp
s)

Time (Day)

Mean
Standard deviation

(c) Verizon

Fig. 7. DSL: Available Upload Bandwidth during Measurement Period (day)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700

F
ra

ct
io

n
of

 S
am

pl
ed

 H
os

ts

Available Upload Bandwidth (Kbps)

Mean (with Min, Max)

(a) Ameritech

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700

F
ra

ct
io

n
of

 S
am

pl
ed

 H
os

ts

Available Upload Bandwidth (Kbps)

Mean (with Min, Max)

(b) Pacbell

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800

F
ra

ct
io

n
of

 S
am

pl
ed

 H
os

ts

Available Upload Bandwidth (Kbps)

Mean (with Min, Max)

(c) Verizon

Fig. 8. DSL: Average Available Upload Bandwidth for Each Host (CDF)

197

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
D

F

Average RTT (ms)

ameritech.net
charter.com
comcast.net

cox.net
pacbell.net

rr.com
verizon.net

Fig. 9. Probing Ping Round-Trip Time (Only for Saturated Upload Channel)

the upload channel of the probing host is saturated because of

our probing packets. As shown in the figure, in most of the

networks, the round-trip time is larger than 1 second, which

suggests that the lengths of downstream/upstream queues of

the residential networks are very large [17]. These results vali-

date the result shown in Figure 2, that is, the congested upload

channel of residential networks can lead to high upstream

latency and variation, which will degrade the performance of

delay-sensitive and/or throughput-sensitive applications.

In summary, through a 21 day measurement study of

25 residential networks supported by top 7 ISPs in United

States, our measurement results show that: (1) In broadband

networks, there exists plenty of unused upload bandwidth,

ranging from about 50% to 80% of the entire upload capacity

on average; (2) For the cable networks we have observed,

less than 20% users have been fully utilizing their upload

bandwidth, which suggests that the upload channel is utilized

in an unbalanced way.

IV. SYSTEM DESIGN

While various applications, particularly P2P applications,

may have been adversely affected by the limited residential

upload bandwidth as we have shown in section II, the mea-

surement results in last section show that there is a significant

portion of upload bandwidth available in a residential cable or

DSL network on average. These observations motivate us to

leverage such idle upload bandwidth to respond to the increas-

ing demand of P2P applications. For this purpose, we design

CUBS, a scheme for Coordinated Upload Bandwidth Sharing

in a residential network. CUBS is application independent as

the bandwidth sharing is implemented at the network layer.

A. An Overview of CUBS

CUBS leverages existing widely deployed WLANs in a

residential network (including cable and DSL connections) for

upload bandwidth sharing without demanding any infrastruc-

ture support. Today, in a residential network, most subscribers

use a wireless AP (access point) to provide Internet accesses

for multiple computers at home. In this work, we call this

AP as the user’s local AP. In addition to the local AP, a

wireless station can often connect to a few neighboring APs.

A previous study in 2006 shows that the number of wireless

APs that can be detected in residential areas ranges from

Local AP of B

Station B

Local AP of A

Station A

Local AP of C

Station C

����� ����� 	�
� ������
���� ����� �������
�

	������
�� ��
� ������� 	� �

���
�

�����
������� ��

CUBS Overlay

	������
� ��
� ���
���
������� 	� �

���
!

��
� ��
�"�
�� $
�
��� %

Fig. 10. Illustration of CUBS system

2 to 20 [12]. CUBS thus leverages this fact to effectively

share upload bandwidth among residential neighboring users

via wireless networks. In CUBS, we assume each station

that wants to participate in CUBS bandwidth sharing has

two network interfaces: one wired/wireless interface used to

connect to its local AP, and another wireless interface used to

connect to neighboring APs.

To facilitate the bandwidth sharing, a CUBS overlay is

formed by the participating stations using their local APs. Via

this overlay, each station can exchange information including

the bandwidth availability, network performance, and access

credentials of its local AP. With the help of CUBS overlay,

a station demanding additional upload bandwidth can easily

find accessible neighboring APs that have idle bandwidth by

querying on the overlay. By connecting to the local AP via

one interface and associating with the most idle neighboring

AP (called foreign AP) when possible via another interface,

a station will have accesses to possibly doubled upload

bandwidth with these two interfaces. Notice that CUBS can

share the upload bandwidth from the same ISP or different

ISPs (multihoming) as long as there is idle bandwidth from

neighboring APs.

To avoid aggressively using neighboring AP’s upload band-

width, CUBS restricts the use of upload bandwidth on the

neighboring AP when it detects competitions between itself

and the neighboring AP owner. To avoid competitions with

the download traffic of the neighboring AP owner, CUBS

restricts download dominant connections to use the local AP

only based on traffic direction prediction.

Figure 10 illustrates the typical operations of a CUBS

system. Stations A,B,C form the CUBS overlay. Station A tries

to use the neighboring local AP of Station B at a time, and

later associates with the local AP of Station C when Station

B actively uses its upload bandwidth. We will explain details

in the following subsections.

B. CUBS Overlay Operations

In principle, the CUBS overlay works like common P2P

networks, but with the unique purpose of sharing AP infor-

198

mation instead of files. The main challenge for the CUBS

overlay is to update/query the sharing information at run time.

In fact, CUBS has an inherent localization characteristic: each

station is only interested in the information of the neighboring

APs, which implies that each station will be only interested

in exchanging information with geographical nearby stations

connecting to the neighboring APs. Because of this local-

ization property, CUBS is designed as an unstructured P2P

overlay in order to minimize the query hops for performance

optimization.

Procedure 1 CUBS Workflow
global station S; /* local station */
daemon()

1: /* periodical operations */
2: S.localAP.avail-upload-bw ← S.localAP.upload-capacity - (sum of upload

bandwidth usages of S.localAP)
3: S.neighborAPs ← scanned neighboring APs with acceptable signal

strength and wireless bandwidth
4: if number of active S.neighborNodes < Threshold-num-overlay-

neighbors then
5: update-neighbor-nodes()
6: end if
7: S.foreignAP.avail-upload-bw ← update from S.foreignAP owner
8:
9: /* operations triggered by conditions */

10: if S.foreignAP owner starts exclusively using S.foreignAP then
11: associate-with-neighbor-AP()
12: end if
13: For a new connection, predict its upload-to-download traffic ratio. Put

download dominant connections to local connectivity and route other
connections to available connectivities based on traffic load.

update-neighbor-nodes()

1: /* Query tracker */
2: Query tracker with the detected AP-IDs of S.neighborAPs
3: S.neighborNodes ← list of stations using S.neighborAPs
4:
5: /* Connecting to neighbor nodes */
6: for sta in (S.neighborNodes) do
7: if sta has connection with S then
8: continue
9: end if

10: if sta has public IP or port forwarding on NAT then
11: Establish bidirectional connections with sta
12: else
13: Use tracker to relay messages
14: end if
15: end for

associate-with-neighbor-AP()

1: max ← 0
2: for ap in (local AP of S.neighborNodes) do
3: if (ap is in S.neighborAPs) AND (S has access on ap) then
4: if idle upload bandwidth of ap > max then
5: max ← idle upload bandwidth of ap
6: new-assoc-AP ← ap
7: end if
8: end if
9: end for

10: S.foreignAP ← new-assoc-AP

Bootstrap For a new node joining CUBS overlay, it needs

to bootstrap and find other nodes. To speed up this process,

CUBS uses a tracker to record the local AP-ID and IP address

of each overlay node in a cache. The local AP-ID is the unique

identity of the node’s local AP, which is a pair of ESSID and

AP MAC address.
Overlay Connections Upon joining the CUBS, the new

node queries the CUBS tracker with the detected AP-IDs of

neighboring APs, and the tracker returns the IP addresses of

the nodes associated with the AP-IDs if it hits in the cache.

After that, the new node connects to the neighboring nodes so

that they can exchange AP information directly as neighbors

in the CUBS overlay. For stations without port forwarding

enabled on NAT, the tracker can be used to relay messages.

After the establishment of the neighbor connection, if either

node can not detect the local AP of the other node, the

connection will be terminated, in order to prevent a node

joining CUBS with no local AP to share with other nodes.

Idle Bandwidth Discovery In order to enable idle

upload bandwidth discovery and management, each CUBS

node needs to periodically (for example, 30 seconds) measure

the upload bandwidth rates of itself on its local AP and

neighboring AP being used, and collects the upload bandwidth

rates from other CUBS users of its local AP via CUBS

overlay neighbor connections. Then the node can calculate

the available upload bandwidth by subtracting the sum of

the upload rates from the upload capacity of its local AP.

The calculated result serves as an important metric for CUBS

neighbors to discover idle upload bandwidth for sharing.

Failure Recovery If a node gets offline or has a power

failure, while its local AP is still alive, the nodes using its local

AP will continue their usages. Meanwhile the other nodes

will not be able to discover this AP and share its upload

bandwidth until the AP owner returns to CUBS overlay. When

the local AP itself fails, the related nodes notice the failure

and will attempt to associate with another neighboring AP for

bandwidth sharing.

C. CUBS Node Operations

With the help of CUBS overlay, a newly joined CUBS

node can choose the neighboring AP with the highest available

upload bandwidth and an acceptable signal strength for sharing

upload bandwidth. In order to associate with the neighboring

AP, this node will request the chosen neighboring AP owner

to grant accesses for the AP. After associating with the chosen

neighboring AP (foreign AP), the node grows its upload

bandwidth by branching its upload traffic to the local AP

through one network interface and the foreign AP through

another wireless interface.

To utilize the idle bandwidth discovered via CUBS, for a

new TCP connection initiated by the node, CUBS modifies the

connect system call and binds the connection to one of the

available network interfaces based on the traffic load. Because

most of the UDP traffic is for VoIP or other delay-sensitive

applications, CUBS node simply routes the UDP packets to

the interface connecting to its local AP to minimize the delay.

D. Fair Usage of the Upload Bandwidth of Foreign AP

A CUBS node carefully controls the usage of the upload

bandwidth of the foreign AP in order to prevent the degrada-

tion of the upload performance for the foreign AP owner. For

example, a node can engage Traffic Control (tc) [6]

to limit the usage of the upload bandwidth to 70% of the

upload capacity on the foreign AP.

199

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

F
ra

ct
io

n
of

 T
C

P
 C

on
ne

ct
io

ns

Predition Error (%)

50
20
10
5
1

(a) Traffic Volume

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

F
ra

ct
io

n
of

 T
C

P
 C

on
ne

ct
io

ns

Predition Error (%)

50
20
10

5
1

(b) Mean of Upload/download Traffic Ratio

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

F
ra

ct
io

n
of

 T
C

P
 C

on
ne

ct
io

ns

Predition Error (%)

50
20
10
5
1

(c) LMMSE on Upload/download Traffic Ratio

Fig. 11. Prediction Difference Distributions for Different Prediction Methods

More importantly, in order to let the foreign AP owner

be able to fully use the upload bandwidth when it becomes

active, CUBS needs to detect this situation and responds

quickly. As a rule of thumb, if the owner starts to actively

use the upload bandwidth and detects that the available upload

bandwidth of the AP becomes scarce, the owner can conclude

that there might exist bandwidth competitions on the AP, and

then signals other users of the AP to refrain from competitions.

Such a user then decreases its usage to the half of its current

usage, and observes if the owner still signals for further

actions. If so, it restrains further usage of the foreign AP,

and tries to find other CUBS neighboring APs for upload

bandwidth sharing. That is, CUBS initiates hand-off only

when it is necessary to guarantee the AP owner’s performance.

Notice that if two CUBS nodes are competing on a foreign

AP while none of them are owners, the two nodes can detect

this situation and continue their usage since the owner is still

idle and is able to provide sharing bandwidth.

Fair bandwidth usage also serves as an incentive mechanism

to encourage residential users to share bandwidth over CUBS,

since the sharing user can still get its full upload bandwidth

when it is active. The next subsection details on how to enable

the sharing to be fair on the download side.

E. Prediction-based Download Bandwidth Utilization of For-

eign AP

For a new TCP connection, if it is upload intensive or

bidirectional, the connection can be bound to the interface

associated with the foreign AP. Otherwise, this connection

should be bound to the interface connecting to local AP, in

order to avoid excessive usage of the foreign AP’s download

bandwidth. However, this requires prediction of a connection’s

upload to download traffic ratio before it is established. In

order to do so, we have designed and evaluated several history-

based prediction methods.

We first analyze the packet header trace of Dartmouth

residential wireless network (in Apr 2004) [23], and find that

for all the TCP connections to a remote host, the upload-to-

download traffic ratio varies within a small range. Then we did

trace-driven evaluations for several prediction methods. The

first method predicts upload-to-download traffic ratio based on

the total upload and download traffic of latest n connections

to the same remote host. n is the history size, which we set

to 1, 5, 10, 20, and 50 in our evaluations. The second method

uses the mean of the upload-to-download traffic ratios of the

latest n connections for prediction. The third method is based

on LMMSE [18] estimation for the upload-to-download traffic

ratios of the latest n connections. LMMSE is used for Internet

traffic prediction.

Figure 11 shows the distributions of the difference of

predicted ratio to real ratio (the smaller the better) for the

three methods. As shown on Figure 11, the second method

is simple, but is much more accurate than the first method:

for more than 80% connections, the difference is less than

20%. The third method is more complex, however, achieves

comparable performance to the second method. And when the

size of history increases above 1, the difference distributions

are quite close to each other.

With all the above considerations in designs, Procedure 1

shows the workflow for our CUBS system. Each station runs

a daemon for background operations. The daemon also dy-

namically determines the traffic routing through the available

network interfaces.

F. Discussions

In addition to the basic operations implemented in our

prototype system, the following features can also be applied

in CUBS for better performance or security considerations.

Overlay-controlled User Authentication: In order to

prevent any unauthorized usage of a shared AP in CUBS, the

owner of the shared AP can enable/disable the association

of a guest node by controlling the allowed MAC addresses

using the AP through the web service provided by the AP.

The owner adds the MAC address of an overlay neighbor to

the access control list when the connection to the neighbor

is established, and removes the corresponding MAC address

upon the departure of a neighbor. The AP owner can also use

the access control list to avoid abusive usage of the shared

bandwidth by removing malicious neighbors.

Multiplexing One Wireless Interface to Use Multiple

APs: When a user only has one wireless network interface,

it can still share bandwidth in the CUBS overlay with the help

of FatVAP-like [22] multiplexing mechanism. FatVAP allows

one wireless interface to connect to multiple APs at the same

time by fast switching among APs, thus can be useful for

CUBS users with only one wireless interface to share upload

bandwidth among neighboring APs.

Mesh Networks for Sharing Long Distance APs: CUBS

node currently only connects to neighboring APs to harness

200

TABLE II
BITTORRENT DOWNLOAD EXPERIMENT ON PLANET-LAB

Balance Download Upload
Method Bytes (MB) Bytes (MB)

1 Interface 261.2 199.0
Load-based 345.5 392.9
Hash-based 342.9 388.2

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500 600 700 800 900

U
pl

oa
di

ng
 T

hr
ou

gh
pu

t (
K

bp
s)

Time (sec)

Thread 1
Thread 2

Owner of Shared AP

Fig. 12. Idle Bandwidth Sharing on CUBS Overlay

 0

 1000

 2000

 3000

 4000

 5000

 6000

w/ DHCP w/ Static IP

H
an

d-
of

f C
os

t (
m

s)

Fig. 13. Hand-off Cost Comparison

more available bandwidth. In fact, CUBS nodes can form

a wireless mesh network and route a upload packet to the

Internet via an AP which can be far away from the originator

of the packet. With the mesh network, upload bandwidth

sharing is no longer limited among neighboring CUBS nodes,

but can be shared among any nodes in the mesh network.

V. PERFORMANCE EVALUATION

We evaluate CUBS prototype based on the setup shown

in Figure 10. To emulate the residential network, we use

NISTNet 1 to control the Internet connections of the APs. We

configure the upload and download capacity of the emulated

residential networks to be 500 Kbps and 7 Mbps, which are

typical bandwidth caps for a cable subscription.

We first evaluate BitTorrent download with only one in-

terface connecting to the local AP, or with two interfaces

connecting the local AP and a CUBS neighboring AP at

the same time. The client we use is the original BitTorrent

client (Linux version). We deploy 1 seed and 18 peers over

Planet-Lab. The download lasts for one hour. For the download

with multiple interfaces, we try to balance the traffic in

Linux with the load-based balancing mechanism supported

by the kernel through routing table configuration [7]. We also

1http://www-x.antd.nist.gov/nistnet/

implement hash-based mechanism [19] to balance the traffic

by intercepting the connect system call and binding the new

TCP connection to different interfaces according to the hash

value of TCP destination. The results in Table II indicate that

both methods can increase the average upload throughput. As a

result, the average download throughput is improved by more

than 30% compared with only using one network connection.

To evaluate the overlay functions on available upload band-

width discovery and monitoring, as well as demonstrate the

fair usage of foreign AP’s upload bandwidth, we conduct the

following experiments. Station A accesses both its local AP

and a CUBS neighboring AP owned by station B (B-AP)

at the same time. Station A restricts the utilization of B-

AP’s upload bandwidth up to 70% of its capacity with tc.

From the overlay, station A gets the status of idle upload

bandwidth on B-AP detected by station B. We run two upload

threads with Iperf at station A periodically for 900 seconds.

Meanwhile, station B is idle for the first 300 seconds and then

starts uploading for a duration of 300 seconds. The result in

Figure 12 shows that it takes station B about 40 seconds (since

the idle upload bandwidth is detected every 30 seconds) to

upload at a full speed after station A finds it is competing with

the owner of B-AP and then ceases to utilize B-AP (notice

that during this competing period, station A doesn’t occupy

but share the upload bandwidth with station B). After station

B finishes uploading, station A quickly detects the available

bandwidth and re-utilizes B-AP again.

We also evaluate the cost of hand-off among shared APs in

CUBS. We periodically switch between two APs while using

ping to observe packet losses. Each run has 20 hand-offs.

As shown in Figure 13, when we use DHCP to get a new IP

address in a newly associated AP, the average cost (duration

of packet losses) is 3.5 seconds with 1.5 seconds standard

deviation. Instead, when we use a static IP address, the cost

is reduced to less than 1 second. This result suggests we can

decrease the hand-off cost by caching the allocated DHCP

addresses for each AP, and reusing the cached IP address to re-

associate with the corresponding AP. The chance of IP address

conflicting with existing stations is low because the leased

DHCP address is often the same for the same MAC address.

VI. RELATED WORK

Researchers have made efforts to understand the similarities

and differences between the broadband networks and other

networks at different layers. Claypool et al. used 47 broad-

band hosts to study the broadband access queue sizes [15].

Lakshminarayanan et al. measured the TCP throughput and

latency from 25 broadband hosts to other hosts [24]. Sinha et

al. showed that P2P applications created most of the upstream

traffic in broadband networks [29]. A recent study performed

a large-scale measurement of 1894 broadband hosts from 11

cable and DSL providers in North American and Europe [17].

Consistent with previous findings, work [17] confirmed that

many cable links show high variation in link bandwidths over

short timescales and packets transfer over cable suffer high

jitter as a result of cable’s time-slotted access policy while

DSL links show large last-hop delays. Work [14] characterized

201

the traversing traffic by residential customers. Balakrishnan

et al. [11] observed poor TCP download performance due

to limited upstream channel bandwidth and suggested ACK

congestion control and ACKs-first scheduling on the router.

Li et al. [25] studied AP queueing size as residential

broadband users commonly have 802.11 networks deployed

at home. Work [30] proposed AP caching for reducing upload

traffic of P2P applications in a WLAN. Multihoming has also

been studied to effectively utilize the limited bandwidth in

small enterprise or residential networks [31], [19], [9], [10],

[21]. Guo et al. considered practical multihoming for small en-

terprise through using DSL or cable connectivities at the same

time with a network device performing NAT and dynamic

DNS resolution [19]. Thompson et al. proposed PERM [31]

for end users to leverage neighbor’s WLAN to improve the

Internet connectivity. PERM focused on scheduling flows

based on predicting flow round-trip time or traffic volume, for

example, for web browsing or large file downloading flows.

In our CUBS system, flow scheduling is not based on flow

traffic volume prediction, since our target is on P2P upload

traffic, which is usually difficult to be predicted. Kandula et

al. proposed FatVAP [22] to aggregate available bandwidth

from accessible APs with only one wireless card by utilizing

Power-Saving Mode and time-switching among associated

APs. FatVAP focused on increasing the download bandwidth

for a wireless station with little considerations on the traffic

direction and the fair usage of the shared APs. In contrast,

our work focuses on mitigating the bottleneck effect of upload

bandwidth for both upload and download applications in the

last mile among residential users, which is a serious and timely

issue for various applications.

VII. CONCLUSION

The pervasive usage of cable or DSL broadband networks in

residential areas effectively benefits a lot of people by reliev-

ing the last mile access problem. However, the limited upload

bandwidth allocation at each subscriber has shown to be

problematic to the performance of various delay-sensitive or

P2P applications. While the upload demand from a subscriber

is frequently unsatisfied due to a low upload bandwidth cap,

in a residential network, the total upload bandwidth offered by

its ISP is often significantly underutilized. Therefore, in this

paper, without demanding additional bandwidth supply from

ISPs or infrastructure support, we present CUBS to enable a

residential user to share available idle upload bandwidth of its

neighbors in a coordinated manner to improve the performance

of various applications. CUBS flexibly shares the idle upload

bandwidth while providing fairness guarantees to all users

in the same residential network. Our experiments based on

a prototype implementation demonstrate the effectiveness of

CUBS.

ACKNOWLEDGMENT

This work has been supported in part by U.S. NSF under

grants CNS-0509054, CNS-0509061, CNS-0621629, CNS-

0621631, CNS-0721516, and CNS-0746649, and by U.S.

AFOSR under grant FA9550-09-1-0071. We appreciate con-

structive comments from the anonymous referees.

REFERENCES

[1] http://www.internetworldstats.com/am/us.htm.
[2] http://www.websiteoptimization.com/bw/0511/.
[3] Cable modem tutorial. http://www.cable-modems.org/tutorial/.
[4] Data Over Cable Service Interface Specifications (DOCSIS).

http://en.wikipedia.org/wiki/DOCSIS.
[5] Iperf. http://dast.nlanr.net/Projects/Iperf/.
[6] Linux traffic control. http://lartc.org/.
[7] Routing for multiple uplinks/providers.

http://lartc.org/howto/lartc.rpdb.multiple-links.html.
[8] One way transmission time. ITU-T Recommendation G.114, 2003.
[9] A. Akella, B. Maggs, S. Seshan, R. Sitaraman, and A. Shaikh. A

measurement-based analysis of multihoming. In Proc. of SIGCOMM,
Karlsruhe, Germany, August 2003.

[10] A. Akella, S. Seshan, and A. Shaikh. Multihoming performance benefits:
An experimental evaluation of practical enterprise strategies. In Proc.

of USENIX Annual Technical Conference, Boston, MA, 2004.
[11] H. Balakrishnan, V. N. Padmanabhan, and R. H. Katz. The effects of

asymmetry on TCP performance. In Proc. of MobiCom, 1997.
[12] V. Bychkovsky, B. Hull, A. Miu, H. Balakrishnan, and S. Madden.

A measurement study of vehicular Internet access using in situ Wi-Fi
networks. In Proc. of MobiCom, 2006.

[13] R. Carter and M. Crovella. Measuring bottleneck link speed in packet-
switched networks. Technical Report 1996-006, 15, 1996.

[14] K. Cho, K. Fukuda, H. Esaki, and A. Kato. The impact and impliactions
of the growth in residential user-to-user traffic. In Proc. of SIGCOMM,
2006.

[15] M. Claypool, R. Kinicki, M. Li, J. Nichols, and H. Wu. Inferring queue
sizes in access networks by active measurement. In Proc. of the 4th

Passive and Active Measurement Workshop (PAM), Antibes Juan-les-
Pins, France, April 2004.

[16] B. Cohen. Incentives build robustness in BitTorrent. In Proc. of
P2PEcon, 2003.

[17] M. Dischinger, A. Haeberlen, K. P. Gummadi, and S. Saroiu. Charac-
terizing residential broadband networks. In Proc. of IMC, 2007.

[18] Y. Gao, G. He, and J. C. Hou. On exploiting traffic predictability in
active queue management. In Proc. of INFOCOM, 2002.

[19] F. Guo, J. Chen, W. Li, and T. Chiueh. Experiences in building a
multihoming load balancing system. In Proc. of INFOCOM, 2004.

[20] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang. Measurement,
analysis, and modeling of BitTorrent-like systems. In Proc. of IMC, Oct
2005.

[21] A. Habib and J. Chuang. Improving application QoS with residential
multihoming. In Computer Networks, volume 51, August 2007.

[22] S. Kandula, K. Lin, T. Badirkhanli, and D. Katabi. FatVAP: Aggregating
AP backhaul capacity to maximize throughput. In Proc. of NSDI, 2008.

[23] D. Kotz, T. Henderson, and I. Abyzov. CRAWDAD trace set dart-
mouth/campus/tcpdump (v. 2004-11-09), Nov. 2004.

[24] K. Lakshminarayanan and V. Padmanabhan. Some findings on the
network performance of broadband hosts. In Proc. of IMC, 2003.

[25] F. Li, M. Li, R. Lu, H. Wu, M. Claypool, and R. Kinicki. Measuring
queue capacities of IEEE 802.11 wireless access points. In Proc. of
BROADNETS, Raleigh, NC, September 2007.

[26] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and A. Venkatara-
mani. Do incentives build robustness in BitTorrent? In Proc. of NSDI,
2007.

[27] S. Ren, L. Guo, and X. Zhang. ASAP: an AS-aware peer-relay protocol
for high quality VoIP with low overhead. In Proc. of IEEE ICDCS,
2006.

[28] M. Siekkinen, D. Collange, G. Urvoy-Keller, and E. Biersack. Perfor-
mance limitations of ADSL users: A case study. In Proc. of the 8th
Passive and Active Measurement Conference (PAM), April 2007.

[29] A. Sinha, K. Mitchell, and D. Medhi. Flow-level upstream traffic
behavior in broadband access networks: DSL versus broadband fixed
wireless. In Proc. of IEEE International Workshop on IP Operations &

Management (IPOM), 2003.
[30] E. Tan, L. Guo, S. Chen, and X. Zhang. SCAP: Smart caching in

wireless access points to improve P2P streaming. In Proc. of ICDCS,
June 2007.

[31] N. Thompson, G. He, and H. Luo. Flow scheduling for end-host
multihoming. In Proc. of INFOCOM, Barcelona, Spain, 2006.

202

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

