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Abstract
The management of shared caches in multicore processors is a

critical and challenging task. Many hardware and OS-based meth-
ods have been proposed. However, they may be hardly adopted
in practice due to their non-trivial overheads, high complexities,
and/or limited abilities to handle increasingly complicated scenar-
ios of cache contention caused by many-cores.

In order to turn cache partitioning methods into reality in the
management of multicore processors, we propose to provide an
affordable and lightweight hardware support to coordinatewith
OS-based cache management policies. The proposed methods are
scalable to many-cores, and perform comparably with other pro-
posed hardware solutions, but have much lower overheads, there-
fore can be easily adopted in commodity processors. Having con-
ducted extensive experiments with 37 multi-programming work-
loads, we show the effectiveness and scalability of the proposed
methods. For example on 8-core systems, one of our proposed
policies improves performance over LRU-based hardware cache
management by 14.5% on average and up to 47.5%.

Categories and Subject Descriptors: B.3.2 [Primary Memory]:
Design Styles

General Terms: Design, Performance

Keywords: Shared Cache, Cache Management, Multicore

1. Introduction

With a continuous increase of the number of cores on a single
processor chip, the management of on-chip resources has become
critical and challenging in order to achieve high performance and
power efficiency in chip multiprocessors. Since on-chip caches
play an important role to bridge the ever-increasing gap between
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the processor and DRAM, efficient utilization of caches contin-
ues to be crucial to achieving high performance by minimizing
access conflicts and unfairness, and by maintaining a high quality
of services for chip multiprocessors. In existing commercial mul-
ticore processors (e.g., [8, 11, 7]), the last-level cache is shared by
multiple cores. This design has several merits, such as increasing
the cache utilization, reducing cache coherence complexity, and
creating a fast communication mechanism among cores by using
the shared cache. Given the memory bandwidth limit of multi-
core processors, shared caches have a better potential to minimize
misses than that in private caches. However, existing multicore
processors do not have any control over allocating shared cache re-
sources among simultaneously running threads, which has caused
significant performance concerns in practice. If this issueis not
well and timely addressed, the performance and scalabilitypoten-
tials of multicore processors will be seriously limited.

A number of hardware designs have recently been proposed for
shared cache management [20, 10, 16, 5, 17]. The mechanisms
in these proposals require to modify the standard LRU replace-
ment policy and to track the thread ownership of each cache line.
With these mechanisms, cache partition decisions made by cache
management policies can be enforced at the cache set level (way
partitioning) or at the whole cache level. There are two major
limitations that hinder these hardware solutions to be adopted in
practice. First, since the number of cores will continue to increase
while the degree of cache associativity (the cache ways) is limited
(normally up to 16), way partitioning will not be scalable tofuture
multicore processors. Second, the extra hardware complexity of
altering the LRU replacement policy and tracking the ownership
of each cache line is non-trivial, not only increasing the chip over-
head but also complicating design verification. In addition, for
any hardware cache management approach, there inevitably are
some worst-case scenarios of cache usage causing severe cache
thrashing, which occurs even with uniprocessors. It is expected to
be more severe on multicore processors because of reduced cache
capacity per core, interference due to shared caches, and limited
memory bandwidth per core. Hardware designs still work for sce-
narios they are designed for, but the lack of flexibility can be an
unavoidable issue and inherent weakness, particularly forfuture
multicore processors with an increasingly large number of cores.

In contrast, cache optimization and cache resource manage-
ment at different levels of software, such as operating systems,
compilers, and application programs have shown their effective-



ness to address the limitations of hardware solutions. Witha soft-
ware approach, long-term memory access patterns of most appli-
cations can be analyzed or predicted, thus, cache management and
optimization decisions can be made more effectively. Therehave
been several successful examples on uniprocessors with simple
LRU cache replacement policy (e.g., [12, 15, 4, 1]). However,
using a software approach to managing cache resources in multi-
core processors is much more challenging than in uniprocessors
as hardware resources are almost not shared and coordinatedfor
multi-threads. Researchers have evaluated OS-based cachepar-
titioning methods in multicore processors without any additional
hardware support [13]. These OS-based methods offer the flexi-
bility in implementing various resource allocation policies. How-
ever, since hardware caches are not in the scope of OS manage-
ment, OS-based methods can inevitably cause non-trivial software
overhead, and are not ready to be used as a general management
vehicle in practice.

In this paper, we present a hybrid approach to addressing the
limitations of both hardware solutions and OS-based methods. Specif-
ically, our multicore shared cache management framework con-
sists of two low-cost and effective components: alightweight hard-
ware mechanismfor allocating cache resources and for providing
cache usage information; andOS-based resource allocation poli-
ciesfor dynamic cache allocation. With a simple and low overhead
hardware component, we enable direct OS control over shared
caches, software system overhead is minimized. With an OS-
based management, we are able to design and implement multiple
policies to deal with complicated, difficult cache usage scenarios
in multicore systems. Given the large space of software policy de-
sign and application scenarios, it is infeasible to providea compre-
hensive evaluation of this approach in a single study. Instead, we
seek to answer a crucial question: can our hybrid approach per-
form competitively with pure hardware implementations in their
favored scenarios? If the answer is affirmative, then the OS-based
cache management with a simple hardware support is a truly viable
approach. More research can then be conducted to fully explore
its potential for those difficult cache sharing scenarios, which in-
herently favors software methods over hardware ones.

In this study, we make the following contributions by givinga
proof-of-concept design:

1. We have identified several critical system architecture issues
concerning the shared cache management, and effectively
explored the hardware/software boundary to address these
issues.

2. We have proposed a simple and efficient hardware mecha-
nism for cache allocation, whose functionality is sufficient
for effective software management.

3. We have shown that sophisticated software cache manage-
ment is possible, and that its performance overhead is neg-
ligible with the hardware support.

Here, we summarize the distinguished features of our design
and provide complete design details in Sections 2.1 and 4. First,
explicit address mapping from physical address to cache address [18,
14] is employed for cache allocation. While the idea was pro-
posed to reduce cache conflicts on uniprocessors, we use it to
maps a memory page explicitly to a cache region. There is vir-
tually no overhead in cache access time, and we use an optimized
design to reduce the implementation overhead and to avoid cache

coherence issues in the original designs. Second, dynamic cache
re-allocation is supported with high efficiency. The execution of
software policy is triggered at short intervals (10ms in thede-
fault setting) to check for the need for cache re-allocation. The
interval is short enough to catch program phase changes, butlong
enough to avoid significant checking overhead. The hardwaresup-
port avoids expensive data movement, and the software activates
cache re-allocation at carefully selected times to containcache in-
validation/reloading cost.

We propose and evaluate two software policies: Process-level
Cache Management policy (PCM) and Memory Region-level Cache
Management policy (MCM). Our simulation-based experiments
show that performance improvement over the baseline, shared cache
with LRU replacement, is comparable to previously reportedre-
sults with hardware cache partitioning. The PCM policy improves
performance by 4.3% and 13.1% on average, on 2-core and 4-core
systems, respectively. More importantly, the policy scales well
with the increase in number of processor cores. The improvement
on an 8-core system is 14.5% on average and up to 47.5%. We
would like to highlight that there is a large design space of soft-
ware policies and the proposed policies can be further optimized;
nevertheless, they have served the purpose to demonstrate awork-
ing framework. In addition, we did not attempt to make a direct
performance comparison with pure hardware partitioning schemes
because of the complexity involved in a fair reproduction oftheir
experiments. Our recent study on real systems [13] does showthat
the performance improvement of software cache management is
comparable to that of hardware partitioning.

This work is unique among the existing studies on multicore
cache management involving softwares. Rafique et al. [17] pro-
pose an OS cache management approach in which a hardware
mechanism enforces cache quota policies and the OS decides the
quotas and selects a policy. Here is a critical difference inthis
study. The hardware mechanism they use is similar to other hard-
ware cache management designs, which requires modificitonsof
the LRU replacement policy and tracking the cache line owner-
ship. In contrast, our hardware mechanism does not enforce quota
but allows the software to enforce it, moving the complexityto
software with virtually no performance overhead. We believe this
is an optimal hardware/software boundary in multicore cache man-
agement. Another study [6] investigates broad design issues in
shared cache management through OS-level page allocation.Our
study gives a proof-of-concept design, resolves all working de-
tails, and demonstrates a particular framework that can be easily
adopted in real systems. We have implemented software cache
management in real systems using OS page coloring without spe-
cial hardware support [13]. It was for evaluation only; hardware
support is needed for general applications to avoid I/O penalty
from page coloring. Furthermore, the hardware support proposed
in this study eliminates the data movement overhead during cache
re-allocation, and therefore allows cache re-allocation at a much
finer time granularity.

The rest of the paper is organized as follows. Section 2.1 presents
an overview and our proof-of-concept design of the framework.
Section 3 and Section 4 describe the hardware mechanism and a
set of software cache management policies of the design. Section 5
discusses the experimental environment. Section 6 presents exper-
imental results and provides detailed analysis. Finally, Section 7
discusses the related work and Section 8 summarizes this study.
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Figure 1. Overview of hybrid cache manage-
ment scheme.

2. The Hybrid Cache Management Framework

In this section, we give an overview of the framework, and then
give a proof-of-concept design of the framework.

2.1 Motivation and Overview of the Frame-
work

Figure 1 illustrates the framework of the proposed hybrid scheme.
As shown in the figure, we assume each core has private L1 caches,
and the 2nd level (L2) cache is shared by all processor cores.

The key of the framework is exposing shared L2 cache to soft-
ware (or OS). In an attempt of managing shared cache in OS with-
out any additional hardware support, we have leveraged a well
known technique called page coloring to partition shared L2cache [13].
Intuitively, we can divide a shared cache intoN colors, whereN
is determined by architectural parameters (N = number of cache
sets× set associativity/ OS page size). All cache lines in an OS
page are cached in one of theN cache colors, determined by the
cache color bits of the OS page which is part of physical page
number. By controlling the virtual to physical page mapping, OS
has the ability to assign cache color of a virtual page. Therefore,
OS is able to limit the hardware cache space usage of a processby
manipulating the address mapping of all virtual pages of thepro-
cess. However, there are two limitations of the cache management
mechanism in our previous work [13]: 1) the cache and memory
co-partitioning (in order to allocate a large cache space toa pro-
gram, large memory has to be reserved to the program); and 2)
a high overhead of page recoloring, which is needed for any dy-
namic partitioning policy. Page recoloring is expensive because it
requires copying the data of whole virtual page from an old phys-
ical page to a new physical page. That the source of the above
limitations is – physical addresses are directly used to index the
L2 cache.

Having observed the root cause of the limitations, we add a
new layer of mapping from OS page to cache color to address the
issues. An shown in Figure 2, a mapping unit is in charge of
the new layer of mapping, which is controlled by software (OS)
cache management policies. In this way, we expose the hardware
shared cache into the scope of OS management. In addition to the
mapping unit, we add a hardware profiling unit to assist software

to make effective decisions. The profiling unit provides insightful
run-time information of the L2 cache.

Given the above generic framework, designers could have many
design choices. Nevertheless, The viable designs should meet the
following requirements:

1. Small Hardware Overhead:The mapping unit and profiling
unit should have small hardware overheads in order to be
feasible to add into the processor chip.

2. Small Performance Overhead:The mapping unit should not
introduce an additional latency for common L2 accesses be-
cause of the added layer of mapping.

3. Small Software Overhead:The software management poli-
cies should not have high execution overhead.

4. Sufficient Information:The profiling units should provide
sufficient information for the software management poli-
cies.

2.2 A Proof-of-Concept Design

A straightforward design of the mapping unit is a mapping ta-
ble which gives the cache colors of all physical pages managed by
OS. Given the large capacity of main memories nowadays, such
a mapping table is too large to put into the hardware. In orderto
meet the small hardware overhead requirement, we introducethe
concept ofmemory region. A memory region refers to a group of
physical pages that share thek least significant bits of page num-
ber, wherek is a design choice. As shown in Figure 2, instead of
having a mapping entry for each page, aRegion Mapping Table
has a mapping table entry for each memory region, which con-
tains a set of pages. Therefore, the mapping table has2k entries.
If k is reasonably small, the region mapping table is feasible tobe
added into the hardware. Note that region mapping table is not the
only solution to meet the small hardware overhead requirement.
There are other alternatives. For example, we can still maintain
a mapping for each individual page, and cache only a small por-
tion of the mapping table in the hardware. We choose the region
mapping table-based design in this study, and plan to study other
alternatives in the future.

In order to meet the small performance overhead requirement,
we make an effort to avoid the extra delay introduced by the map-
ping table for the majority of L2 cache accesses. We add a cache
color field into each TLB entry to buffer the cache color of the
corresponding page. It is an optimized design of decoupled cache
address mapping [18, 14] (see Section 3 for more discussion).

In order to provide sufficient information to software cache
management policy, aprofiling unit is added to collect runtime
information of each memory region. More details of the profiling
unit will be given in Section 3.

The cache management policiesare implemented as operat-
ing system modules. OS invokes the chosen cache management
policy periodically. A period of 10ms is chosen in this studyto
meet the small software overhead requirement as well as to cap-
ture the dynamic behavior of workloads. During each iteration, the
cache management policy first reads runtime statistics provided by
the profiling unit, then makes cache partitioning/sharing decisions
with its optimization objective, and finally it reconfiguresthe re-
gion mapping table to enforce such decisions.

We discuss our design in detail in the following two sections.

3. Cache Management Mechanism
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3.1 Region Mapping Table

In order to address the limitations with pure software-based
cache partitioning [13] by removing expensive page migration costs,
we introduce flexible cache indexing by adding a region mapping
table, which maps OS pages to cache colors. Because it is im-
practical to have an entry in the table for every memory page,we
group memory pages intoM memory regions. For example, in a
system shown in Figure 2 which has a shared 4MB L2 cache with
32 cache colors (the OS page size of the system is 8KB), we group
pages intoM=256 memory regions so that the mapping table has
256 entries. HereM is a design choice: it should be small enough
to be put into hardware and big enough to avoid too many pages
in a memory region. We refer the eight least significant bits of
physical page number asregion id. Physical pages that share the
same region id belong to the same memory region. As the system
has 4GB memory with 8K OS page size, there are 2048 pages in
each memory region. At runtime, the cache management module
assigns a cache color to the 2048 pages by configuring the corre-
sponding entry in the region mapping table. The region mapping
table eliminates the expensive costs with page migration.

3.2 Address Translation

In a typical computer system that supports virtual memory,
a TLB (Translation Look-aside Buffer) is used to buffer recent
virtual-to-physical address translations. To translate avirtual ad-
dress to a physical address, ATU (Address Translation Unit)in
hardware first looks up TLB. If the translation is found in TLB
(TLB hit), it is read from TLB directly. Otherwise (TLB miss),
the translation is read from the page table, and is buffered in the
TLB for future references. The translated physical addressis used
to index caches and then to address the main memory if the cache

access is a cache miss.1

With the region mapping table in our design, a physical page
may be mapped to any cache color. To support such flexibility,
we change the address translation procedure for cache indexing.
In a naive design, ATU could look up the region mapping table
for every L2 cache access; after TLB translates the virtual address
to a physical address, ATU gets the cache color from the color
mapping table indexed by the physical address. Nevertheless, this
naive design may increase the L2 cache access latency if the region
mapping table lookup is on the critical path. To avoid such addi-
tional delay, we add a cache color field to each TLB entry to buffer
the cache color2. With the added field, for an L2 cache access that
is a TLB hit, ATU obtains the cache color and the physical ad-
dress from TLB simultaneously. For an L2 cache access that isa
TLB miss, ATU first obtains the physical address from page table,
and then obtains the cache color from the region mapping table.
ATU uses both cache color and physical address to index cache:
as shown in the Figure 2, ATU uses cache color to choose one of
32 colors of the L2 cache, and then uses the physical address to
index and tag the cache block inside the cache color.

Our design has two advantages over prior page-based mapping
designs in decoupling memory addressing and cache indexing[18,
14]. First, a page-based mapping design requires extra space in
each page table entry to store the cache color of the page. The
change of page table entry is expensive and not acceptable inmany
systems. In comparison, our memory region-based mapping de-
sign does not require changes in the page table, and the region
mapping table is a small component. Furthermore, it takes much
less time to go through the region mapping table than a page ta-

1The TLB access is required if the L1 cache is physically tagged,
which is true in most modern systems.
2This optimization is similar to the one proposed by prior
work [18, 14].



ble when cache remapping is needed. Second, in cache-coherent,
shared-memory multi-processor systems that use physically in-
dexed cache, the cache coherence hardware needs to check the
last level cache by physical address. In page-based mappingde-
signs [18, 14], to get the cache location (cache color) of a cache
coherence access that is a TLB miss, cache coherence hardware
needs to address the problem that multiple virtual pages maybe
mapped onto the same physical page. [14]. In comparison, in our
memory region-based design, cache coherence hardware getsthe
cache color of the physical address from either TLB or the region
mapping table, and then locates the data with the physical address
and the cache color. Compared with page-based mapping design,
however, our design does not have full flexibility in controlling
the mapping of every OS page. Instead, we can only control the
mapping of each memory region which contains multiple memory
pages. We believe that the granularity of the memory region is fine
enough for cache management. In summary, compared with page-
based mapping designs, our memory region-based mapping design
has performance advantages with much lower storage overhead at
the cost of giving up full flexibility.

3.3 Profiling Unit
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Figure 3. (a) Design of profile unit. (b) Con-
structing miss curve from the profiled infor-
mation.

Because cache management is at the level of memory regions,
in order to make effective cache partitioning/sharing decisions,
software cache management policy needs to know the runtime
cache access pattern of each memory region. To capture these
patterns, we introduce a profiling unit into the hardware, attempt-
ing to answer the following questions for each memory region: 1)
how often is the memory region accessed in L2 cache? 2) does the
L2 cache accesses to the memory region have strong spatial local-
ity? 3) in what degree do cache misses increase when the memory
regions share a cache color with other memory region(s)? thepro-
filing unit provide a set of counters for each memory region, from
which the software policies extract the answers of these questions.
We will discuss how the software uses these counters in Section 4.

The design of the profiling unit is partly derived from the UMON
mechanism proposed by Qureshi and Patt [16]. As shown in Fig-
ure 3(a), the profiling unit includes two components for eachmem-
ory region: a shadow tag array for selected sample sets in a mem-
ory region and hit/miss counters. The shadow tag array has the
same associativity as the shared cache. We randomly choose 4sets

within the 128 total sets of a memory region for profiling3. When
an L2 access is sent to the profiling unit, if it is to a selectedset,
the profiling unit checks if the access is a hit in corresponding set.
If the access is a hit in theKth way, hit counterHk is increased by
one, otherwise the miss counter is increased by one. Figure 3[b]
shows how we construct the miss curve of each memory region
with the profiled counters (for a 4-way cache). We first multiply
counter values by a sampling factor of 32 (number of sets/ number
of sampled sets = 128/4 = 32), to estimate the hit/miss counters
for all the 128 cache sets of the memory region. We then construct
miss curves against the number of ways per set for each memory
region. The construction procedure of miss curves is based on
the following property of set-associative caches with the LRU re-
placement policy:if M > N and the LRU replacement policy is
used, any access that hits in aN -way cache also hits in aM -way
cache with the same number of sets.This property has been used
in several other cache studies [20, 16].

3.4 Hardware Overhead

Using the system configuration presented in Figure 2, we have
estimated the hardware overhead of the proposed cache manage-
ment mechanism. The main parameters of the memory subsystem
in our simulated 8-core system are shown in Table 1. Because the
storage space required by cache color fields in TLB is small, we
only calculate the hardware overheads of the region mappingtable
and profiling unit. As shown in the table, the storage overhead of
extra hardware is only 1.25% of the cache tag and data arrays.We
want to highlight that, unlike other hardware cache management
designs, the added components in our design are decoupled from
cache tag and data arrays, so that our design does not complicate
the design and verification of the cache and core pipeline.

3.5 Overhead of Re-mapping

When a memory regions is re-mapped, all dirty cache lines in
L2 caches need to be written back. Clean cache lines also need
to be invalidated. If these cache lines need to be accessed later,
they need to be fetched again from main memory. We have found
in our experiments that these extra “compulsory” misses do not
hurt performance much because re-mapping only happens when
the running processes change their L2 cache access pattern signif-
icantly.

In a multi-processor systems, any change in the mapping of the
pages need to be coordinated among all the TLBs in the system.
This process is called TLB shootdown and it causes a significant
overhead. In contrast, changes in region mapping table doesnot
require the shootdown process, because each table is only used to
index the local shared L2 cache, and these region mapping tables
do not have to be identical.

3.6 Changes to OS

The OS memory management groups physical pages into mem-
ory regions; and a memory region can only be allocated to a pro-
cess or a group of processes as a whole. During page faults, the OS
3We generate a random sequence of 128 integers by
http://www.random.org/sequences/. We use the first four in-
tegers of the sequence to select sample sets for all memory
regions. They are 44,105,29, and 51.



Parameters Values size

Memory 64-bit virtual address, 36-bit physical address (64GB), 8KB page 4GB main memory
Memory region 256-memory region, 2048-page/memory region 16MB/memory region
L2 cache data (1) 4MB 33554432 bits
L2 cache tag (2) 4096-set, 16-way, 64B line, 23-bit tag (including cache color bits) 1507328 bits
region mapping table (3) 256-entry, 5-bit/entry 1280 bits
Shadow tag of profiling unit (4) 256-memory region, 4-set/region, 16-way, 18-bit tag 294912 bits
Counters of profiling unit (5) 256-memory region, 17-counter per memory region, 32-bit counter 140352 bits
Storage of L2 cache (1) + (2) 35061760 bits
Storage of proposed added components(3) + (4) + (5) 436544 bits

Table 1. Parameters of the memory subsystem: storage overhe ad of added components is only
1.25% of the storage of L2 cache.

allocates physical pages to the process from its assigned memory
regions in a round-robin fashion. This is to avoid conflict misses
and to balance data distribution in the cache, similar to theidea be-
hind the original bin hopping [9] page allocation algorithm. The
cache management policy should make effort to map consecutive
memory regions to different cache colors. As our focus in this pa-
per is on the hardware mechanism design and its applications, we
do not explore other OS page allocation algorithms in this study
and leave it as our future work.

4. Cache Management Policies

In this section, we present two cache management policies:
PCM (Process-level Cache Management) andMCM (Memory
region-level Cache Management). The difference between the two
policies is that the PCM policy assumes all memory regions of
a running process have same access pattern and treats them asa
whole, while the MCM policy does not make such assumption and
treats each memory region individually.

With the support of the proposed cache management mecha-
nism, both policies dynamically make decisions on the mapping
between memory regions and cache colors. If there areM mem-
ory regions to be mapped toN cache colors, there areNM possi-
ble mappings, which is a large number that makes any brute-force
approach impractical. Therefore, heuristics are needed tomake
mapping decisions at runtime. The PCM and MCM policies 1)
read counter values of profiling unit, and construct the missrate
curves of running processes or memory regions, 2) classify the ac-
cess pattern for each running process or memory region, according
to their miss rate curves, 3) assign a cache color to each memory
region, and 4) reset counters, sleep for a given time interval (10ms
in this work), and jump to step 1. We discuss the first three steps
in this section.

4.1 Constructing Miss Curves

As discussed in Section 3, the profiling unit has an array of
counters for each memory region, including a set of hit counters
and a miss counter. A hit counter of a memory regionHk sum-
marizes the number of hits on cache wayk for the selected four
cache sets when the memory region is exclusively mapped to a
cache color. The miss counter summarizes the number of misses.
Statistically, the selected four sets could represent the whole 128
sets of the cache color. Therefore we can simply multiply the
counter values by 32 to estimate the hit and miss counters forthe
memory region. The miss rate curve of the memory region can be
constructed from the counters as shown in Figure 3(b). It is also

straightforward to construct the miss rate curve for a running pro-
cess: we sum all counters of memory regions that belong to the
running process before using the same method.

4.2 Classifying Memory Regions and Run-
ning Processes

Essentially, a cache management policy in our proposed frame-
work allocates a limited number of cache colors (32 in this study)
to a much larger number of memory regions (256 in this study).
Before making the cache color allocation decision, PCM and MCM
policies seek answers to the three questions asked in Section 3, and
classify the running processes or memory regions accordingto the
answers. We adopt Lin et al.’s classification methodology [13],
and classify memory regions or running process by four categories
(colors): red, yellow, green and black. The classification proce-
dure of memory regions for MCM policy is as follows:

How often is the data to a memory region accessed in L2
cache? The sum of all counter values times the sample ratio (128
sets/4 sample sets=32) is the number of accesses to a memory re-
gion: #Access = (

P

Assoc

i=1
Hi + #Miss) × sample_ratio. If

the memory region is not accessed frequently enough in L2 cache,
the mapping of the memory region does not have big performance
impact. MCM classifies this type of memory region as “black”
memory region. The threshold we choose in this study is one L2
cache access every 8000 processor cycles to a memory region.

Does the L2 cache accesses of the memory region have strong
spatial locality? If a memory region is not “black”, the MCM pol-
icy checks if the memory region has high miss rate when a dedi-
cated cache color is allocated to the memory region. We referthis
miss rate toMR-Missrate, which is a lower bound of miss rate of
the memory region . TheMR-Missratecan be obtained from the
counter values: MR-Missrate= #Miss/(#Miss+

P

Assoc

i=1
Hi).

A high MR-Missratevalue indicates that the working set of the
memory region can not fit into a cache color.

In what degree does the number of cache misses increase
when the memory region shares a cache color with other mem-
ory region(s)? TheMR-Missratevalue alone is not enough to tell
how well a memory region gets along with other memory regions
when they share a cache color. Therefore, the MCM needs an-
other metric to indicate whether miss rate of a memory regionM
is sensitive to the number of sharing memory regions. We exam-
ine in depth the physical meanings of the counters of the profiling
unit. The hit counterHk is increased by one when an access to
cache lineC hits in thekth way of the shadow tag of the profil-
ing unit, which meansk distinct cache lines in the same memory
region have been accessed between the two consecutive accesses
to cache lineC. The valuek is referred to re-use distance of the



cache lineC. If k is large (say 12 for a cache with associativity
of 16), it is highly likely that the access to cache lineC would be
a cache miss when the memory region shares the cache color with
a large number of memory regions, and vice versa. Having the
above observation, we found thatAHRD (average re-use distance
for hit accesses) is a good indicator. TheAHRD is calculated as
AHRD =

P

Assoc

i=1
(i ∗ Hi)/

P

Assoc

i=1
Hi. WhenAHRD is small,

cache hits reported by the profiling unit are not likely converted
to misses when a large number of memory regions share a cache
color.

CombiningMR-MissrateandAHRD, we propose a new metric
MR-Missrate/AHRDwhich is the ratio betweenMR-Missrateand
AHRD. If a memory regionM has a largeMR-Missrate/AHRD
value, it is safe to letM share a cache color with a large number
of other memory regions, without high risks of increasing the miss
rate of M . We quantizeMR-Missrate/AHRDand classify non-
“black” memory regions into three zones: “green”, “yellow”and
“red”. A “green” memory region has a highMR-Missrate/AHRD
value (> 0.3), and is likely to have streaming access pattern (e.g.
its working set is impossible to put into a cache color). The cache
management policies may assign a large number of “green” mem-
ory regions to a cache color without hurting the performancemuch.
A “red” memory region has a low MR-Missrate/AHRD value (≤

0.2), which means its working set is likely to fit into a cache color
if the cache color is not shared by a large number of memory re-
gions. The cache management policies should assign a large num-
ber of cache colors to the “red” memory regions. A “yellow” mem-
ory region has a moderateMR-Missrate/AHRDvalue (between 0.2
and 0.3). The cache management policies should allocate a mod-
erate number of cache colors to “yellow” memory regions.

The classification procedure of the running processes for PCM
policy is very similar. We can safely replace “memory region”
with “running process” in the same procedure, and classify run-
ning processes to four categories (colors). The color of a running
process is determined by the miss curve constructed for the pro-
cess. All memory regions allocated to the process are classified as
the color of the running process.

4.3 Cache Color Allocation

We use a simple strategy to allocate cache colors to memory
regions. As shown in Algorithm 1, the cache color allocationalgo-
rithm segregate the cache spaces between memory regions within
conflicting categories. After calculating the average memory re-
gion density (regions-per-color) of the system, we first allocate
a small number of cache colors to “green” memory regions, let-
ting the densities of these memory regions reach four times of the
average density. We then allocate a number of cache colors to
“yellow” memory regions, letting the densities of these memory
regions be twice of the average density. Finally, we allocate the
rest cache colors to “red” and “black” processes. These decisions
are enforced by a reconfiguration of the region mapping table.

Both PCM and MCM policies use the same cache color alloca-
tion algorithm after all memory regions are classified. We remark
that the software policies module have very small overhead:the
complexity is O(N) where N is the total number of memory re-
gions.

5. Experimental Setup

Algorithm 1: The cache color allocation algorithm.
Data: Counter values of reported by profiling units
Result: configuration of region mapping table

green-list.clear(); yellow-list.clear(); other-list.clear()

forall memory regionsdo
/* classify(memory region) is a function to classify the memory
region to four categories */
switch classify(memory region)do

case GREENadd the memory regions togreen-list
case YELLOWadd the memory region toyellow-list
otherwise add the memory region toother-list

region-per-color= num-memory-region/ num-cache-color
if other-list is emptythen

move all memory regions fromgreen-listandyellow-list to
other-list.

green-color= streaming-list.size()/ ( 4× region-per-color)
if num-green-color == 0then

move all memory regions fromgreen-listto other-list.
yellow-color= yellow-list.size()/ ( 2 × region-per-color)
if num-yellow-color == 0then

move all memory regions fromyellow-list to other-list.
num-other-color= num-cache-color− num-green-color−
num-yellow-color

/* map-regions(list,i,j) maps regions inlist to j cache colors, start
from color i */
map-regions(other-list, 0, num-other-color)
map-regions(yellow-list, num-other-color, num-yellow-color)
map-regions(green-list, num-other-color+ num-yellow-color,
num-green-color)

5.1 Simulation Environment

We use M5 [2] as the base architectural simulator. The sim-
ulated processor core is 4-way issue, out-of-order and witha 16-
stage pipeline. We add page tables into M5 for each process toen-
hance its virtual-to-physical address translation functionality. The
size of each OS page is 8KB. Because our study focuses on the
last-level cache (L2 cache) which has strong interaction with the
main memory, we extend M5 to simulate DDR2 DRAM systems
in detail. The simulated memory transactions are pipelinedwhen-
ever possible. The processor cores have private L1 data and in-
struction caches. The L2 cache is shared by all cores and usesthe
true LRU replacement policy. We increase the L2 cache capacity
as the number of cores increases but keep a constant degree ofas-
sociativity. An 1MB L2 cache is used for 2-core systems, a 2MB
cache for 4-core systems, and a 4MB cache for 8-core system.
Therefore, on average, each core has eight cache colors and each
color has 128 cache sets. We allocate 32 memory regions to each
process. Table 2 summarizes the major simulation parameters.

5.2 Workloads

In order to make the simulation time tolerable while still emu-
lating the representative behavior of program executions,we select
representative simulation points of one billion instructions, each
for every benchmark. The simulation points are picked up accord-
ing to SimPoint 3.0 [19]. In our experiments, each processorcore
is single-threaded and runs a distinct application. Following the
methodology of a previous study [13], we classify the twenty-
six benchmarks of the SPEC2000 suite into Red, Yellow, Green



Parameters Values
Processor 2/4/8 cores, 3.2 GHz, 4-issue per core, 16-stage pipeline
Functional units 4 IntALU, 2 IntMult, 2 FPALU, 1 FPMult
IQ, ROB and LSQ size IQ 64, ROB 196, LQ 32, SQ 32
Num of physical register 228 Int, 228 FP
Branch predictor Hybrid, 8k global + 2K local, 16-entry RAS, 4K-entry and 4-way BTB
L1 caches (per core) 64KB Inst/64KB Data, 2-way, 64B line, hit latency: 1 cycle Inst/3-cycle Data
L2 cache (shared) 1MB/2MB/4MB, 16-way, 64B line, 15-cycle hit latency
Memory regions and cache color 32-memory region/process, 8 cache colors/core
MSHR entries Inst:8, Data:32, L2:64
Memory 2-channel, 2-DIMM/channel, 1-rank/DIMM, 4-bank/rank,
DDR2 channel bandwidth 667MT/s (Mega Transfers/second), 8byte/channel, 5.3GB/s/channel
DDR2 DRAM latency 5-5-5, precharge 15ns, row access 15ns, column access 15ns

Table 2. Major simulation parameters.

Class Slowdown L2 access rate Benchmarks
(512KB/2MB) per 1K cycle (512KB) (MR-Missrate/AHRD= MR-Missrate/ AHRD)

R-type (4) ≥ 50% average: 74.9 R1: 178.galgel (0.001=0.001/1.928) R2: 179.art (0.000=0.001/1.928)
R3: 188.ammp (0.087=0.149/1.718) R4: 300.twolf (0.000=0.001/1.689)

Y-type(4) ≥ 25% average: 30.7 Y 1: 172.mgrid (0.177=0.253/1.428) Y 2: 175.vpr (0.020=0.049/2.437)
Y 3: 176.gcc (0.017=0.023/1.382) Y 4: 187.facerec (0.151=0.472/2.832)

G-type (5) < 25% ≥ 40.0 G1: 171.swim (0.414=0.435/1.052) G2: 173.applu (0.364=0.460/1.266)
G3: 183.equake (0.203=0.486/2.388)G4: 189.lucas (0.525=0.542/1.033)

B-type (13) < 25% < 40.0 B1: 168.wupise B2: 177.mesa
B3: 252.eon B4: 253.perlbmk

Table 3. Benchmark classification.

Num. of cores Workload Benchmarks Wo. Bench. Wo. Bench. Wo. Bench.

2-core 2C-RR1 R1R2 2C-RR2 R3R4 2C-YY1 Y1Y2 2C-YY1 Y3Y4
2C-RY1 R1Y1 2C-RY2 R2Y2 2C-RY3 R3Y3 2C-RY4 R4Y4
2C-RG1 R1G1 2C-RG2 R2G2 2C-RG3 R3G3 2C-RG4 R4G4
2C-YG1 Y1G1 2C-YG2 Y2G2 2C-YG3 Y3G3 2C-YG4 Y4G4

Num. of cores Workload Benchmarks Wo. Bench. Wo. Bench. Wo. Bench.

4-core 4C-RRRR1 R1R2R3R4 4C-YYYY1 Y1Y2Y3Y4 4C-RRYY1 R1R2Y1Y2 4C-RRYY2 R3R4Y3Y4
4C-RRGG1 R1R2G1G2 4C-RRGG2 R3R4G3G4 4C-YYGG1 Y1Y2G1G2 4C-YYGG2 Y3Y4G3G4
4C-RYGB1 R1Y1G1B1 4C-RYGB2 R2Y2G2B2 4C-RYGB3 R3Y3G3B3 4C-RYGB4 R4Y4G4B4

Num. of cores Workload Benchmarks Wo. Bench. Wo. Bench.

8-core 8C-RRRR1 R1R2R3R4R1R2R3R4 8C-YYYY1 Y1Y2Y3Y4Y1Y2Y3Y4 8C-RRYY1 R1R2G1G2Y1Y2Y3Y4
8C-RRGG1 R1R2G1G2G1G2G3G4 8C-YYGG1 Y1Y2Y1Y2G1G2G3G4 8C-RYGB1 R1R2Y1Y2G1G2B1B2
8C-RYGB2 R3R4Y3Y4G3G4B3B4 8C-RYGB3 R0R2Y0Y2G0G2B0B2 8C-RYGB4 R1R3Y1Y3G1G3B1B3

Table 4. Workload mixes.

and Black applications. As shown in Table 3, four applications
have more than 50% performance slowdown when using only four
cache colors (512KB cache), compared with using sixteen cache
colors (2MB). We refer to them as R-type (RED) applications as
they were sensitive to the L2 cache size. It is predicted thatthe
working set of a red application can fit into 2MB cache but not
512KB cache. Four applications have a performance slowdown
between 25% and 50%; they are referred to as Y-type (YELLOW)
applications. The remaining sixteen applications are further di-
vided into two classes by L2 cache access intensity. Applications
with more than 40 L2 cache accesses per 1000 processor cycles
are referred to as G-type (GREEN) applications4 and the rest are
referred to as B-type (BLACK) applications. The number 40 is
an arbitrary threshold, we select four out of thirteen blackappli-
cations to construct the workloads. The values of proposed metric
are also shown in the Table 3. As shown in the table, the met-
ric MR-Missrate/AHRDsuccessfully differentiates G-type appli-

4181.mcf is classified as G-type because its working set does not
fit into both 512KB and 2MB cache, and because it accesses L2
cache intensively. We do not include it in our workload construc-
tion because of its long simulation time.

cations from R-type and Y-type applications.
The workloads are shown in Table 4. Sixteen 2-core work-

loads, twelve 4-core workloads and nine 8-core workloads are are
randomly chosen by composing selected applications. Each work-
load is named by the workload type and its workload index. For
example, the 4-core workload 4C-RYGB2 consists of four appli-
cations R-type179.art, Y-type 175.vpr, G-type173.appluand B-
type177.mesa.

5.3 Metrics

Table 5 summarizes three commonly used performance evalua-
tion metrics.Throughputrepresents absolute IPC numbers.Weighted
speedupis the sum of speedups of all programs over their execu-
tion with a baseline scheme.Fair speedupis the harmonic mean
of the speedups over a baseline scheme. Fair speedup evaluates
fairness in addition to performance [5]. In this study, the baseline
scheme for both weighted speedup and fair speedup is single-core
execution with a 512KB L2 cache, other configurations of the sys-
tem remain same as Table 2. We useweighted speedupmetrics
throughout the performance discussion, and present some key per-



formance results usingthroughputandfair speedup.

Metric Formula

Throughput (IPCs)
P

n

i=1
(IPCscheme[i])

Weighted Speedup [22]
P

n

i=1
(IPCscheme[i]/IPCbase[i])

Fair Speedup [5] n/
P

n

i=1
(IPCbase[i]/IPCscheme[i])

Table 5. Performance evaluation metrics.

6. Performance Evaluation and Analysis

6.1 Performance Comparison on Weighted
Speedup Metric

Figure 4 shows normalized weighted speedups. Weighted speedups
are normalized to those with shared cache.

We first compare the performance of two baseline cache man-
agement policies: private cache and shared cache. As shown in
Figure 4, shared cache has performance advantages over private
cache because it adapts to the demands of competing processes.
Compared with shared cache, the average performance degrada-
tion with private cache is 4.8%, 10.2%, and 17.6% on 2-, 4-, and
8-core systems, respectively. Nevertheless, in a few casesprivate
cache outperforms shared cache because it isolates cache usage of
processes. For example, for 2C-RG4, 2C-YG2, 4C-YYGG2 and
4C-RYGB4, private cache improves performance by 7.9%, 8.4%,
4.6% and 2.5%, respectively, compared with shared cache. Private
cache improves the performance of these four workloads because
it segregates the cache space of G-type application (with streaming
access pattern) from that of the other types of applications.

The PCM policy provides much better performance than shared
cache. PCM improves performance on average by 4.3%, 13.1%
and 14.5% compared with shared cache on 2-, 4-, and 8-core sys-
tems, respectively. PCM outperforms shared cache performance
for 32 out of 37 workloads, and for the other 5 workloads PCM
decreases performance by up to 3.0% and only 1.5% on average.
If we look into performance of workloads in different groups, for
workloads without G-type and Y-type applications, PCM performs
similarly as shared cache because mostly no process is classified
as green or yellow process (so that all cache colors are shared by
all simultaneously running processes). For workloads containing a
G-type application, PCM improves performance by 8.8%, 18.2%
and 20.9% on average and up to 28.3%, 42.6% and 47.5% on 2-, 4-
, and 8-core systems, respectively. This difference gives two clear
messages in designing the hardware support and software policies
in our framework: 1) the main task of profiling unit is to identify
those memory regions or running processes with streaming access
pattern (G-type); and 2) the software policy can simply reserve a
small portion of the shared cache for G-type applications, and let
other types of applications share the rest of the cache.

MCM, classifying memory region individually, does not per-
form better than PCM. Compared with shared cache, MCM im-
proves performance by 4.0%, 12.0%, 14.2% on average on 2-, 4-
and 8-core systems, respectively. MCM can not bring better per-
formance than PCM because our round-robin page allocation pol-
icy lets the memory regions of the same process have similar be-
haviors. MCM performs slightly worse than PCM because MCM
occasionally classifies memory regions to wrong categories, due
to cache set sampling of profiling unit and short dynamic behavior

of memory regions. PCM suffers less because it averages profiling
unit counters for all memory regions before a process is classi-
fied. Despite the drawbacks of MCM, we believe that if memory
region variation does exist, either by different OS page allocation
policy or by MCM-aware compiler/OS optimizations, MCM may
outperform PCM.

6.2 Performance Comparison on Through-
put Metric
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Figure 5. Throughput (Sum of IPCs).

Figure 5 compares the performance of cache management poli-
cies on the throughput metric, which is the sum of IPCs. On aver-
age, the throughputs are 1.130, 1.198, 1.238 and 1.234 on 2-core
systems with private cache, shared cache, PCM, and MCM, re-
spectively. The throughputs are 2.033, 2.237, 2.462 and 2.441
on 4-core systems and 2.859, 3.260, 3.675 and 3.680 on 8-core
systems. Although the absolute numbers of performance improve-
ment/degradation are different from weighted speedups, the trends
are largely similar. If we compare throughputs of systems with dif-
ferent number of cores, although the cache capacity is increased
with the increase of number of cores, we do not see a linear in-
crease of throughput because the configurations of 2-, 4- and8-
core systems have the same main memory subsystem. The aver-
age memory access latencies are increased from 106ns on 2-core
to 156ns on 4-core, and to 261ns on 8-core systems with PCM. As
the result, the average throughput of 8-core systems is only1.49
times of that of 4-core systems5.

If we look into the performance of individual workloads using
two metrics, weighted speedup and throughput agree with each
other for most workloads. We remark that for all workloads weighted
speedup and throughput agree with each other when we compare
PCM and MCM with shared cache.

PCM and MCM policies may improve performance for all ap-
plications of a workload when compared with shared cache. For
example, Table 6 shows detail data of 4C-RRGG2, including IPC,
L2 cache miss rate, average memory bandwidth utilization and av-
erage memory access latency. PCM not only largely improves the
IPCs of two R-type applications (ammpand twolf), but also sig-
nificantly improves the performance of two G-type applications
(equakeand lucas). We find that during runtime PCM correctly

5We do not directly compare the throughputs of 2-core workloads,
because they do not include black applications as 4-core and8-
core workloads do.
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Figure 4. Normalized weighted speedups.

Applications of 4C-RRGG2
IPC L2 miss rate Mem BW (GB/s) Mem Latency (ns)

Shared PCM Shared PCM Shared PCM Shared PCM

R3:188.ammp 0.646 1.059 28.5% 14.9% 1.56 1.15 132 129
R4:300.twolf 0.227 0.446 39.9% 17.8% 1.16 0.81 118 113
G3:183.equake 0.246 0.261 56.2% 56.9% 1.72 1.87 117 107
G4:189.lucas 0.360 0.376 60.3% 64.5% 4.64 5.02 125 117
Overall 1.479 2.143 47.1% 37.3% 9.08 8.85 125 116

Table 6. Detail data of 4C-RRGG2 by shared cache and PCM: IPCs , L2 cache miss rates average
memory bandwidth utilization, and average memory access la tency.

classifies equake and lucas as green and yellow processes and
ammp and twolf as other processes. Therefore, only one or two
cache colors (128 or 256KB) are allocated toequakeand lucas
each. IPCs of the two processes are increased with such small
cache capacity, compared with their IPCs with shared cache.This
surprising finding is also reported by the prior cache partition-
ing study on real systems [13]. Their explanation for this in-
teresting finding roots on the reduction of bandwidth utilization
when number of overall cache misses is reduced by cache parti-
tioning scheme, but no detail data in the paper supports the ex-
planation6. To confirm their explanation, we look into the de-
tailed statistics of 4C-RRGG2 with shared cache and PCM. We
find thatammpandtwolf enjoy the large cache capacity allocated
to them by PCM: their L2 cache miss rates are decreased signifi-
cantly, hence their memory bandwidth utilization is reduced. For
equake and lucas, despite visible cache miss rate increaseswith
PCM policy due to the small cache capacity allocated to them,
their IPCs are increased significantly. We confirm the explana-
tion in prior work [13] that as the overall L2 cache miss rate is
reduced (from 47.1% to 37.3%), the overall bandwidth utiliza-
tion is reduced (from 9.08GB/s to 8.85GB/s). Therefore the L2
cache miss penalty is reduced.Equakeand lucasextensively ac-
cess the main memory, so that their performances are sensitive to
the memory access latency. Consequently,equakeand lucasen-
joy the lower memory access latency and their performance isalso
improved. We have the same observation for other seven work-
loads: 2C-RG3, 2C-RG4, 2C-YG3, 4C-RYGB2, 4C-RYGB3, 4C-

6We believe they did not report data to support the explanation
because some statistics are hard to get on real systems.

RYGB4, and 8C-RYGB3. The large performance improvement of
these cases shows the effectiveness of our design and the overall
framework.

6.3 Performance Comparison on Fair Speedup
Metric
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Figure 6. Normalized fair speedup.

A cache management policy may improve the overall perfor-
mance of the system at the cost of severely degrading the perfor-
mance of some applications of a workload. Fair speedup, the har-
monic mean of normalized IPCs, considers both fairness and per-
formance [5]. Figure 6 shows the performance on the fair speedup
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Figure 7. Distribution of classification for 4C-
RYGB-type workloads.

metric. The fair speedups are normalized to those with shared
cache. On average, MCM improves performance on this metric
by 4.2%, 9.1% and 9.1% on average compared with shared cache,
respectively. PCM performs similarly as MCM.

6.4 Effectiveness of Proposed Metrics

Figure 7(a) shows the distribution of process classification with
proposed metricsMR-Missrate/AHRDby the PCM policy for four
4C-RYGB-type workloads. Executions of G-type and Y-type ap-
plications are classified as “green” and yellow processes mostly.
Executions of other types (R-type and B-type) of applications are
classified as “other” processes mostly. Therefore, a large portion
of the total cache capacity is shared by these types of workloads. If
we look into the applications individually, all the executions of R-
type applications are classified as “other” processes because their
sensitivity to the cache capacity. The only exception is 188.ammp
which is classified as “yellow” process occasionally. The execu-
tions of Y-type applications are classified as “green” or “yellow”
processes much more often than R-type applications. 172.mgrid
and 187.facerec are classified as “yellow” processes with a large
portion of time. 187.facerec is even classified as “green” process
occasionally. It is surprising that executions of two B-type appli-
cations, 168.wupwise and 177.mesa, are classified as “green” or

“yellow” processes. We believe that it is because we use a con-
servatively threshold to differentiate black process fromthe other
types of processes. Nevertheless, it may not significantly impact
the overall system performance because B-type applications are
not sensitive to the cache capacity.

Figure 7(b) shows distribution of memory region classification
with the metricsMR-Missrate/AHRDby MCM policy. The dis-
tributions are very close to that of process classification in Fig-
ure 7(a). Nevertheless, it has more variations: the memory regions
in 7 out of 16 applications are classified as all three categories dur-
ing applications’ executions. In comparison, only 2 processes are
classified as all three categories during their executions.As dis-
cussed earlier, MCM may occasionally classify memory regions
to wrong categories due to cache set sampling of the profilingunit
and short dynamic behaviors of memory regions. In comparison,
PCM suffers less from these two factors because it averages coun-
ters of all memory regions of a process before it classifies the pro-
cess.

6.5 Effect of Varying the Number of Sam-
pled Sets in the Profiling Unit

We select 4 sets out of 128 total sets for each memory region
in the default hardware mechanism configuration. We want to an-
alyzes the sensitivity of the mechanism to the number of sampled
sets. We change the number of sample sets from 4 to 2, 8 and all
128 sets, and then compare the performance of 4-core workloads
with the weighted speedup. We have found that the performance
improvement is less than 1% for all workloads when 8 or all 128
sets are used. When the sample set number is reduced to 2 sets,
the performance degradation is less than 2% for those workloads.
We have also found that MCM is more sensitive to the number of
sampled sets than PCM.

7. Related Work

Hardware Cache Management. There have been several stud-
ies focusing on hardware-based cache partitioning for multicore
processors [20, 10, 16, 17, 5]. In general, these designs include
new hardware support to enforce cache partitioning decisions by
changing the LRU cache replacement policy, and to trace the own-
ership of each cache lines. Those proposed approaches have sev-
eral limitations as mentioned in Section 1, including the imple-
mentation complexity and lack of flexibility. The hardware mech-
anism in this study uses decoupled cache address mapping pro-
posed for reducing cache conflict misses on single-threadedpro-
cessors [18, 14]. In those designs, page remapping is activated
when excessive cache misses occur on certain pages with the same
cache color. Extra hardware is used to decouple physical mem-
ory addressing and cache indexing so that a physical page canbe
mapped to any cache color. A cache color field, which records the
cache color of an OS page, is added to each page table entry as
well as to each TLB entry. By so doing, expensive data migra-
tion is eliminated from the page remapping procedure. Our frame-
work utilizes decoupled cache address mapping as the hardware
mechanism to enforce cache allocation, including partitioning and
sharing, for multicore processors7. Instead of passively reacting to
7One study [18] included a brief evaluation of their design inthe
context of multicore/multithreaded processors but did notextend
the design itself.



cache conflicts, the software cache management in our framework
is proactive in dynamic cache re-allocation. We further optimize
the hardware mechanism to eliminate the need of large storage
overhead in page tables, minimize the runtime overhead of cache
remapping, and avoid complication on cache coherence in multi-
processor environment from the original designs at the costof less
flexibility on page color mapping. Our simulation results show
that, even without the full flexibility, our scheme using memory
region-level mapping achieves comparable or higher performance
improvements.

Software Cache Management. Several studies [3, 18] have
used software-based approaches to managing the cache by con-
trolling virtual to physical address mapping in the OS at page
level. Their cache management mechanisms are based onpage
coloring [21], an OS technique which works as follows. A phys-
ical address contains several common bits between the cachein-
dex and the physical page number, referred to aspage color. One
can divide a physically addressed cache into non-intersecting re-
gions (cache color) by page color, and pages with the same page
color are mapped to the same cache color. Bugnion et al. [3] and
Sherwood et al. [18] use profiling information to map OS pages
to cache colors. Their goal is to reduce cache misses from con-
flicting cache accesses of different OS pages. The profiling in-
formation is generated at compile time and passed to OS at run
time. While these studies target for single threaded processors,
this study is target for multicore processors. Lin et al. [13] lim-
ited the cache usage of a process by limiting the number of cache
colors that the pages of the process are mapped to. Therefore, a
physically addressed cache can be partitioned among simultane-
ously running processes on multicore processors. There aretwo
limitations in their cache partitioning schemes: First, the physical
memory space is co-partitioned with the shared cache. If a pro-
cess demands a large cache space, even if the process has a small
memory footprint, a large memory space may have to be reserved
for the process, Second, it is expensive to remap a page because of
the needs to move data between two physical pages. In compari-
son, our scheme eliminates the co-partitioning limitationand the
expensive data movement overhead. As discussed in Section 1, a
recent study [6] proposed the approach of shared cache manage-
ment through OS-level page allocation. This study gives design
details and demonstrates a particular framework that can beeasily
adopted in real systems.

8. Conclusion

We have proposed a flexible and effective framework to man-
age cache resources for multicore processors. A scalable and low-
overhead hardware-based cache management mechanism builton
memory regionforms the basis of our proposed framework. The
proposed mechanism addresses many limitations of previously pro-
posed cache management mechanisms. Enabled by this hardware
mechanism, two software-based cache management policies,PCM
and MCM, have been proposed and evaluated. Our simulation re-
sults show that these new policies significantly improve system
performance when compared with shared cache and private cache.
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