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the processor and DRAM, efficient utilization of caches oent

The management of shared caches in multicore processors is aues to be crucial to achieving high performance by miningzin

critical and challenging task. Many hardware and OS-basetim

access conflicts and unfairness, and by maintaining a hightgu

ods have been proposed. However, they may be hardly adoptedf services for chip multiprocessors. In existing commeadraiul-

in practice due to their non-trivial overheads, high conxties,
and/or limited abilities to handle increasingly compliedtscenar-
ios of cache contention caused by many-cores.

In order to turn cache partitioning methods into reality imet

ticore processors (e.g., [8, 11, 7]), the last-level castehared by
multiple cores. This design has several merits, such asasang
the cache utilization, reducing cache coherence compleaitd
creating a fast communication mechanism among cores by usin

management of multicore processors, we propose to provide a the shared cache. Given the memory bandwidth limit of multi-

affordable and lightweight hardware support to coordinatéh

core processors, shared caches have a better potentiatitoize

0OS-based cache management policies. The proposed metieods aMisses than that in private caches. However, existing ok

scalable to many-cores, and perform comparably with other p
posed hardware solutions, but have much lower overheadg-th
fore can be easily adopted in commodity processors. Hawing ¢
ducted extensive experiments with 37 multi-programmingkwo
loads, we show the effectiveness and scalability of thegsegh

processors do not have any control over allocating shareftkeoz-
sources among simultaneously running threads, which haseda
significant performance concerns in practice. If this isgugrot
well and timely addressed, the performance and scalalpiitgn-
tials of multicore processors will be seriously limited.

methods. For example on 8-core systems, one of our proposed A number of hardware designs have recently been proposed for

policies improves performance over LRU-based hardwardeac
management by 14.5% on average and up to 47.5%.

Categories and Subject Descriptors: B.3.2 [Primary Memory]:
Design Styles

General Terms: Design, Performance
Keywords: Shared Cache, Cache Management, Multicore

1. Introduction

With a continuous increase of the number of cores on a single

processor chip, the management of on-chip resources hagieec
critical and challenging in order to achieve high perforeceand
power efficiency in chip multiprocessors. Since on-chiphesc
play an important role to bridge the ever-increasing gawbet
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shared cache management [20, 10, 16, 5, 17]. The mechanisms
in these proposals require to modify the standard LRU replac
ment policy and to track the thread ownership of each cactee li
With these mechanisms, cache partition decisions madedheca
management policies can be enforced at the cache set leagl (w
partitioning) or at the whole cache level. There are two majo
limitations that hinder these hardware solutions to be sstbm
practice. First, since the number of cores will continuenréase
while the degree of cache associativity (the cache wayghited
(normally up to 16), way partitioning will not be scalableftdure
multicore processors. Second, the extra hardware contpleki
altering the LRU replacement policy and tracking the owhigrs
of each cache line is non-trivial, not only increasing thpaver-
head but also complicating design verification. In additifor
any hardware cache management approach, there inevitebly a
some worst-case scenarios of cache usage causing seveee cac
thrashing, which occurs even with uniprocessors. It is etgueto
be more severe on multicore processors because of reducked ca
capacity per core, interference due to shared caches, aitedi
memory bandwidth per core. Hardware designs still work &a&-s
narios they are designed for, but the lack of flexibility canadm
unavoidable issue and inherent weakness, particularlyufore
multicore processors with an increasingly large numberoés.

In contrast, cache optimization and cache resource manage-
ment at different levels of software, such as operatingesyst
compilers, and application programs have shown their géfec



ness to address the limitations of hardware solutions. Wgbft- coherence issues in the original designs. Second, dynaaattec
ware approach, long-term memory access patterns of most app re-allocation is supported with high efficiency. The exemutof
cations can be analyzed or predicted, thus, cache managamen  software policy is triggered at short intervals (10ms in the
optimization decisions can be made more effectively. Tiene fault setting) to check for the need for cache re-allocatidime
been several successful examples on uniprocessors withlesim interval is short enough to catch program phase changeormit
LRU cache replacement policy (e.g., [12, 15, 4, 1]). However enough to avoid significant checking overhead. The hardewpe
using a software approach to managing cache resources tit mul port avoids expensive data movement, and the softwareatesiv
core processors is much more challenging than in uniprocgss cache re-allocation at carefully selected times to corgaghe in-
as hardware resources are almost not shared and coordioated validation/reloading cost.

multi-threads. Researchers have evaluated OS-based pache We propose and evaluate two software policies: Process-lev
titioning methods in multicore processors without any &ddal Cache Management policlCM) and Memory Region-level Cache
hardware support [13]. These OS-based methods offer thie flex Management policy MICM). Our simulation-based experiments
bility in implementing various resource allocation podisi How- show that performance improvement over the baseline, ditache
ever, since hardware caches are not in the scope of OS managewith LRU replacement, is comparable to previously reponted
ment, OS-based methods can inevitably cause non-trivialae sults with hardware cache partitioning. The PCM policy ioy&s
overhead, and are not ready to be used as a general managemeperformance by 4.3% and 13.1% on average, on 2-core and4-cor
vehicle in practice. systems, respectively. More importantly, the policy ssaiell

In this paper, we present a hybrid approach to addressing thewith the increase in number of processor cores. The imprevem
limitations of both hardware solutions and OS-based meth8gecif- on an 8-core system is 14.5% on average and up to 47.5%. We
ically, our multicore shared cache management framework co would like to highlight that there is a large design spaceatf-s

sists of two low-cost and effective component$ighatweight hard- ware policies and the proposed policies can be further opéidy
ware mechanisrfor allocating cache resources and for providing nevertheless, they have served the purpose to demonstratd-a
cache usage information; a@S-based resource allocation poli- ing framework. In addition, we did not attempt to make a direc

ciesfor dynamic cache allocation. With a simple and low overhead performance comparison with pure hardware partitionirgestes
hardware component, we enable direct OS control over sharedbecause of the complexity involved in a fair reproductionteir
caches, software system overhead is minimized. With an OS-experiments. Our recent study on real systems [13] does iaiw
based management, we are able to design and implement lmultip the performance improvement of software cache management i

policies to deal with complicated, difficult cache usagensci®s comparable to that of hardware partitioning.

in multicore systems. Given the large space of softwarepale- This work is unigue among the existing studies on multicore
sign and application scenarios, it is infeasible to proedempre- cache management involving softwares. Rafique et al. [109 pr
hensive evaluation of this approach in a single study. atsteve pose an OS cache management approach in which a hardware
seek to answer a crucial question: can our hybrid approach pe mechanism enforces cache quota policies and the OS debiles t
form competitively with pure hardware implementations it guotas and selects a policy. Here is a critical differencéhia

favored scenarios? If the answer is affirmative, then theb@&:d study. The hardware mechanism they use is similar to othek ha
cache management with a simple hardware support is a traibjesi ware cache management designs, which requires modificitbns
approach. More research can then be conducted to fully explo the LRU replacement policy and tracking the cache line owner

its potential for those difficult cache sharing scenarioiclv in- ship. In contrast, our hardware mechanism does not enfarotaqg

herently favors software methods over hardware ones. but allows the software to enforce it, moving the complexay
In this study, we make the following contributions by giviag  software with virtually no performance overhead. We bedighis

proof-of-concept design: is an optimal hardware/software boundary in multicore eaolan-

agement. Another study [6] investigates broad design sssue
1. We have identified several critical system architectsseés shared cache management through OS-level page alloc&iam.
concerning the shared cache management, and effectivelystudy gives a proof-of-concept design, resolves all waykite-
explored the hardware/software boundary to address thesetails, and demonstrates a particular framework that canalséye
issues. adopted in real systems. We have implemented software cache
management in real systems using OS page coloring withedt sp
cial hardware support [13]. It was for evaluation only; haede
support is needed for general applications to avoid I/O ena
from page coloring. Furthermore, the hardware support gsed

3. We have shown that sophisticated software cache managein this study eliminates the data movement overhead duange
ment is possible, and that its performance overhead is neg-re-allocation, and therefore allows cache re-allocatiba enuch

ligible with the hardware support. finer time granularity.
The rest of the paper is organized as follows. Section 2 Seprts

Here, we summarize the distinguished features of our designan overview and our proof-of-concept design of the framéwor
and provide complete design details in Sections 2.1 andit,Fi ~ Section 3 and Section 4 describe the hardware mechanism and a
explicit address mapping from physical address to cacheeaddtl8, set of software cache management policies of the desigtioBé&c
14] is employed for cache allocation. While the idea was pro- discusses the experimental environment. Section 6 presgpéer-
posed to reduce cache conflicts on uniprocessors, we use it tamental results and provides detailed analysis. Finakgt®n 7
maps a memory page explicitly to a cache region. There is vir- discusses the related work and Section 8 summarizes tlig. stu
tually no overhead in cache access time, and we use an optimiz
design to reduce the implementation overhead and to avettkeca

2. We have proposed a simple and efficient hardware mecha-
nism for cache allocation, whose functionality is suffi¢ien
for effective software management.
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Figure 1. Overview of hybrid cache manage-
ment scheme.

2. TheHybrid Cache M anagement Framewor k

In this section, we give an overview of the framework, andhthe
give a proof-of-concept design of the framework.

2.1 Motivation and Overview of the Frame-
work

Figure 1illustrates the framework of the proposed hybritesne.
As shown in the figure, we assume each core has private L1sache
and the 2nd level (L2) cache is shared by all processor cores.

The key of the framework is exposing shared L2 cache to soft-
ware (or OS). In an attempt of managing shared cache in OS with
out any additional hardware support, we have leveraged & wel
known technique called page coloring to partition sharedache [13].
Intuitively, we can divide a shared cache imbcolors, whereV
is determined by architectural parametels € number of cache
setsx set associativity OS page size). All cache lines in an OS
page are cached in one of thé cache colors, determined by the
cache color bits of the OS page which is part of physical page
number. By controlling the virtual to physical page mappiog
has the ability to assign cache color of a virtual page. Tioeee
OS is able to limit the hardware cache space usage of a prbgess
manipulating the address mapping of all virtual pages ofpttee
cess. However, there are two limitations of the cache manage
mechanism in our previous work [13]: 1) the cache and memory
co-partitioning (in order to allocate a large cache spaca poo-
gram, large memory has to be reserved to the program); and 2)
a high overhead of page recoloring, which is needed for any dy
namic partitioning policy. Page recoloring is expensivedase it
requires copying the data of whole virtual page from an olgsph

ical page to a new physical page. That the source of the abovet

limitations is — physical addresses are directly used tertthe
L2 cache.

Having observed the root cause of the limitations, we add a
new layer of mapping from OS page to cache color to address the
issues. An shown in Figure 2, a mapping unit is in charge of
the new layer of mapping, which is controlled by software YOS
cache management policies. In this way, we expose the hezdwa
shared cache into the scope of OS management. In additibe to t
mapping unit, we add a hardware profiling unit to assist safev

to make effective decisions. The profiling unit providesghsful
run-time information of the L2 cache.

Given the above generic framework, designers could havgman
design choices. Nevertheless, The viable designs shouit time
following requirements:

1. Small Hardware Overheadfhe mapping unit and profiling
unit should have small hardware overheads in order to be

feasible to add into the processor chip.
. Small Performance Overhead@he mapping unit should not

introduce an additional latency for common L2 accesses be-

cause of the added layer of mapping.
. Small Software Overhead’he software management poli-

cies should not have high execution overhead.
. Sufficient Information:The profiling units should provide

sufficient information for the software management poli-
cies.

2.2 A Proof-of-Concept Design

A straightforward design of the mapping unit is a mapping ta-
ble which gives the cache colors of all physical pages mahage
OS. Given the large capacity of main memories nowadays, such
a mapping table is too large to put into the hardware. In otder
meet the small hardware overhead requirement, we introthee
concept ofmemory region A memory region refers to a group of
physical pages that share théeast significant bits of page num-
ber, wherek is a design choice. As shown in Figure 2, instead of
having a mapping entry for each pageRagion Mapping Table
has a mapping table entry for each memory region, which con-
tains a set of pages. Therefore, the mapping table2hamntries.

If k is reasonably small, the region mapping table is feasibleto
added into the hardware. Note that region mapping tabletitheo
only solution to meet the small hardware overhead requirgme
There are other alternatives. For example, we can still taain

a mapping for each individual page, and cache only a small por
tion of the mapping table in the hardware. We choose the negio
mapping table-based design in this study, and plan to sttiyr o
alternatives in the future.

In order to meet the small performance overhead requirement
we make an effort to avoid the extra delay introduced by thp-ma
ping table for the majority of L2 cache accesses. We add aecach
color field into each TLB entry to buffer the cache color of the
corresponding page. It is an optimized design of decoupdetie
address mapping [18, 14] (see Section 3 for more discussion)

In order to provide sufficient information to software cache
management policy, grofiling unit is added to collect runtime
information of each memory region. More details of the pnodl
unit will be given in Section 3.

The cache management policiese implemented as operat-
ing system modules. OS invokes the chosen cache management
policy periodically. A period of 10ms is chosen in this study
meet the small software overhead requirement as well aspo ca
ure the dynamic behavior of workloads. During each iteratthe
cache management policy first reads runtime statisticsgedvby
the profiling unit, then makes cache partitioning/shariegisions
with its optimization objective, and finally it reconfigurédse re-
gion mapping table to enforce such decisions.

We discuss our design in detail in the following two sections

3. Cache Management Mechanism
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Figure 2. Framework of hybrid cache management scheme.

3.1 Region Mapping Table access is a cache migs.
With the region mapping table in our design, a physical page

In order to address the limitations with pure software-base May be mapped to any cache color. To support such flexibility,

cache partitioning [13] by removing expensive page migratiosts, W€ change the address translation procedure for cacheiimgdex

we introduce flexible cache indexing by adding a region magpi !N @ naive design, ATU could look up the region mapping table
table, which maps OS pages to cache colors. Because it is im-for every L2 cache access; after TLB translates the virtddtess

practical to have an entry in the table for every memory page,  © @ physical address, ATU gets the cache color from the color
group memory pages intb/ memory regions. For example, ina Mapping table indexed by the physical address. Nevertheteis
system shown in Figure 2 which has a shared 4MB L2 cache with Naive design may increase the L2 cache access latency égrur

32 cache colors (the OS page size of the system is 8KB), wegrou Mapping table lookup is on the critical path. To avoid suctiad
pages intal/=256 memory regions so that the mapping table has tional delay, we add a cache color field to each TLB entry téeuf
256 entries. Hera/ is a design choice: it should be small enough the cache coldr With the added field, for an L2 cache access that
to be put into hardware and big enough to avoid too many pages'S @ TLB hit, ATU obtains the cache color and the physical ad-
in a memory region. We refer the eight least significant bfts o dress from TLB simultaneously. For an L2 cache access that is
physical page number asgion id Physical pages that share the LB miss, ATU first obtains the physical address from pagéetab

same region id belong to the same memory region. As the system@nd then obtains the cache color from the region mapping tabl
has 4GB memory with 8K OS page size, there are 2048 pages inATU uses 'both ca_che color and physical address to index cache
each memory region. At runtime, the cache management module®S shown in the Figure 2, ATU uses cache color to phoose one of
assigns a cache color to the 2048 pages by configuring the-corr 32 colors of the L2 cache, and then uses the physical address t
sponding entry in the region mapping table. The region nrappi index and tgg the cache block inside the cache color. _
table eliminates the expensive costs with page migration. Our design has two advantages over prior page-based mapping
designs in decoupling memory addressing and cache indgk@ng
. 14]. First, a page-based mapping design requires extraespac
3.2 Address Translation each page table entry to store the cache color of the page. The
change of page table entry is expensive and not acceptatolarip

In a typical computer system that supports virtual memory, Systems. In comparison, our memory region-based mapping de
a TLB (Translation Look-aside Buffer) is used to buffer rece  sign does not require changes in the page table, and thenregio
virtual-to-physical address translations. To translatértaal ad- mapping table is a small component. Furthermore, it takeshmu
dress to a physical address, ATU (Address Translation Unit)  less time to go through the region mapping table than a page ta
hardware first looks up TLB. If the translation is found in TLB
(TLB hit), it is read from TLB directly. Otherwise (TLB miSs)  1The TLB access is required if the L1 cache is physically tagge
the translation is read from the page table, and is buffeneitie which is true in most modern systems.
TLB for future references. The translated physical addiessed >This optimization is similar to the one proposed by prior
to index caches and then to address the main memory if thecach work [18, 14].




ble when cache remapping is needed. Second, in cache-obhere within the 128 total sets of a memory region for profiffagvhen

shared-memory multi-processor systems that use phygioall

an L2 access is sent to the profiling unit, if it is to a selecet]

dexed cache, the cache coherence hardware needs to check thee profiling unit checks if the access is a hit in correspogdiet.

last level cache by physical address. In page-based mapping
signs [18, 14], to get the cache location (cache color) ofchea

If the access is a hit in th&th way, hit countei{}. is increased by
one, otherwise the miss counter is increased by one. Figbie 3

coherence access that is a TLB miss, cache coherence hardwarshows how we construct the miss curve of each memory region

needs to address the problem that multiple virtual pages lmsay
mapped onto the same physical page. [14]. In comparisoryrin o
memory region-based design, cache coherence hardwaréhgets
cache color of the physical address from either TLB or théoreg
mapping table, and then locates the data with the physicaiad

with the profiled counters (for a 4-way cache). We first muytip
counter values by a sampling factor of 32 (number of Setsnber

of sampled sets = 128 = 32), to estimate the hit/miss counters
for all the 128 cache sets of the memory region. We then cacistr
miss curves against the number of ways per set for each memory

and the cache color. Compared with page-based mappingndesig region. The construction procedure of miss curves is based o
however, our design does not have full flexibility in conlirgy
the mapping of every OS page. Instead, we can only control the placement policyif M > N and the LRU replacement policy is

mapping of each memory region which contains multiple mgmor

pages. We believe that the granularity of the memory regidime
enough for cache management. In summary, compared with pagein several other cache studies [20, 16].

based mapping designs, our memory region-based mappimgmndes
has performance advantages with much lower storage owkdiea

the cost of giving up full flexibility.

3.3 Profiling Unit
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Figure 3. (a) Design of profile unit. (b) Con-
structing miss curve from the profiled infor-

mation.

Because cache management is at the level of memory regions

—

4

in order to make effective cache partitioning/sharing siecis,

software cache management policy needs to know the runtime
cache access pattern of each memory region. To capture thes

patterns, we introduce a profiling unit into the hardwaré&rapt-

ing to answer the following questions for each memory regign
how often is the memory region accessed in L2 cache? 2) dees th
L2 cache accesses to the memory region have strong spatid lo
ity? 3) in what degree do cache misses increase when the memor
regions share a cache color with other memory region(s)prife

filing unit provide a set of counters for each memory regioonf
which the software policies extract the answers of thesstopres.

We will discuss how the software uses these counters in@edéti
The design of the profiling unit is partly derived from the UNO

the following property of set-associative caches with tiRtLre-

used, any access that hits im&way cache also hits in &/-way
cache with the same number of selhis property has been used

3.4 Hardware Overhead

Using the system configuration presented in Figure 2, we have
estimated the hardware overhead of the proposed cache manag
ment mechanism. The main parameters of the memory subsystem
in our simulated 8-core system are shown in Table 1. Becdugse t
storage space required by cache color fields in TLB is smal, w
only calculate the hardware overheads of the region magpivg
and profiling unit. As shown in the table, the storage ovedhafa
extra hardware is only 1.25% of the cache tag and data arvegs.
want to highlight that, unlike other hardware cache managgm
designs, the added components in our design are decoupled fr
cache tag and data arrays, so that our design does not cateplic
the design and verification of the cache and core pipeline.

3.5 Overhead of Re-mapping

When a memory regions is re-mapped, all dirty cache lines in
L2 caches need to be written back. Clean cache lines also need
to be invalidated. If these cache lines need to be accesssd la
they need to be fetched again from main memory. We have found
in our experiments that these extra “compulsory” misses alo n
hurt performance much because re-mapping only happens when
the running processes change their L2 cache access pateifd s
icantly.

In a multi-processor systems, any change in the mappingeof th
ages need to be coordinated among all the TLBs in the system.
his process is called TLB shootdown and it causes a significa

overhead. In contrast, changes in region mapping table does
require the shootdown process, because each table is @dytois
index the local shared L2 cache, and these region mappitestab
do not have to be identical.

3.6 Changes to OS

The OS memory management groups physical pages into mem-
ory regions; and a memory region can only be allocated to a pro

mechanism proposed by Qureshi and Patt [16]. As shown in Fig- cess or a group of processes as a whole. During page fa@t®©3h
ure 3(a), the profiling unit includes two components for eaem-

ory region: a shadow tag array for selected sample sets imame

SWe generate a random sequence of 128 integers by
http://www.random.org/sequences/. We use the first four in

ory region and hit/miss counters. The shadow tag array has th tegers of the sequence to select sample sets for all memory

same associativity as the shared cache. We randomly cheets 4

regions. They are 44,105,29, and 51.



Parameters Values

[ size |

L2 cache tag (2)

region mapping table (3)

Shadow tag of profiling unit (4)
Counters of profiling unit (5)

Storage of L2 cache

Storage of proposed added compone

256-entry, 5-bit/entry

1)+
nt$3) + (4) + (5)

64-bit virtual address, 36-bit physical address (64GB)Bgiage

Memory
Memory region 256-memory region, 2048-
L2 cache data (1) 4MB

4096-set, 16-way, 64B line, 23-bit tag (including cachecbits)

256-memory region, 4-set/region, 16-way, 18-bit tag
256-memory region, 17-counter per memory region, 32-hitnter

4GB main memory
16MB/memory region
33554432 bits
1507328 bits

1280 bits

294912 bits

140352 bits
35061760 bits
436544 bits

page/memory region

Table 1. Parameters of the memory subsystem: storage overhe

1.25% of the storage of L2 cache.

allocates physical pages to the process from its assignetbnye
regions in a round-robin fashion. This is to avoid conflicssgs
and to balance data distribution in the cache, similar todba be-
hind the original bin hopping [9] page allocation algorithifihe
cache management policy should make effort to map consecuti
memory regions to different cache colors. As our focus is fa-
per is on the hardware mechanism design and its applications
do not explore other OS page allocation algorithms in thislyst
and leave it as our future work.

4. Cache Management Policies

In this section, we present two cache management policies:
PCM (Process-level Cache Management) &M (Memory
region-level Cache Management). The difference betwestvth
policies is that the PCM policy assumes all memory regions of

a running process have same access pattern and treats treem as

whole, while the MCM policy does not make such assumption and
treats each memory region individually.

With the support of the proposed cache management mecha
nism, both policies dynamically make decisions on the mappi
between memory regions and cache colors. If thereldrsnem-
ory regions to be mapped t§ cache colors, there afg™ possi-
ble mappings, which is a large number that makes any brute-fo
approach impractical. Therefore, heuristics are needetabke
mapping decisions at runtime. The PCM and MCM policies 1)
read counter values of profiling unit, and construct the mége
curves of running processes or memory regions, 2) cladséfyat-
cess pattern for each running process or memory regionréiocp
to their miss rate curves, 3) assign a cache color to each ngemo
region, and 4) reset counters, sleep for a given time intét@ms
in this work), and jump to step 1. We discuss the first threpsste
in this section.

4.1 Constructing Miss Curves

As discussed in Section 3, the profiling unit has an array of
counters for each memory region, including a set of hit cermt
and a miss counter. A hit counter of a memory regidp sum-
marizes the number of hits on cache wayor the selected four

ad of added components is only

straightforward to construct the miss rate curve for a ragrpro-
cess: we sum all counters of memory regions that belong to the
running process before using the same method.

4.2 Classifying Memory Regions and Run-
ning Processes

Essentially, a cache management policy in our proposecsfram
work allocates a limited number of cache colors (32 in thiglg}
to a much larger number of memory regions (256 in this study).
Before making the cache color allocation decision, PCM a@M
policies seek answers to the three questions asked in 8&témd
classify the running processes or memory regions accotditige
answers. We adopt Lin et al.'s classification methodolod3],[1
and classify memory regions or running process by four categ
(colors): red, yellow, green and black. The classificatioocp-
dure of memory regions for MCM policy is as follows:

How often is the data to a memory region accessed in L2
cache? The sum of all counter values times the sample ratio (128
sets/4 sample sets=32) is the number of accesses to a megnory r
gion: #Access = (31°°°° H; + #Miss) x sample_ratio. If
the memory region is not accessed frequently enough in LRe;ac
the mapping of the memory region does not have big performanc
impact. MCM classifies this type of memory region as “black”
memory region. The threshold we choose in this study is one L2
cache access every 8000 processor cycles to a memory region.

Doesthel 2 cache accesses of thememory region have strong
spatial locality? If a memory region is not “black”, the MCM pol-
icy checks if the memory region has high miss rate when a dedi-
cated cache color is allocated to the memory region. We thier
miss rate taVIR-Missrate which is a lower bound of miss rate of
the memory region . Th&R-Missratecan be obtained from the
counter values: MR-Missrate #Miss/(#Miss + 3259 H,).

A high MR-Missratevalue indicates that the working set of the
memory region can not fit into a cache color.

In what degree does the number of cache misses increase
when thememory region sharesa cache color with other mem-
ory region(s)? TheMR-Missratevalue alone is not enough to tell
how well a memory region gets along with other memory regions
when they share a cache color. Therefore, the MCM needs an-
other metric to indicate whether miss rate of a memory redibn

cache sets when the memory region is exclusively mapped to ais sensitive to the number of sharing memory regions. We exam

cache color. The miss counter summarizes the number of saisse
Statistically, the selected four sets could represent thelev128
sets of the cache color. Therefore we can simply multiply the
counter values by 32 to estimate the hit and miss counterthéor
memory region. The miss rate curve of the memory region can be
constructed from the counters as shown in Figure 3(b). Itse a

ine in depth the physical meanings of the counters of thelprgfi
unit. The hit counterd. is increased by one when an access to
cache lineC hits in thekth way of the shadow tag of the profil-
ing unit, which meang distinct cache lines in the same memory
region have been accessed between the two consecutivesegces
to cache lineC'. The valuek is referred to re-use distance of the



cache lineC. If k is large (say 12 for a cache with associativity
of 16), it is highly likely that the access to cache liflevould be

a cache miss when the memory region shares the cache cofor wit
a large number of memory regions, and vice versa. Having the
above observation, we found thaHRD (average re-use distance
for hit accesses) is a good indicator. TABIRDs calculated as
AHRD = S72%%°°( « H;)/ S°24°2°° H,. WhenAHRDis small,
cache hits reported by the profiling unit are not likely cated

to misses when a large number of memory regions share a cachg
color.

CombiningMR-MissrateandAHRD, we propose a new metric
MR-Missrate/AHRDwhich is the ratio betweeNlR-Missrateand
AHRD. If a memory regionM has a largeMR-Missrate/AHRD
value, it is safe to lef\/ share a cache color with a large number
of other memory regions, without high risks of increasing thiss
rate of M. We quantizeMR-Missrate/AHRDand classify non-
“black” memory regions into three zones: “green”, “yelloahd
“red”. A “green” memory region has a higMR-Missrate/AHRD
value ¢ 0.3), and is likely to have streaming access pattern (e.g.
its working set is impossible to put into a cache color). Taehe
management policies may assign a large number of “green™mem
ory regions to a cache color without hurting the performameeh.

A “red” memory region has a low MR-Missrate/AHRD valug (
0.2), which means its working set is likely to fit into a caclodoc

if the cache color is not shared by a large number of memory re-
gions. The cache management policies should assign a lange n
ber of cache colors to the “red” memory regions. A “yellow” me

ory region has a moderakdR-Missrate/AHRvalue (between 0.2
and 0.3). The cache management policies should allocateda mo
erate number of cache colors to “yellow” memory regions.

The classification procedure of the running processes fol PC
policy is very similar. We can safely replace “memory region
with “running process” in the same procedure, and classify r
ning processes to four categories (colors). The color ofnaing
process is determined by the miss curve constructed for e p
cess. All memory regions allocated to the process are iledsis
the color of the running process.

4.3 Cache Color Allocation

We use a simple strategy to allocate cache colors to memory
regions. As shown in Algorithm 1, the cache color allocatgo-
rithm segregate the cache spaces between memory regidria wit
conflicting categories. After calculating the average mgnie-
gion density fegions-per-coloy of the system, we first allocate
a small number of cache colors to “green” memory regions, let
ting the densities of these memory regions reach four tinidseo
average density. We then allocate a number of cache colors to,
“yellow” memory regions, letting the densities of these nogyn
regions be twice of the average density. Finally, we alledhe
rest cache colors to “red” and “black” processes. ThesesuBts
are enforced by a reconfiguration of the region mapping table

Both PCM and MCM policies use the same cache color alloca-
tion algorithm after all memory regions are classified. Wmaaek
that the software policies module have very small overhehd:
complexity is O(N) where N is the total number of memory re-
gions.

5. Experimental Setup

Algorithm 1. The cache color allocation algorithm.

Data: Counter values of reported by profiling units
Result: configuration of region mapping table

green-list.clear(); yellow-list.clear(); other-listear()

forall memory regionsio
[* classify(memory region) is a function to classify the mam
region to four categories */
switch classify(memory regiorjo
case GREENadd the memory regions ggreen-list
case YELLOWadd the memory region tgellow-list
otherwise add the memory region tather-list

D

region-per-color= num-memory-regiofi num-cache-color
if other-list is emptyhen

move all memory regions fromgreen-listandyellow-list to

other-list
green-color= streaming-lissize() / (4 x region-per-coloj
if num-green-color == Gthen

move all memory regions frorgreen-listto other-list
yellow-color = yellow-listsize() / ( 2 x region-per-coloj
if num-yellow-color == Othen

move all memory regions frorpellow-list to other-list
num-other-color= num-cache-colo- num-green-color
num-yellow-color

I* map-regionslist,i,j) maps regions itiist to j cache colors, start
from colori */

map-regionggther-list 0, num-other-coloy

map-regiongfellow-list num-other-colornum-yellow-coloy
map-regiongfreen-list num-other-color4+ num-yellow-coloy
num-green-coloyx

5.1 Simulation Environment

We use M5 [2] as the base architectural simulator. The sim-
ulated processor core is 4-way issue, out-of-order and avitls-
stage pipeline. We add page tables into M5 for each processto
hance its virtual-to-physical address translation fuoraiity. The
size of each OS page is 8KB. Because our study focuses on the
last-level cache (L2 cache) which has strong interacticth wie
main memory, we extend M5 to simulate DDR2 DRAM systems
in detail. The simulated memory transactions are pipelinbédn-
ever possible. The processor cores have private L1 datamand i
struction caches. The L2 cache is shared by all cores andheses
true LRU replacement policy. We increase the L2 cache cgpaci
as the number of cores increases but keep a constant degase of
sociativity. An 1IMB L2 cache is used for 2-core systems, a 2MB
cache for 4-core systems, and a 4MB cache for 8-core system.
Therefore, on average, each core has eight cache colorsaghd e
color has 128 cache sets. We allocate 32 memory regions ko eac
process. Table 2 summarizes the major simulation parameter

5.2 Workloads

In order to make the simulation time tolerable while stilliem
lating the representative behavior of program executimesselect
representative simulation points of one billion instroo8, each
for every benchmark. The simulation points are picked upgtc
ing to SimPoint 3.0 [19]. In our experiments, each processoe
is single-threaded and runs a distinct application. Fdhgwthe
methodology of a previous study [13], we classify the twenty
six benchmarks of the SPEC2000 suite into Red, Yellow, Green



Parameters Values

Processor 2/4/8 cores, 3.2 GHz, 4-issue per core, 16-stage pipeline
Functional units 4 IntALU, 2 IntMult, 2 FPALU, 1 FPMult

1Q, ROB and LSQ size 1Q 64, ROB 196, LQ 32, SQ 32

Num of physical register 228 Int, 228 FP

Branch predictor Hybrid, 8k global + 2K local, 16-entry RAS, 4K-entry and 4ynRTB
L1 caches (per core) 64KB Inst/64KB Data, 2-way, 64B line, hit latency: 1 cyclsif3-cycle Data
L2 cache (shared) 1MB/2MB/4MB, 16-way, 64B line, 15-cycle hit latency

Memory regions and cache coldr 32-memory region/process, 8 cache colors/core

MSHR entries Inst:8, Data:32, L2:64

Memory 2-channel, 2-DIMM/channel, 1-rank/DIMM, 4-bank/rank,

DDR2 channel bandwidth 667MT/s (Mega Transfers/second), 8byte/channel, 5.3@GBdsnel
DDR2 DRAM latency 5-5-5, precharge 15ns, row access 15ns, column access 15ns

Table 2. Major simulation parameters.

Class Slowdown L2 access rate Benchmarks
(512KB/2MB) | per 1K cycle (512KB)|| (MR-Missrate/AHRD= MR-Missrate/ AHRD)
R-type (4) > 50% average: 74.9 R1: 178.galgel (0.001=0.001/1.928) R2: 179.art (0.000=0.001/1.928)
R3: 188.ammp (0.087=0.149/1.718) R4: 300.twolf (0.000=0.001/1.689)
Y-type(d) > 25% average: 30.7 Y 1: 172.mgrid (0.177=0.253/1.428) Y 2: 175.vpr (0.020=0.049/2.437)
Y'3: 176.gcc (0.017=0.023/1.382) | Y 4: 187.facerec (0.151=0.472/2.832)
G-type (5) || < 25% >40.0 G1: 171.swim (0.414=0.435/1.052) | G2: 173.applu (0.364=0.460/1.266)
G3: 183.equake (0.203=0.486/2.388) G4: 189.lucas (0.525=0.542/1.033)
B-type (13) || < 25% < 40.0 B1: 168.wupise B2: 177.mesa
B3: 252.eon B4: 253.perlbmk
Table 3. Benchmark classification.
[ Num. of cores][ Workload | Benchmarks][ Wo. [ Bench. ] Wo. [ Bench. [ Wo. [ Bench. ]
2-core 2C-RR1 R1R2 2C-RR2 | R3R4 2C-YY1 | Y1Y2 2C-YY1 | Y3Y4
2C-RY1 R1Y1 2C-RY2 | R2Y2 2C-RY3 | R3Y3 2C-RY4 | R4Y4
2C-RG1 R1G1 2C-RG2 | R2G2 2C-RG3 | R3G3 2C-RG4 | R4G4
2C-YG1 Y1G1 2C-YG2 | Y2G2 2C-YG3 | Y3G3 2C-YG4 | YAG4
[ Num. of cores][ Workload | Benchmarks]] Wo. [ Bench. [[ Wo. [ Bench. [[ Wo. [ Bench. |
4-core 4C-RRRR1 [ R1IR2R3R4 || 4C-YYYY1 | Y1Y2Y3Y4 4C-RRYY1 [ R1IR2Y1Y2 4C-RRYY2 | R3R4Y3Y4
4C-RRGG1| R1IR2G1G2 || 4C-RRGG2 | R3R4G3G4 || 4C-YYGG1 | Y1Y2G1G2 || 4C-YYGG2 | Y3Y4G3G4
4C-RYGB1 | R1Y1G1B1 4C-RYGB2 | R2Y2G2B2 || 4C-RYGB3 | R3Y3G3B3 || 4C-RYGB4 | R4Y4G4B4
[ Num. of cores][ Workload | Benchmarks [[ Wo. [ Bench. [[ Wo. [ Bench. ]
8-core 8C-RRRR1 | R1IR2R3R4R1R2R3R4|| 8C-YYYY1l | Y1Y2Y3Y4Y1Y2Y3Y4 8C-RRYY1 | R1IR2G1G2Y1Y2Y3Y4

8C-RRGG1| R1R2G1G2G1G2G3G4| 8C-YYGG1 | Y1Y2Y1Y2G1G2G3G4 || 8C-RYGB1 | R1R2Y1Y2G1G2B1B2
8C-RYGB2 | R3R4Y3YAG3G4B3B4|| 8C-RYGB3 | ROR2Y0Y2G0G2BOB2 [| 8C-RYGB4 | R1R3Y1Y3G1G3B1B3

Table 4. Workload mixes.

and Black applications. As shown in Table 3, four applicagio  cations from R-type and Y-type applications.

have more than 50% performance slowdown when using only four =~ The workloads are shown in Table 4. Sixteen 2-core work-
cache colors (512KB cache), compared with using sixteehecac loads, twelve 4-core workloads and nine 8-core workloadsae
colors (2MB). We refer to them as R-type (RED) applicatioas a randomly chosen by composing selected applications. Eadk-w
they were sensitive to the L2 cache size. It is predicted tthat load is named by the workload type and its workload index. For
working set of a red application can fit into 2MB cache but not example, the 4-core workload 4C-RYGB2 consists of four iappl
512KB cache. Four applications have a performance slowdown cations R-typel79.art Y-type 175.vpr G-typel73.appluand B-
between 25% and 50%; they are referred to as Y-type (YELLOW) typel77.mesa

applications. The remaining sixteen applications arehfri-

vided into two classes by L2 cache access intensity. Apibica 5.3 Metrics

with more than 40 L2 cache accesses per 1000 processor cycles

are referred to as G-type (GREEN) applicatibasd the rest are Table 5 summarizes three commonly used performance evalua-
referred to as B-type (BLACK) applications. The number 40 iS 5 metrics Throughputepresents absolute IPC numbaeighted
an .arbltrary threshold, we select four out of thirteen bladp!l- speedups the sum of speedups of all programs over their execu-
cations to construct the workloads. The values of proposeticn tion with a baseline schemdair speedupis the harmonic mean

are also shown in the Table 3. As shown in the table, the met- ¢ 1o speedups over a baseline scheme. Fair speedup egaluat
ric MR-Missrate/AHRDsuccessfully differentiates G-type appli-  5ness in addition to performance [5]. In this study, thedine

4181.mcf is classified as G-type because its working set does n schem_e for bOth weighted speedup and fair s_peed_up is shoghe-
fit into both 512KB and 2MB cache, and because it accesses L2€Xecution with a 512KB L2 cache, other configurations of §& s
cache intensively. We do not include it in our workload comst tem remain same as Table 2. We weeighted speedumetrics
tion because of its long simulation time. throughout the performance discussion, and present soynacke




formance results usindproughputandfair speedup of memory regions. PCM suffers less because it averagedipgofi
unit counters for all memory regions before a process issclas
fied. Despite the drawbacks of MCM, we believe that if memory
region variation does exist, either by different OS pagecaltion
policy or by MCM-aware compiler/OS optimizations, MCM may
outperform PCM.

| Metric | Formula |
Throughput (IPCs) > (IPCschemdi])

Weighted Speedup [22] D7, (IPCschemdi] /1P Coasdi

Fair Speedup [5] | n/ > 7, (IPGoasdi] /IPCschemd

=.—|
~]

Table 5. Performance evaluation metrics. 6.2 Performance Comparison on Through-

put Metric

6. Performance Evaluation and Analysis 4
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6.1 Performance Comparison on Weighted
Speedup Metric 1
2.5 N
Figure 4 shows normalized weighted speedups. Weightedispse
are normalized to those with shared cache. 2]
We first compare the performance of two baseline cache man- 5 |
agement policies: private cache and shared cache. As shown i
Figure 4, shared cache has performance advantages ovatepriv
cache because it adapts to the demands of competing precesse,; |
Compared with shared cache, the average performance @éegrad
tion with private cache is 4.8%, 10.2%, and 17.6% on 2-, 4d,an 0
8-core systems, respectively. Nevertheless, in a few qabexte
cache outperforms shared cache because it isolates caate afs
processes. For example, for 2C-RG4, 2C-YG2, 4C-YYGG2 and
4C-RYGBA4, private cache improves performance by 7.9%, 8.4%
4.6% and 2.5%, respectively, compared with shared cacheat®r
cache improves the performance of these four workloadsuseca
it segregates the cache space of G-type application (wéhrsing
access pattern) from that of the other types of applications
The PCM policy provides much better performance than shared
cache. PCM improves performance on average by 4.3%, 13.1%
and 14.5% compared with shared cache on 2-, 4-, and 8-core sys
e e oSy 1€ A5l St e compare TYoLgPput f st
ferent number of cores, although the cache capacity is asec
decreases performance by up to 3.0% and only 1.5% on average.

If we look into performance of workloads in different grousr with the increase of number of cores, we do_not see a linear in-
workloads without G-type and Y-type applications, PCM peris crease of throughput because the configurations of 2-, 4-8and

L Lo core systems have the same main memory subsystem. The aver-
similarly as shared cache because mostly no process isfidss Y "y Y

age memory access latencies are increased from 106ns am 2-co
as green or yellow process (so that all cache colors are chiyre to 156ns on 4-core, and to 261ns on 8-core systems with PCM. As
all simultaneously running processes). For workloadsaiairtg a ' '

G-type application, PCM improves performance by 8.8%, %8.2 t_he result, the average throughput of 8-core systems is bdl§y
times of that of 4-core systefhs
and 20.9% on average and up to 28.3%, 42.6% and 47.5% on 2-, 4- - s .
. s . If we look into the performance of individual workloads ugin
, and 8-core systems, respectively. This difference giwesdear : - .
messaqes in desianing the hardware suoport and softwaciesol two metrics, weighted speedup and throughput agree with eac
9 gning PP I other for most workloads. We remark that for all workloadsginted

in our framework: 1) the main task of profiling unit is to idéwnt d dth h ith h oth h
those memory regions or running processes with streamioesac speedup and t roug put agree with each other when we compare
PCM and MCM with shared cache.

pattern (G-type); and 2) the software policy can simply rese PCM and MCM policies may improve performance for all ap-

small portion of the shared cache for G-type applications, lat licati f Kload wh d with shared he F
other types of applications share the rest of the cache plications of a workload w en compare with s ared caché. o
) example, Table 6 shows detail data of 4C-RRGG2, includirigy IP

MCM, classifying memory region individually, does not per- . : L
form better than PCM. Compared with shared cache, MCM im- L2 cache miss rate, average memory bandwidth ““"Zf”‘“
erage memory access latency. PCM not only largely imprdves t

proves performance by 4.0%, 12.0%, 14.2% on average on 2-, 4-|PCS of two R-type applicationsuimpandtwolf), but also sig-
and 8-core systems, respectively. MCM can not bring beter p - . yPe app P i 519
nificantly improves the performance of two G-type applicas

formance than PCM bec_:ause our round-robin page aIIocanpn P (equakeandlucag. We find that during runtime PCM correctly
icy lets the memory regions of the same process have simelar b
haviors. MCM performs slightly worse than PCM because MCM  5\yjq 4o not directly compare the throughputs of 2-core wortta
occasionally classifies memory regions to wrong categodae because they do not include black applications as 4-core8and
to cache set sampling of profiling unit and short dynamic bina core workloads do.

1 4

2C-AVG 4C-AVG 8C-AVG
Figure 5. Throughput (Sum of IPCs).

Figure 5 compares the performance of cache management poli-
cies on the throughput metric, which is the sum of IPCs. Om-ave
age, the throughputs are 1.130, 1.198, 1.238 and 1.234 one2-c
systems with private cache, shared cache, PCM, and MCM, re-
spectively. The throughputs are 2.033, 2.237, 2.462 and12.4
on 4-core systems and 2.859, 3.260, 3.675 and 3.680 on 8-core
systems. Although the absolute numbers of performanceovepr
ment/degradation are different from weighted speedugsrémds
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Figure 4. Normalized weighted speedups.
. _ IPC L2 miss rate Mem BW (GB/s) || Mem Latency (ns)
Applications of 4C-RRGG2spre = pew || Shared] PCM || Shared]  PCM || Shared]  PCM
R3:188.ammp 0.646] 1.059] 28.5%[ 14.9%[] 1.56| 1.15 132 129
R4:300.twolf 0.227| 0.446|| 39.9% | 17.8%| 1.16| 0.81 118 113
G3:183.equake 0.246| 0.261| 56.2% | 56.9% | 1.72| 1.87 117 107
G4:189.lucas 0.360| 0.376|| 60.3% | 64.5%| 4.64| 5.02 125 117
Overall 1.479| 2.143 || 47.1%| 37.3%| 9.08| 8.85 125 116

Table 6. Detail data of 4C-RRGG2 by shared cache and PCM: IPCs , L2 cache miss rates average
memory bandwidth utilization, and average memory access la tency.

classifies equake and lucas as green and yellow processes anBYGB4, and 8C-RYGBS3. The large performance improvement of
ammp and twolf as other processes. Therefore, only one or twothese cases shows the effectiveness of our design and tredl ove
cache colors (128 or 256KB) are allocatedeguakeand lucas framework.

each. IPCs of the two processes are increased with such small

cache capacity, compared with their IPCs with shared cathie. 6.3 Performance Comparison on Fair Speedup
surprising finding is also reported by the prior cache partit Metric

ing study on real systems [13]. Their explanation for this in

teresting finding roots on the reduction of bandwidth uitian

when number of overall cache misses is reduced by cache parti 12 [mPrivate mShared OPCM CMCM
tioning scheme, but no detail data in the paper supports xhe e -
planatiofi. To confirm their explanation, we look into the de- '
tailed statistics of 4C-RRGG2 with shared cache and PCM. We
find thatammpandtwolf enjoy the large cache capacity allocated 8 |
to them by PCM: their L2 cache miss rates are decreased signifi
cantly, hence their memory bandwidth utilization is redlicEor 0.6 1
equake and lucas, despite visible cache miss rate increages
PCM policy due to the small cache capacity allocated to them, 0.4
their IPCs are increased significantly. We confirm the exglan
tion in prior work [13] that as the overall L2 cache miss rade i 0.2+ —
reduced (from 47.1% to 37.3%), the overall bandwidth w#iz

tion is reduced (from 9.08GB/s to 8.85GB/s). Therefore tRe L ¢

cache miss penalty is reduceHguakeandlucasextensively ac- 2C-AVG 4C-AVG 8C-AVG
cess the main memory, so that their performances are sensiti ) . )
the memory access latency. Consequermttyakeand lucasen- Figure 6. Normalized fair speedup.

joy the lower memory access latency and their performanatses ) )

improved. We have the same observation for other seven work- A cache management policy may improve the overall perfor-
loads: 2C-RG3, 2C-RG4, 2C-YG3, 4C-RYGB2, 4C-RYGB3, 4C- mance of the system at the cost of severely degrading therperf
mance of some applications of a workload. Fair speedup,dhe h
5\We believe they did not report data to support the explanatio monic mean of normalized IPCs, considers both fairness and p
because some statistics are hard to get on real systems. formance [5]. Figure 6 shows the performance on the fairdpee
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Figure 7. Distribution of classification for 4C-
RYGB-type workloads.

metric. The fair speedups are normalized to those with share

“yellow” processes. We believe that it is because we use a con
servatively threshold to differentiate black process fithm other
types of processes. Nevertheless, it may not significantfyact
the overall system performance because B-type applicatoa
not sensitive to the cache capacity.

Figure 7(b) shows distribution of memory region classifimat
with the metricsMR-Missrate/AHRDby MCM policy. The dis-
tributions are very close to that of process classificatiofrig-
ure 7(a). Nevertheless, it has more variations: the menegipns
in 7 out of 16 applications are classified as all three categaiur-
ing applications’ executions. In comparison, only 2 preessare
classified as all three categories during their executidks dis-
cussed earlier, MCM may occasionally classify memory negio
to wrong categories due to cache set sampling of the profilitiy
and short dynamic behaviors of memory regions. In compariso
PCM suffers less from these two factors because it averanes c
ters of all memory regions of a process before it classifiepti-
cess.

6.5 Effect of Varying the Number of Sam-
pled Sets in the Profiling Unit

We select 4 sets out of 128 total sets for each memory region
in the default hardware mechanism configuration. We wanhio a
alyzes the sensitivity of the mechanism to the number of $ainp
sets. We change the number of sample sets from 4 to 2, 8 and alll
128 sets, and then compare the performance of 4-core walkloa
with the weighted speedup. We have found that the perforemanc
improvement is less than 1% for all workloads when 8 or all 128
sets are used. When the sample set number is reduced to 2 sets,
the performance degradation is less than 2% for those wadklo
We have also found that MCM is more sensitive to the number of
sampled sets than PCM.

7. Related Work

Har dware Cache M anagement. There have been several stud-

cache. On average, MCM improves performance on this Metric jeg focusing on hardware-based cache partitioning for ioust
by 4.2%, 9.1% and 9.1% on average compared with shared CaCheproceSSOI’S [20, 10, 16, 17, 5]. In general, these desigtisdec

respectively. PCM performs similarly as MCM.
6.4 Effectiveness of Proposed Metrics

Figure 7(a) shows the distribution of process classificatidh
proposed metricMR-Missrate/AHRDby the PCM policy for four
4C-RYGB-type workloads. Executions of G-type and Y-type ap
plications are classified as “green” and yellow processestigno
Executions of other types (R-type and B-type) of applicsiare
classified as “other” processes mostly. Therefore, a laoyggn
of the total cache capacity is shared by these types of wadklolf
we look into the applications individually, all the exeauts of R-
type applications are classified as “other” processes lsectueir
sensitivity to the cache capacity. The only exception is.d88np
which is classified as “yellow” process occasionally. Theaex
tions of Y-type applications are classified as “green” orlitys”
processes much more often than R-type applications. 1TRimg
and 187.facerec are classified as “yellow” processes witrgel
portion of time. 187.facerec is even classified as “greentess
occasionally. It is surprising that executions of two B-dygppli-
cations, 168.wupwise and 177.mesa, are classified as “goeen

new hardware support to enforce cache partitioning detsshy
changing the LRU cache replacement policy, and to tracevime o
ership of each cache lines. Those proposed approachesdave s
eral limitations as mentioned in Section 1, including theplien
mentation complexity and lack of flexibility. The hardwarech-
anism in this study uses decoupled cache address mapping pro
posed for reducing cache conflict misses on single-threpdad
cessors [18, 14]. In those designs, page remapping is tadiva
when excessive cache misses occur on certain pages witarttee s
cache color. Extra hardware is used to decouple physical-mem
ory addressing and cache indexing so that a physical pagbecan
mapped to any cache color. A cache color field, which recdrels t
cache color of an OS page, is added to each page table entry as
well as to each TLB entry. By so doing, expensive data migra-
tion is eliminated from the page remapping procedure. Camé-
work utilizes decoupled cache address mapping as the heedwa
mechanism to enforce cache allocation, including partitig and
sharing, for multicore processdrdnstead of passively reacting to

"One study [18] included a brief evaluation of their desigrhie
context of multicore/multithreaded processors but did exdend
the design itself.



cache conflicts, the software cache management in our frarkew  Foundation under grants CNS-0834476, CCF-0514085, CNe3383,

is proactive in dynamic cache re-allocation. We furtheliroje

the hardware mechanism to eliminate the need of large storag
overhead in page tables, minimize the runtime overhead dfeca
remapping, and avoid complication on cache coherence iti-mul
processor environment from the original designs at the afdsss
flexibility on page color mapping. Our simulation resultsosh
that, even without the full flexibility, our scheme using nam
region-level mapping achieves comparable or higher perdoce
improvements.

Software Cache Management. Several studies [3, 18] have
used software-based approaches to managing the cache by con
trolling virtual to physical address mapping in the OS ateag
level. Their cache management mechanisms are basgagm

9.
[1]

(2]

(3]

coloring [21], an OS technique which works as follows. A phys- [4]
ical address contains several common bits between the @gache  [5]
dex and the physical page number, referred tpage color One

can divide a physically addressed cache into non-intergpce- (6]

gions Eache coloj by page color, and pages with the same page
color are mapped to the same cache color. Bugnion et al. 8] an
Sherwood et al. [18] use profiling information to map OS pages [’
to cache colors. Their goal is to reduce cache misses from con
flicting cache accesses of different OS pages. The profiting i
formation is generated at compile time and passed to OS at run

(8]

time. While these studies target for single threaded psmrss [
this study is target for multicore processors. Lin et al.][l®- [10]
ited the cache usage of a process by limiting the number dfecac
colors that the pages of the process are mapped to. Therefore
physically addressed cache can be partitioned among sinailt (1]
ously running processes on multicore processors. Therénare
limitations in their cache partitioning schemes: Firsg thysical [12]

memory space is co-partitioned with the shared cache. Iba pr
cess demands a large cache space, even if the process ha$ a sma
memory footprint, a large memory space may have to be rederve 13
for the process, Second, it is expensive to remap a page seofu

the needs to move data between two physical pages. In compari
son, our scheme eliminates the co-partitioning limitatoml the
expensive data movement overhead. As discussed in Sectéon 1 [14]
recent study [6] proposed the approach of shared cache manag
ment through OS-level page allocation. This study givesgtes
details and demonstrates a particular framework that caabity
adopted in real systems.

[15]

. [16]
8. Conclusion

We have proposed a flexible and effective framework to man- 17]
age cache resources for multicore processors. A scalablpan
overhead hardware-based cache management mechanismrbuilt
memory regiorforms the basis of our proposed framework. The
proposed mechanism addresses many limitations of prdyipus
posed cache management mechanisms. Enabled by this hardwar
mechanism, two software-based cache management poR&ds, [19]
and MCM, have been proposed and evaluated. Our simulation re
sults show that these new policies significantly improvetesys

(18]

performance when compared with shared cache and privabecac [20]
[21]
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