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Abstract—Performance degradation of memory-intensive
programs caused by the LRU policy’s inability to handle weak-
locality data accesses in the last level cache is increasingly
serious for two reasons. First, the last-level cache remains in
the CPU’s critical path, where only simple management mecha-
nisms, such as LRU, can be used, precluding some sophisticated
hardware mechanisms to address the problem. Second, the
commonly used shared cache structure of multi-core processors
has made this critical path even more performance-sensitive
due to intensive inter-thread contention for shared cache
resources. Researchers have recently made efforts to address
the problem with the LRU policy by partitioning the cache
using hardware or OS facilities guided by run-time locality
information. Such approaches often rely on special hardware
support or lack enough accuracy. In contrast, for a large
class of programs, the locality information can be accurately
predicted if access patterns are recognized through small
training runs at the data object level.

To achieve this goal, we present a system-software frame-
work referred to as Soft-OLP (Software-based Object-Level
cache Partitioning). We first collect per-object reuse dis-
tance histograms and inter-object interference histograms via
memory-trace sampling. With several low-cost training runs,
we are able to determine the locality patterns of data objects.
For the actual runs, we categorize data objects into different
locality types and partition the cache space among data objects
with a heuristic algorithm, in order to reduce cache misses
through segregation of contending objects. The object-level
cache partitioning framework has been implemented with a
modified Linux kernel, and tested on a commodity multi-core
processor. Experimental results show that in comparison with
a standard L2 cache managed by LRU, Soft-OLP significantly
reduces the execution time by reducing L2 cache misses across
inputs for a set of single- and multi-threaded programs from
the SPEC CPU2000 benchmark suite, NAS benchmarks and a
computational kernel set.

Keywords-Cache Partitioning, Software-Controlled Caching,
Reuse Distance, Page Coloring

I. INTRODUCTION

The performance gap between the processor and DRAM
has been increasing exponentially for over two decades.
With the arrival of multicore processors, this “memory
wall” problem is even more severe due to limited off-chip
memory bandwidth [1]. Reducing cache misses is a key to
achieving high performance on modern processors. In this
study, we design and implement effective software methods
to address a weakness of LRU-based hardware management
of shared last-level caches in modern processors. Most

cache designs are based on the LRU replacement policy
(its approximations in practice). While the LRU policy
offers high performance for workloads with strong data
locality, it does not identify weak-locality accesses with
long reuse distances and thus often incurs cache misses
with memory-intensive workloads due to mis-replacements
(weak-locality accesses pollute the cache by evicting strong
locality blocks). Previous studies have shown this signif-
icant problem with the LRU policy, and proposed a few
solutions. Despite their design differences, these hardware
proposals follow one of two directions: (1) Hybrid replace-
ment schemes such as [2], [3] that dynamically select from
multiple replacement policies based on runtime information,
and (2) Cache bypassing approaches [4], [5] that identify
weak-locality accesses and place them in a dedicated cache
(bypass buffer) to avoid cache pollution. These approaches
share one common limitation: they introduce both storage
overheads and latency penalties, being difficult to be adopted
by processors in practice. Instead of taking transparent
hardware solutions, some commercial designs have chosen
to partially address the problem by providing special caching
instructions such as the non-temporal store instruction on
Intel architectures [6]. However such hybrid approaches are
architecture-specific and limited to certain types of memory
accesses such as streaming writes, and it is often not feasible
for the programmer or the compiler to produce optimized
code versions across different cache configurations and
program inputs.

To address the above problem with the LRU policy, we
propose a software framework that partitions the cache at
the data object level to reduce cache misses for sequential
programs and data-sharing parallel programs. Our approach
is motivated by the following observation: many weak-
locality accesses at the whole program level may have strong
locality within one or a few data objects. A memory location
is said to have weak locality if the reuse distance (number
of distinct memory references between successive accesses
to the given location) is greater than the cache capacity.
By judiciously segregating objects that have interfering
access patterns, we can exploit strong locality within objects
in their own cache regions using the conventional LRU
policy. In this paper we focus on partitioning the last-
level cache space among large global and heap objects
for high-performance scientific applications. For a given
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program, the proposed framework first generates program
profiles (per-object reuse distance histograms and inter-
object interference histograms) for global and heap objects
using training inputs. Based on the training profiles it
then detects the patterns of the program profiles. When
the program is scheduled to run with an actual input, the
framework predicts its locality profile based on the detected
locality patterns. With actual cache configuration parameters
an object-level cache partitioning decision is then made to
reduce cache misses. This framework is referred to as Soft-
OLP (Software-based Object-Level cache Partitioning). We
have implemented Soft-OLP with a modified Linux kernel
to enforce partitioning decisions by carefully laying out data
objects in the physical memory. By running a set of memory-
intensive benchmarks on a commodity chip multiprocessor
(CMP), we show that Soft-OLP is very effective in handling
two common and difficult scenarios in practice. First, when
there are cache hogs, i.e. objects with unexploitable data
locality, Soft-OLP segregates them from the rest of the
objects to improve whole-program locality. Second, when
contention between multiple strong-locality objects incurs
cache thrashing, Soft-OLP alleviates the problem by con-
straining the effective cache capacity to a subset of the
objects.

The contributions of the paper are three-fold. First, to the
best of our knowledge, Soft-OLP is the first work that uses
object-level cache partitioning to reduce capacity misses
for both sequential programs and OpenMP-style parallel
programs. In comparison, previous related studies [7], [8],
[9] either focus on reducing conflict misses or depend
on additional hardware support and modified instruction
sets. Second, our approach works across program inputs
and cache configurations. Soft-OLP is also independent of
compiler implementations by working with binary executa-
bles. Third, Soft-OLP has been implemented and evaluated
in commodity systems instead of simulation environments;
therefore it can be directly used in practice to improve
application performance.

The rest of the paper is organized as follows. We present a
motivating example in Section II. We then give an overview
of Soft-OLP in Section III. In Section IV, we introduce
object-level program locality profiles used in this paper.
In Sections V, VI and VII, we describe how we generate
program profiles, analyze generated profiles and make parti-
tioning decisions based on the analysis results. We evaluate
the effectiveness of our approach in Section VIII on a com-
modity CMP using programs from a computational kernel
set, SPEC CPU2000 benchmarks and NAS benchmarks.
We discuss related work in Section IX and present our
conclusions in Section X.

II. A MOTIVATING EXAMPLE

Here we use the conjugate gradient (CG) program from
the NAS benchmarks as a motivating example to illustrate
the problem. As shown in Fig. 1, CG spends most of its run-
ning time on a sparse matrix-vector multiplication w = a ·p,

where a is a sparse matrix, rowstr and colidx are row and
column index arrays and w and p are dense vectors. There
are also code pieces not shown in Fig. 1 due to the space
limitation for this paper. These code pieces access arrays
iv,v,acol,arow, x,r,q,z,aelt in addition to the arrays shown
in Fig. 1. In CG, the majority of the memory accesses are on
arrays a, p and colidx. Although vector p has high temporal
reuse in the matrix-vector multiplication code, depending
on its size, its elements may get repeatedly evicted from
cache before their next uses, due to the streaming accesses
on arrays a and colidx. As the result of this thrashing
effect caused by accessing arrays a and colidx, CG often
reveals a streaming access pattern and has a very high miss
rate in cache. Without special code/data treatment based on
domain knowledge, general compiler optimizations, such as
loop tiling, cannot be applied in this case because of the
irregular nature of this program — there is indirection in
array accesses.

...//other code
for (i = 0; i < niters; i++) {

...//other code, with accesses to arrays not shown
for (j = 1; j <= lastrow-firstrow+1; j++)
sum = 0.0;
for (k = rowstr[j]; k < rowstr[j+1]; k++) {

sum = sum + a[k]*p[colidx[k]];
}
w[j] = sum;

}
...//other code, with accesses to arrays not shown

}
Figure 1. An outline of NAS-CG code.

The caching inefficiency problem occurs in CG because
the conventional LRU cache replacement policy does not
distinguish strong- and weak-locality accesses and thus is
unable to treat them differently. Since cache replacement
decisions are made at the whole-system level, any data reuse
with a reuse distance greater than the cache size cannot be hit
in the cache. The CG case is an example of variable locality
strengths among different data objects, which can not be
distinguished and handled properly by LRU. If we allow the
cache space to be partitioned between data objects, we would
be able to allocate variable cache sizes to different objects
based on their locality strengths, well utilizing the limited
cache space and minimizing cache misses. With CG, there
are different ways to reduce and even completely eliminate
capacity misses on strong-locality array p without increasing
cache misses on the other objects. One approach is to protect
p in an exclusive cache space and leave the remaining cache
capacity for the remaining data objects. Alternatively, we can
divide the cache such that the minimum cache quota is given
to weak-locality arrays colidx and a. This optimization
is not limited to single-thread performance. Even when
the code is augmented with OpenMP directives, with a
shared cache the object-level partitioning decisions should
still reduce capacity misses, since memory accesses from
different processor cores collectively reveal the same pattern
as with sequential execution. If we allocate a very small
cache quota for arrays colidx and a and co-schedule CG
with other programs, it no longer exhibits a streaming access
pattern that significantly interferes with its co-runners, so
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Figure 2. Overall structure of the object-level cache partitioning frame-
work.

that high throughput can be achieved with judicious inter-
thread cache partitioning. In this paper, we focus on object-
level cache partitioning and defer the combination of inter-
object and inter-thread cache partitioning to future work.

III. OVERVIEW OF THE APPROACH

The CG example in Fig. 1 demonstrates the benefits
of partitioning the cache space at the object level. In this
paper the term object is defined as an allocated region of
data storage and used interchangeably with variable. Note
that this definition is not equivalent to its usage in object-
oriented programming. We partition the last-level cache
space among global and heap objects for high-performance
scientific applications. There are two reasons for this de-
cision. First, high-performance scientific applications often
have relatively regular memory access patterns and high data
reuse ratios, which makes object-level cache partitioning
possible and profitable. Second, in these programs, the
majority of the memory accesses and cache misses are
on a limited number of global and heap objects. In order
to partition the last-level cache space among data objects,
we need to answer the following questions: (1) How can
we capture data reuse patterns at the object level, across
cache configurations and program inputs? (2) How can we
capture the interference among the data objects that share
and compete for cache space? (3) How can we identify
critical objects as partitioning candidates? (4) How can
we make quick object-level partitioning decisions with a
different program input? (5) What system support is needed
to enforce cache partitioning decisions?

To answer the above questions, we propose a system
framework called Soft-OLP that detects a program’s data
reuse patterns at the object level, through memory profiling
and pattern recognition, and enforces partitioning decisions
at run time with operating system support. This proposed
framework consists of the following steps and is summarized
in Fig. 2.

1) Profile Generation. For a given program and several
small training inputs, we capture memory accesses
in an object-relative form through binary instrumen-
tation. We obtain per-object reuse distance histograms
and inter-object interference histograms for data ob-
jects. These histograms are program profiles with

training inputs that are to be used to predict the
program’s data access and reuse patterns.

2) Profile Analysis. Based on program profiles from train-
ing runs, we detect the patterns of the program’s per-
object data reuse, object sizes and access frequencies
as polynomial functions, using a pattern recognition
algorithm based on the work in [10].

3) Cache Partitioning Decision Making and Enforcement.
When the program is scheduled to run with an ac-
tual input, we predict its per-object reuse distance
histograms and inter-object interference information
with detected access patterns. We then categorize data
objects as being “hot”, “hog”, “cold” or “other”. Using
this classification, we follow a heuristic algorithm to
make an object-level cache partitioning decision so
that “hog” objects do not prevent us from exploiting
the locality of “hot” objects and the contention be-
tween “hot” objects is alleviated. Such a partitioning
decision is finally enforced on commodity CMPs with
an OS kernel that supports page coloring [11], [12] at
the object level.

IV. OBJECT-LEVEL PROGRAM LOCALITY PROFILE

With a given input, we model a program’s data locality
at the object level with a locality profile. An object-level
program locality profile has two components: an object-
relative locality profile consisting of per-object reuse dis-
tance histograms and an inter-object interference profile
including inter-object interference histograms.

A. Modeling Per-Object Temporal Locality

In this paper we focus on temporal locality at the cache
line granularity because spatial locality is automatically
modeled by viewing a complete cache line as the basic data
unit. While this approach may appear to affect the proposed
framework’s generality, it is not a problem because Soft-
OLP aims at detecting the data locality patterns of a given
program binary that works across processors in the same
processor family. While cache capacities and degrees of
associativity often vary, processors in a modern processor
family are unlikely to use different line sizes at the same
cache level. For example, Intel x86 processors with NetBurst
and Core micro-architectures all use 64-byte L2 cache lines.
In this paper we exploit data locality in the last-level on-chip
cache. As the last-level cache on a modern processor often
has a very high degree of associativity, the impact of conflict
misses is not significant and we therefore model the cache
as being fully associative.

Temporal locality is modeled using reuse distance (i.e.
stack distance) [13], defined as the number of distinct
references between two consecutive references to the same
data unit. Since in this paper data locality is modeled
with the cache line as the basic unit, reuse distance refers
to the number of distinct cache lines accessed between
two consecutive references to the same cache line. As it
is not feasible to record the reuse distance between each
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data reuse, a histogram is used to summarize the tem-
poral locality. In a reuse distance histogram, the distance
space is divided into N consecutive data ranges (0, R1],
(R1, R2],...,(RN−2, Rmax],(Rmax, +∞) and the value of
each range represents the percentage or the absolute number
of temporal reuses whose reuse distances fall into this
range. Rmax is the largest cache capacity considered in
terms of cache lines. While reuse distances have primarily
been used for analysis at the whole program level, here
we model temporal locality via a reuse distance histogram
DA for accesses within each object A. A per-object reuse
distance histogram maintains absolute reuse counts instead
of percentages, because with different inputs, objects have
varying weights over the whole-program data space. In one
object, consecutive accesses on the same cache line have
zero reuse distances. We do not model such data reuses in
per-object reuse distance histograms because such reuses are
mostly handled by the L1 cache while we optimize last-level
cache accesses in this paper.

As an example, Fig. 3 shows simplified per-object reuse
distance histograms for objects p and a in CG with input
class B, on recent Intel x86 architectures with 64-byte cache
lines. While the majority of a’s references share a large reuse
distance that corresponds to a’s size in cache lines, 0.35%
of accesses on a have a very small reuse distance, in code
not shown in Fig. 1. In comparison, p has relatively short
reuse distances across several data ranges resulting from p’s
random access pattern.
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(a) Per-object reuse distance histogram Dp for p.
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(b) Per-object reuse distance histogram Da for a.
Figure 3. Per-object reuse distance histograms for objects p and a in CG,
generated with input class B.

B. Modeling Inter-Object Interference

We cannot capture a program’s locality behavior with
only per-object temporal reuse information. For example,
two programs can have the same per-object temporal reuse
profiles for arrays A and B, with one accessing A and
B in separate program sections and the other interleaving
accesses on the two arrays. To compose the temporal locality
information of individual objects and examine the whole-

program locality behavior, we model reference interference
between different objects.

Inter-object interference IA,B is defined as the average
number of distinct data references to object B per distinct
reference to object A. Similar to temporal locality modeling,
we extend the above definition to the cache line level.
Note that inter-object interference is not symmetric, that is,
IA,B and IB,A may not be identical. For a simple regular
program, IA,B can be a constant. However, for complex
programs , IA,B often vary with changes on A’s reuse
distances. Therefore we use a histogram to summarize inter-
object interference IA,B . In such a histogram, data ranges
correspond to those in reuse distance histogram DA and
the value over each range represents the average number of
distinct cache lines accessed on object B per distinct cache
line accessed on A, between A’s reuse with a reuse distance
in the range.

For example, Fig. 4 shows the simplified inter-object
interference histograms for Ia,p and Ip,a for CG with input
class B. Fig. 4(a) shows interference from object p to object
a. Ia,p is nearly zero although most accesses on a and p are
interleaved. This is due to the fact that between any temporal
reuse of a, all the elements in a are accessed only once
while elements in the smaller vector p have much higher
reuse counts. The exception is with p’s accesses having small
reuse distances. As mentioned above, this corresponds to an
infrequently executed loop. In comparison to Ia,p, Fig. 4(b)
shows that Ip,a increases with the reuse distances of p. When
p’s reuse distances are between 8000 and 10000 cache lines,
the interference from a to p is as high as 3.91. This means
that between two data accesses on p with reuse distance
9000 there are on average 9000 × 3.91 = 35190 distinct
cache lines accessed on a. We can see from Ip,a and Dp

that object a significantly interferes with object p’s temporal
reuse since a large portion of p’s references involve large
interference values.
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(a) Inter-object interference histogram Ia,p.
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(b) Inter-object interference histogram Ip,a.

Figure 4. Examples of inter-object interference histograms for CG,
generated with input class B.
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C. Cache Miss Estimation

As we will show in Section VII, the key operation in the
partitioning decision algorithm is the estimation of shared
cache misses on a set of objects for a given cache size. This
essentially relies on merging of the per-object reuse distance
histograms and inter-object interference histograms of a set
of objects. Once we have such a combined reuse distance
histogram DS , all the accesses with reuse distances greater
than the given cache capacity are predicted as misses. The
profile combination process is as follows.

• For a reference to object i, its reuse distance in the
combined object set S is computed as:

distS = disti + disti
∑

j∈S−{i}
Ii,j [disti]

Therefore, in an object-level reuse distance histogram,
each bar is shifted to the right by a distance determined
by its range and interference from the other objects in
the group. The resulting reuse distance histogram for
the object group is the combination of these individual
right-shifted histograms.

• For an object group S, its combined inter-object inter-
ference with an object k outside this group is computed
as:

Ik,S [distk] =
∑

j∈S

Ik,j [distk]

For example, based on the per-object reuse distance
histograms and inter-object interference histograms shown in
Figs. 3 and 4, we combine object-level locality information
of a and p and obtain a combined reuse distance histogram
D{a,p} in Fig. 5. If we assign 1MB (16K cache lines) to
the object group consisting of a and p, the total number
of cache misses on this object group is estimated to be
#accesses{a,p}(reuseDist > 16384) = 1.23×1010, where
#accessesobj(reuseDist > R) denotes the number of
references to object obj with reuse distances larger than R.

Figure 5. The combined reuse distance histogram for object group {a, p}
in CG with input class B.

V. PROFILE GENERATION

Fig. 6 illustrates how a program profile with a training
input is generated. There are three important components
used in profile generation: object table, custom memory
allocator and memory profiler.

Object Table: The object table maintains the basic
information of every profiled object. As the hub of the
profiling process, it is updated and queried by both the
custom memory allocator and the memory profiler. Object

Figure 6. Program profile generation with a training input.

information stored in the object table includes object iden-
tifier, name, starting address, size, location and liveness. In
this paper we focus on global and heap objects therefore
an object’s location is either heap or global. An object’s
identifier is used to facilitate fast query and retrieval. A
global object’s identifier is decided by its order in the
symbol table of the binary executable. A heap object’s
identifier is calculated by a hash function that takes its
allocation site, allocation order and the total number of
global objects as parameters. Identifier 0 is reserved for the
special object obj0 that includes all the data not explicitly
profiled. Similar to identifiers, object names are retrieved
from the symbol table for global objects and decided by a
function mangling allocation sites and allocation order for
heap objects. Because heap objects may have overlapping
address ranges due to their different life cycles, a raw address
can be found within multiple heap objects. We keep track
of each object’s liveness to avoid this problem. In this way
during profile generation each memory access only affects
a live object’s per-object temporal locality information and
inter-object interference information.

Custom Memory Allocator: The custom memory al-
locator is used to capture each heap object’s creation
and deletion. We replace standard memory management
functions such as malloc(), calloc(), free(), and realloc()
with our implementations. During profiling runs memory
management requests are redirected to the memory profiler
and heap objects’ life cycles are tracked in the object table.

Memory Profiler: The memory profiler controls the
profiling process and starts a training run by updating
the object table with global object information from the
executable’s symbol table. It relies on binary instrumentation
to obtain the raw address stream of a given program. Our
current profiler implementation is written as a PIN [14]
tool that inserts instruction and object probes before every
instruction accessing the memory. The core components
in the profiler are a set of reuse distance profilers and
an inter-object interference counter table. A reuse distance
profiler is used to track the reuse distances of an object
and implemented with a hash table and a Splay tree fol-
lowing the approach in [15]. The inter-object interference
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counter table is two-dimensional and used to track inter-
object interference between temporal reuses. As in high-
performance scientific programs the majority of the accesses
are on large global and heap objects and it is not feasible to
include all objects in cache partitioning decision making, we
only track objects larger than a threshold (2KB) in memory
profiling. Small objects are merged into a special object
obj0. The memory profiling algorithm used is summarized
in Algorithm 1.

Algorithm 1 The memory profiling algorithm.
Require: objProfiler.trace(addr) returns the reuse distance of access

addr on object obj and hist.sample(d, n) collects n data with value
d into histogram hist.

1: tracedAddr[0..objNum − 1] ← 0
2: for each memory reference with raw address addr do
3: Search the object table for such a live object obj that

obj.startAddr ≤ addr and obj.startAddr + obj.size ≥ addr
4: if obj exists then
5: (objID, offset) ← (obj.ID, (addr −

obj.startAddr)/CacheLineSize)
6: else
7: (objID, offset) ← (0, addr/CacheLineSize)
8: end if
9: reuseDist ← reuseDistProfiler[objID].trace(offset)

10: objReuseDistHistogram[objID].sample(reuseDist,1)
11: if tracedAddr[objID] = 0 then
12: tracedAddr[objID] ← addr
13: continue to process next memory access
14: end if
15: if tracedAddr[objID] = addr and reuseDist �= 0 then
16: tracedAddr[objID] ← 0
17: for each i where i �= objID do
18: if interferenceCounter[objID][i] �= 0 then
19: interferenceCountHistogram[obj][i].sample(

reuseDist, interferenceCounter[objID][i]/reuseDist)
20: sampleCounterHistogram[obj][i].sample(reuseDist,1)
21: interferenceCounter[objID][i] ← 0
22: end if
23: end for
24: end if
25: for each j where j �= objID do
26: if reuseDist > interferenceCounter[j][objID] then
27: interferenceCounter[j][objID] ←

interferenceCounter[j][objID] + 1
28: end if
29: end for
30: end for
31: for each obj i do
32: for each obj j where i �= j do
33: for each range k do
34: inteferenceHistogram[i][j][k] ←

interferenceCountHistogram[i][j][k]
sampleCounterHistogram[i][j][k] range[k]

35: end for
36: end for
37: end for

As the cost of binary instrumentation is high, for each
profiled object, we optimize the memory profiler by collect-
ing reuse distances for a portion of the accesses and then
estimate the complete reuse distance histogram based on the
sampled profile. Note that every access is still recorded for
later reuse distance collection and inter-object interference
counting. We have tried different sampling ratios and found
in practice 10% as the best trade-off between accuracy and
profiling cost. Compared with complete profiling, the error
introduced by sampling is less than 2% in our experiments.
By sampling 10% of reuse distances and employing several
other optimizations, our current implementation of the mem-
ory profiler has a slowdown of 50 to 80 times. This profiling

cost, while still seemingly high, can be easily amortized over
the lifetime of an executable, as the program complexity
is often quadratic or cubic and profiling runs are made
with much smaller problem sizes than actual runs that is
of interest to optimize.

VI. PROFILE ANALYSIS

After at least two program profiles with different training
inputs are obtained from the profiling process, per-object
data locality patterns are detected following an algorithm
similar to the approach by Zhong et al. [10]. The idea
is as follows. Each per-object reuse distance histogram is
divided into n small groups. With two histograms p1 and
p2 corresponding to different input sizes, we need to find a
pattern function fk to fit each formed group in two profiles,
g1,k and g2,k, for k from 1 to n. fk matches average reuse
distances d1,k, d2,k in group k such that fk(x1) = d1,k and
fk(x2) = d2,k, where x is a program parameter. In this
paper, for fk we consider simple polynomial functions in
the form of fk(x) = ak + bkxm, where m = 0, 1, 2, 3, 4 and
ak,bk are constants. In order to detect the locality pattern
function fk for each group k, we first pick an exponent
m such that xm

1 /xm
2 is the closest to d1,k/d2,k. Then we

decide ak and bk by solving equations d1,k = ak + bkxm
1

and d2,k = ak + bkxm
2 . Following the above process an ob-

ject’s locality pattern is summarized as a list of polynomial
functions f = {f1, f2, ..., fn}. Note that our choice of using
polynomial functions in locality pattern recognition differs
from the approach by Zhong et al. that takes functions such
as square root. This is mainly because we use one program
parameter instead of the object size as the variable. We also
follow procedures similar to locality pattern recognition to
detect the patterns of the data access volume and the data
size of each object as well, as absolute counts instead of
percentages are kept in histograms. With all the above pro-
gram patterns detected, given a new input we can construct
its per-object reuse distance histograms without tracing the
actual execution. For inter-object interference histograms,
we detect their patterns similar to object-level reuse pattern
recognition. As an example, after pattern recognition using
two training profiles, we find that in CG the majority of array
p’s reuse distances grow linearly with program parameter na
while the rest of the reuse distances keep a constant pattern.
In contrast, although colidx and a’s reuse distances actually
grow with the input size, they are simply predicted as
large constants as they exceed the maximum cache capacity
considered (8MB) even with training inputs. We also predict
that inter-object interference Ia,p is constant 0 within most
ranges while Ip,a mostly follows a linear pattern.

VII. CACHE PARTITIONING DECISION MAKING AND

ENFORCEMENT

When the program is scheduled to run with an actual
input, we first predict the program profile including per-
object reuse distance histograms and inter-object interfer-
ence histograms with patterns recognized during profile
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Figure 7. Cache partitioning decision making and enforcement with an
actual input.

analysis. The partitioning decision maker then selects objects
to be isolated from the rest of the data space and decide
their cache quotas. Finally this decision is enforced by OS
via virtual-physical address mapping. Fig. 7 illustrates the
cache partitioning decision making and enforcement process.
This phase of Soft-OLP shares several components with
the profile generation process such as the object table and
the custom memory allocator but with a few changes. For
example, in the object table field colors is added to denote
the cache space allocated to an object as the total cache
capacity is divided into a set of colors(regions). Unlike the
custom memory allocator used in profile generation, the
memory allocator used here reads the object table to check
and enforce cache partitioning decisions but never updates
the table. The rest of this section discusses in detail the
cache partitioning mechanism and the partitioning decision-
making algorithm.

A. Partitioning Enforcement

The most straightforward way to enforce cache partition-
ing decisions is through hardware support. Cache can be
partitioned at different granularities such as cache lines,
cache ways or pages. Because hardware-based partitioning
support is not readily available, here we provide a software
mechanism that essentially emulates page-level hardware
cache partitioning based on a well accepted OS technique
called page coloring [11]. It works as follows. A physical
address contains several common bits between the cache
index and the physical page number. These bits are referred
to as page color. A physically addressed cache is therefore
divided into non-overlapping regions by page color, and
pages in the same color are mapped to the same cache
region. We assign different page colors to different objects,
thus the cache space is partitioned among objects. By limit-
ing the physical memory pages of an object within a subset
of colors, the OS can limit the cache used by the object
to the corresponding cache regions. In our experiments, the
Intel Xeon processor used has 4MB, 16-way set associative
L2 caches, each shared by two cores. As the page size is
set to 4KB, we can break the L2 cache to 64 colors (cache

size / (page size × cache associativity)).
Our implementation is based on the Linux kernel. We

maintain a page color table for threads sharing the same
virtual memory space to guide the mapping between virtual
and physical pages. Each entry in the table specifies the
page color that a range of virtual pages can be mapped to.
Each thread has a pointer in its task structure pointing to
the page color table. We also modify the buddy system in
the memory management module of the Linux kernel, which
is in charge of mapping virtual pages to physical pages, to
follow the guidance specified in the page color table. We add
a set of system calls to update the page color table at the
user level. These system calls are used by the partitioning
decision maker and the memory allocator to enforce cache
partitioning decisions A special value (0xFF ) is reserved
for page color table entries to indicate the use of the default
random page mapping policy of a unmodified Linux kernel.

While we can minimize the storage cost by maintaining
a page color table with each entry corresponds to an object
of interest, in the 32-bit systems used in the experiments
we keep the page color information for each virtual page.
The number of table entries is decided by the maximum
number of virtual pages, which is 220 in the 32-bit systems.
In our implementation, each table entry occupies one byte to
represent the color assigned to a virtual page and therefore
the page color table incurs no more than 1MB space over-
head for each process family in 32-bit systems. Therefore
our implementation has a negligible space overhead. As all
the decisions are made statically at user level, there is no
run-time overhead in the kernel.

B. Partitioning Decision Making

Preprocessing — Object Categorization and Object
Clique Search: With the predicted program profile and
the actual cache configuration, we put objects into four
categories based on their temporal locality profiles:

1) Cold objects refer to the objects that have few memory
accesses while still traced in the profiling process
because of their large sizes. We set a threshold
Tcold to detect cold objects. For an object obj, if
#accesses obj
#totalAccesses < Tcold, it is categorized as a cold
object. #accesses obj is the number of accesses to
the object obj and #totalAccesses is the total number
of accesses to all the objects. In our experiments, we
set Tcold as 1%.

2) Hog objects refer to the objects that have high memory
demands but reveal little or no temporal locality. With
a threshold Thog, if an object obj is not a cold object
and
#accessesobj(reuseDist≤cacheSize)

#accessesobj
< Thog, then it is a

hog object. Note that cacheSize is in terms of cache
lines. #accessesobj(reuseDist ≤ R) refers to the
number of references to object obj with reuse dis-
tances less than or equal to R and we have Thog = 2%.

3) Hot objects are the objects with high tempo-
ral locality. For an object obj, if we have
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#accessesobj(reuseDist≤cacheSize)
#accessesobj

> Thot and if obj
is not a cold object, then it is a hot object. We have
Thot = 10%.

4) Other objects are the objects that do not belong in any
above category.

For example, after object categorization, profiled objects
in CG are categorized into groups, as shown in Table I.
Because the majority of the objects are categorized as cold
objects, it significantly simplifies the partitioning decision-
making process.

Cold Objects Hog Objects Hot Objects Other Objects
iv,v,acol,arow,rowstr,x,w,r,q,z,aelt a, colidx p obj0

Table I
CATEGORIZING OBJECTS IN CG’S PROFILES.

A set of objects and their interference relationships can
be viewed as a graph with vertices representing objects
and unweighted edges representing interferences between
objects. Based on the graph representation, we enumerate
the cliques among hog objects. As we will show in the
partitioning decision algorithm, the cumulative object size
of the maximum clique decides the memory requirement of
all hog objects and thus decides their cache allocation. While
the clique enumeration problem has exponential space and
time complexities, it does not bring much overhead in our
particular problem because the number of hog object cliques
is small in real programs. For example, CG has only one hog
object clique that includes a and colidx.

The Partitioning Decision-Making Algorithm: The par-
titioning decision-making algorithm finds a cache partition
among objects with predicted per-object reuse distances,
inter-object interferences and cache configuration informa-
tion. With a data-sharing parallel program, the algorithm
uses its sequential counterpart to approximate its data ac-
cess patterns. The partitioning decision-making algorithm
consists of four major steps. (1) To simplify late parts of
the algorithm, we first merge the reuse distance histograms
and inter-object interference histograms of cold and other
objects with those of the special object obj0. (2) Although
in theory hog objects do not need any cache space, we still
need to allocate enough cache capacity to them because a
physically addressed cache and the physical memory are
co-partitioned by the page color-based partitioning enforce-
ment mechanism. (3) Finding the optimal cache partition
is NP-hard because the decision problem of integer linear
programming can be reduced to this problem. Since it is
not feasible to search for the best partitioning decision in
a brute-force way, a heuristic is employed to maximize
the benefit-cost ratio at every cache allocation step until
there is no further benefit of cache partitioning. (4) As an
important optimization, once there is no additional benefit
from segregating complete objects, we attempt to divide a
remaining object into two segments and keep one segment
in cache. In this way we exploit temporal locality even
if object-level reuse distances are greater than cache size,

Algorithm 2 The partitioning decision-making algorithm.
Require: misses(c, S) returns the cache miss number of object group S with

cache allocation c, using predicted per-object reuse distance histograms
and inter-object interference histograms.

1: STEP 1. (Merge cold and other objects)
2: All cold and other objects are merged into obj0
3: STEP 2. (Find the minimum cache space for hog objects)
4: Find the clique in hog objects with the largest memory requirement

memhogs
5: hogCacheColors ← �memhogs/(totalMemory/#pageColors)�
6: cacheColors ← totalCacheColors − hogCacheColors
7: STEP 3. (Heuristic-based cache partitioning for hot objects)
8: partitionedObjs ← φ, objsLeft ← hotObjs
9: while objsLeft �= φ do

10: bestBenefitCost ← 0
11: for each object obj in objsLeft do
12: for colors = �memobj/(totalMemory/#pageColors)� to

cacheColors do
13: Try to find non-conflicting colors in assigned colors to

partitionedObjs. The objects already assigned these colors
should have no interference with obj.

14: cost ← (colors − nonConflictingColors)
15: benefit ← misses(cacheColors, objsLeft) -

(misses(cacheColors − cost, objsLeft − obj) +
misses(colors, obj))

16: if benefit/cost > bestBenefitCost then
17: bestBenefitCost ← benefit/cost
18: (objbest, colorsbest) ← (obj, colors)
19: end if
20: end for
21: end for
22: if (objbest, colorsbest) is not empty then
23: partitionedObjs ← partitionedObj ∪ {objbest}
24: objsLeft ← objsLeft − {objbest}
25: cacheColors ← cacheColors − colorsbest
26: else
27: Break from the while loop
28: end if
29: end while
30: STEP 4. (Partial-object cache partitioning)
31: objsLeft ← objects in objsLeft with object-size reuse distances
32: Repeat lines 9-29, at each iteration candidate object obj is tentatively

divided into two objects obj1 and obj2 where obj1.size = (colors×
cacheSize)/#pageColors, obj2.size = obj.size − obj1.size

a case where both the traditional LRU policy and object-
level cache partitioning restricted to complete objects cannot
handle. We only apply this optimization to objects whose
reuse distances share the same pattern with their object
sizes as we notice this pattern is very common in memory-
intensive scientific programs. More complex cases can be
handled by further extending this approach. For example, an
object of n3 elements can be divided into 2n segments if its
reuse distance n2 is greater than the cache size. However,
such complicated extensions have not been implemented.
The complete partitioning decision making algorithm is
summarized in Algorithm 2.

Inaccuracy exists in the data locality model as it is
impractical to include architectural complexities such as
prefetching and out-of-order execution. Therefore we may
mistakenly choose a cache partition that does reduce cache
misses in practice. As a practical solution, at each iteration
of steps 3 and 4 we accept the partition only if the predicted
last-level miss reduction is above a threshold compared to
the previous iteration. Otherwise we stop further applying
cache partitioning. In practice, we set this threshold to be
5%.

For example, when we apply Algorithm 2 to CG with
a given input on a machine with a 4MB L2 cache, the
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decision-making algorithm always first segregates hog ob-
jects a and colidx with the rest of the objects. Then our
algorithm stops trying to partition the remaining cache space
as it cannot significantly reduce cache misses with the
remaining objects.

VIII. EXPERIMENTAL RESULTS

We used Soft-OLP to improve the L2 cache performance
of a commodity system. In this section we present the
experimental results.

Experimental Environment: We conducted experiments
on a Dell PowerEdge 1900 workstation with two quad-
core 2.66GHz Xeon X5355 Processors and 16GB phys-
ical memory with eight 2GB dual-ranked Fully Buffered
DIMMs (FB-DIMM). Each X5355 processor has two pairs
of cores and cores in each pair share a 4MB, 16-way set
associative L2 cache. Each core has a private 32KB L1
instruction cache and a private 32KB L1 data cache. Both
adjacent-line prefetch and stride prefetch are enabled on
this machine. Because we target shared-cache performance,
in our experiments we used at most a pair of cores via
function sched setaffinity that sets process/core affinity. Our
cache partitioning mechanism was implemented in Linux
kernel 2.6.20.3. While there are 64 page colors in the shared
L2 cache, we only used 5 least significant color bits in a
physical address. Therefore we have 32 colors and each color
corresponds to 128KB of cache space. Without incurring
page swapping, the maximum physical memory mapped to
a page color is 512MB on this machine. We used pfmon [16]
to collect performance statistics such as L2 cache misses.

Benchmark Selection: We selected a set of scientific
programs from an OpenMP implementation of NAS bench-
marks [17], the SPEC CPU2000 benchmark set [18] and
a suite of computational kernels [19]. These benchmarks
include jacobi2d, stencil3d, adi and fdtd2d from the kernel
suite, four benchmarks apsi,swim,art and mgrid from SPEC
CPU2000 that were also used in a related study [20] and five
benchmarks CG, LU, BT, FT and SP from NAS benchmarks
version 2.3. We excluded twolf and vpr that were also used
in [20] and EP and IS in NAS benchmarks, because they are
not scientific programs and optimizing these programs is out
of the scope of this study. We also did not include MG from
the NAS benchmarks because it is identical to mgrid from
SPEC CPU2000. The selected benchmarks were compiled
with Intel C/Fortran Compiler 10.1 using the “-fast” flag.
With OpenMP problems, the “-openmp” flag is also used.

The efficiency of object-level cache partitioning essen-
tially relies on program information that distinguishes dif-
ferent data objects. In some cases, to fully test our frame-
work, we had to make source code changes in the selected
benchmarks due to some limiting factors. First, some Fortran
programs use common blocks which makes global objects
in a common block indistinguishable. For this reason we
modified array declarations in swim such that every global
object was only in one common block. We also chose to
use a C implementation of the NAS benchmarks instead of
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Figure 8. CG with object-level cache partitioning in comparison to
standard LRU caching.
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Figure 9. LU with object-level cache partitioning in comparison to standard
LRU caching.

the original Fortran programs to avoid this complication.
Second, some C programs use a programming idiom that
creates a multi-dimensional heap array from many dynam-
ically allocated sub-arrays. We can modify such code by
allocating memory to the array at once. Such a change is
needed for art from SPEC CPU2000. Note that there is no
difference in performance and memory requirement before
and after such simple changes. Third, some legacy programs
use a large fixed-size array as the work array for memory
management. apsi from SPEC CPU2000 is such an example.
With these programs, it is not feasible to distinguish accesses
on different objects. Therefore as shown in Table II, we were
not able to optimize apsi.

The resulting benchmark suite consists of thirteen pro-
grams, including five NAS benchmarks that run both sequen-
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Benchmark Input Input # of training # of actual Objects Object-level reuse # of Max. Avg. Max. miss Avg. miss # of actual inputs
parameter range inputs inputs profiled distance patterns threads speedup speedup reduction reduction with improvement

jacobi2d N [200,1200] 2 9 3 0,1,2 1 1.27 1.13 46.3% 25.2% 7
stencil3d N [50,100] 2 9 3 0,1,2,3 1 1.36 1.13 39.3% 19.6% 7

adi NMAX [200,1200] 2 9 4 0,1,2 1 1.03 1.01 24.7% 1.0% 8
fdtd2d N=N1=N2 [200,1200] 2 9 4 0,1,2 1 1.91 1.25 78.0% 29.9% 8
swim N=N1=N2 [128,1334] 2 7 15 0,1,2 1 1.03 1.01 2.1% 1.0% 2

art objects [10,50] 2 7 9 0,1 1 1.29 1.14 36.9% 21.3% 7
CG na [75000,210000] 2 8 15 0,1 1 1.09 1.08 35.7% 30.9% 8

2 1.06 1.05 19.2% 15.4% 8
LU PROBLEM SIZE [60,102] 2 7 9 0,1,2,3 1 1.28 1.08 43.4% 12.5% 5

2 1.32 1.10 39.2% 10.4% 5

apsi N=NX=NY=NZ [64,112] 2 4 2 0,1,2,3 1 1 1 0 0 0
mgrid 2LM [32,128] 2 1 4 0,1,2,3 1 1 1 0 0 0

BT PROBLEM SIZE [60,102] 2 7 15 0,1,2,3 1,2 1 1 0 0 0
FT N=NX=NY=NZ [64,512] 2 2 9 0,1,2,3 1,2 1 1 0 0 0
SP PROBLEM SIZE [60,102] 2 7 15 0,1,2,3 1,2 1 1 0 0 0

Table II
CHARACTERISTICS AND EXPERIMENTAL RESULTS FOR SELECTED BENCHMARKS. FOR BREVITY 0,1,2,3 ARE USED TO REPRESENT CONSTANT,

LINEAR, SQUARE AND CUBIC FUNCTIONS RESPECTIVELY.

(a) Speedups

(b) L2 cache miss reduction
Figure 10. art with partial and complete object-level cache partitioning
in comparison to standard LRU caching.

tially and in parallel. Their characteristics are summarized
in Table II. Table II also shows the range of the inputs
used for each benchmark. If there is a reference input size
for a benchmark, it was always used in our experiments.
The two smallest inputs for each benchmark were used in
training runs, while the remaining input sets were used for
the actual runs. While the profiling time is non-trivial, after
two program profiles are generated and analyzed, the time
taken for the cache partitioning decisions is negligible – of
the order of tens of milliseconds. In the experiments, we did
not observe any increase in OS activities from the kernel
modification. Table II also shows the number of objects
profiled for each benchmark. It can be seen that the number
of profiled objects in these scientific applications is quite
small – up to 15 in the experiments. This indicates that it
is feasible to effectively reason about data locality at the
object level. Furthermore, the majority of the data accesses
exposed by these objects are very regular and thus can be
modeled using simple polynomial functions.

Table II shows performance and cache miss reduction
data for our approach compared to that with a standard

shared LRU-based L2 cache. For a given input, we ran each
benchmark three times with the shared LRU-based L2 cache
and three times with object-level cache partitioning. We
then reported the speedup and cache miss reduction using
the worst performance numbers with object-level cache
partitioning and the best numbers with the shared LRU-
based L2 cache. If the partitioning decision algorithm did
not choose to partition the cache between objects, we simply
set speedup to 1 and miss reduction to 0 as the shared
LRU-based L2 cache was nevertheless used. In our exper-
iments, we achieved performance improvements on eight
benchmarks, with up to 1.91 speedup and up to 78% cache
miss reduction (with fdtd2d when N = 500). In experiments
involving these eight benchmarks, we improved 65 out of
80 total cases. We were unable to improve the performance
of the five remaining benchmarks. In all the cases where we
could not improve performance, the algorithm did not make
any bad cache partitioning decision that caused performance
degradation.

The inability of Soft-OLP to achieve performance im-
provement for a few programs is due to two reasons: (1)
Indistinguishable data objects in a program can make Soft-
OLP lose optimization opportunities. As discussed above,
apsi is such an example. (2) An object-level cache parti-
tioning decision is a function of the program, the program
input, and the cache capacity. Our approach can be effective
for a program with a given input only when there is an
object with reuse distances larger than the cache capacity
with the conventional LRU-based cache and less than the
capacity of the assigned cache portion within an object-level
cache partition. In most cases where our approach is unable
to improve cache performance, reuse distances are either
smaller than the cache size at the whole program level (in
which case standard LRU cache is very effective) or much
larger than the cache size even within one object (in which
case object-level partitioning still cannot help). For example,
with reference input 2LM = 128, we could not improve
mgrid’s performance but the same program’s L2 miss rate
was reduced in [20]. The reason is that the optimization
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opportunity for this program is in the accesses with x2

locality patterns, whose reuse distances are slightly larger
than 512KB in cache lines with conventional LRU caching
but less than 512KB in cache lines within individual objects.
As our experimental platform has a 4MB L2 cache while the
L2 cache capacity on the PowerPC 970FX processor used
in [20] was only 512KB, these accesses do not incur cache
misses on our experimental platform with conventional LRU
caching but could be optimized for PowerPC 970FX. As
another example, we also directly applied the partitioning
decision-making algorithm with the accurate profiles from
training runs. Because training runs often have small work-
ing sets that fit in the cache, we only achieved performance
improvement in 9 out of 36 training cases.

Case Studies: We analyze the effect of object-level
cache partitioning in detail using CG and LU. These parallel
benchmarks are interesting as they are quite complicated and
both incur high miss rates across input ranges and thread
numbers. Furthermore, they represent two types of applica-
tions that can benefit from object-level cache partitioning.

Fig. 8 shows speedups and cache miss reductions with CG
for training and actual inputs, in comparison to the shared
LRU cache. For CG, with different thread numbers and
input sizes, the partitioning decision is unchanged. It always
segregates hog objects colidx and a, and lets the other
objects share the remaining cache capacity. Performance
improvement and miss rate reduction are also across thread
numbers and input sizes, as shown in Fig. 8. When the
number of threads is increased from one to two, the relative
benefit of cache partitioning decreases. For example, when
two threads are used, CG’s average speedup is reduced from
1.07 to 1.04. Experimental data show that CG’s total L2
misses increase with the number of threads. Since the cache
miss rates for a and colidx do not change, this reduction in
performance improvement is likely due to increasing intra-
object cache contention on p between two threads.

Fig. 9 shows speedups and cache miss reductions on LU,
a program of over 3000 lines. Results with both training and
actual inputs are shown. LU achieves very high performance
improvements with certain input ranges using Soft-OLP. For
instance, when the input size is 70, it achieves a performance
improvement of 31.7%, compared to uncontrolled LRU
caching. However, unlike CG, LU does not exhibit this trend
of performance improvement across all input sizes. When
the problem size is greater than 90, cache partitioning is
not beneficial. This difference between CG and LU results
from the fact that the majority of LU’s data references are
on hot objects u, rsd, a, b, c and d, not on hog objects as in
CG. Given a cache configuration, the thrashing effect from
accessing multiple hot objects is significant only over a range
of input sizes. When the input goes beyond a certain value,
accesses on a single hot object start to thrash in the cache.
As a result, LU’s partitioning decisions vary with inputs and
cache sizes by involving different numbers of hot objects.

Effect of Partial Object Cache Partitioning: The par-
titioning decision algorithm considers dividing objects with

object-size reuse distances. In the eight benchmarks with
performance improvement, six of them have partial object
cache partitioning with at least one input. This is because
most of the benchmarks used are iterative scientific programs
and large objects often have reuse distances as linear func-
tions of its size. For example, Fig. 10 shows the speedup
and cache miss reductions on art with and without partial
object cache partitioning. With art, the majority of its
memory accesses involve three hot objects f1 layer, tds
and bus. When input parameter objects is larger than 40, by
only segregating complete objects Soft-OLP cannot improve
performance. However with partial object cache partitioning,
object bus is divided into two segments and the object’s
temporal locality is exploited for the segment staying in
cache.

IX. RELATED WORK

Many approaches have been proposed to partition the
shared cache at the thread or process level. Most of them
add cache partitioning support in the micro-architecture [21],
[22], [23]. There have been studies on OS-based cache parti-
tioning policies and their interaction with micro-architecture
support [24], [25]. Our work differs from these studies in
that we focus on object-level cache partitioning and do not
require any new architectural support.

Understanding data locality is critical to performance
optimization. Authors in [26] proposed a data trace rep-
resentation in an object-relative form and demonstrated its
application in computing memory dependence frequencies
and stride patterns. Whole-program data locality pattern
recognition has been studied in [10], and we have used
the technique to detect locality patterns at the object level.

Several studies have sought to improve data locality
through compiler/OS interaction [7], [8], [27], [28], [29].
The approaches in [7], [8], [27] focus more on avoidance
of conflict misses, which is not a significant problem with
modern L2/L3 caches because of their high degrees of
associativity. Also using reuse distance as a tool, the authors
in [29] optimized programs for embedded processors with
a main cache and a mini-cache. Their framework decides
which cache a virtual page is mapped to. The authors in [28]
used reuse distance information to manage superpages.

A recent study called ROCS [20] also addresses the
weakness of the LRU replacement policy with the last-
level cache. It also uses page coloring as the basic support.
Their approach are different from ours in that ROCS collects
on-line data locality information at the page level using
architecture-specific sampled-address data registers (SDAR).

X. CONCLUSION AND FUTURE WORK

We have designed and implemented a framework that
partitions the last-level cache at the object level, in order
to improve program performance for both single-thread
and parallel data-sharing programs. The framework consists
of several major steps including profile generation, profile
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analysis and cache partitioning decision making and en-
forcement. Experimental results with benchmarks from a
computational kernel suite, SPEC CPU2000 benchmarks and
OpenMP NAS benchmarks demonstrate the effectiveness of
our framework.

We have recently looked into the cache conflicting prob-
lems for databases running on multicore processors, where
OS and database systems collaboratively make efforts to
exploit cache locality guided by the database domain knowl-
edge [30]. Other ongoing and future work is planned along
the following directions. First, we plan to generalize our
framework to take small objects into consideration since
small objects may reveal a collective locality behavior. Sec-
ond, we plan to carefully study the potential for combining
inter-object cache partitioning and inter-thread techniques
such as job pairing. Third, some emerging architectures such
as the Intel Larrabee [31] will provide a rich set of instruc-
tions for explicit cache control. When these architectures
are available, we plan to study compiler optimization issues
with these cache control instructions, based on the program
analysis techniques proposed here.
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