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Abstract— While the 802.11 power saving mode (PSM) and
its enhancements can reduce power consumption by putting
the wireless network interface (WNI) into sleep as much as
possible, they either require additional infrastructure support, or
may degrade the transmission throughput and cause additional
transmission delay. These schemes are not suitable for long
and bulk data transmissions with strict QoS requirements on
wireless devices. With increasingly abundant bandwidth available
on the Internet, we have observed that TCP congestion control is
often not a constraint of bulk data transmissions as bandwidth
throttling is widely used in practice.

In this paper, instead of further manipulating the trade-off
between the power saving and the incurred delay, we effectively
explore the power saving potential by considering the bandwidth
throttling on streaming/downloading servers. We propose an
application-independent protocol, called PSM-throttling. With
a quick detection on the TCP flow throughput, a client can
identify bandwidth throttling connections with a low cost. Since
the throttling enables us to reshape the TCP traffic into periodic
bursts with the same average throughput as the server transmis-
sion rate, the client can accurately predict the arriving time of
packets and turn on/off the WNI accordingly. PSM-throttling
can minimize power consumption on TCP-based bulk traffic
by effectively utilizing available Internet bandwidth without
degrading the application’s performance perceived by the user.
Furthermore, PSM-throttling is client-centric, and does not need
any additional infrastructure support. Our lab-environment and
Internet-based evaluation results show that PSM-throttling can
effectively improve energy savings (by up to 75%) and/or the QoS
for a broad types of TCP-based applications, including streaming,
pseudo streaming, and large file downloading, over existing PSM-
like methods.

I. INTRODUCTION

The Internet has been dramatically advanced and signifi-

cantly changed in two aspects. First, wireless Internet accesses

become pervasive with the widely deployed WiFi networks

on university campus, in business enterprises, public utilities,

and residential houses. Second, media content has accounted

for a high percentage of the Internet traffic volume. Under

these two trends, more and more people are accessing Internet

media services via wireless connections, on both mobile or

portable devices such as laptops, PDAs, BlueTooth devices,

and stationary desktop computers.

Mobile and portable devices are usually driven by battery

power. Due to the limited battery capacity, it is essential

to reduce power consumption on mobile devices without

degrading the performance of applications, particularly for

those applications that are QoS sensitive. The basic power

saving method is to put the wireless network interface (WNI)

into the sleep mode when it is idle, e.g., IEEE 802.11 power

saving mechanism [10]. However, 802.11 power saving mode

(PSM) may increase the connection round trip time due to the

lagged data reception, and thus may significantly degrade the

throughput of TCP-based applications. In order to achieve a

high TCP throughput, the WNI has to be active to generate

timely acknowledgments for received data. As a result, a

significant amount of energy is wasted on channel listening [7],

[9]. For applications like TCP-based streaming media, which

has strict requirements on packet delay and can quickly drain

out the battery of mobile devices, it is difficult to explore the

trade-offs between the power saving and the caused delay to

applications.

The power saving mode can be most effectively managed

if the streaming traffic flowing to a client is in a predicable

pattern, such as periodic bursts. Accordingly, the client can

accurately adapt to streaming traffic pattern to sleep and

to work periodically. Therefore, the power consumption on

the client device is minimized while the demanded high

throughput is also maintained. Efforts have been made towards

this goal. However, existing solutions are either expensive or

inefficient. For example, a proxy-based solution [5] is pro-

posed to buffer and shape streaming media traffic into blocks,

so that the data packets arrive at the client side with predictable

intervals. Although clients can transit to lower power states

during the block intervals without degrading application level

performance, this solution needs a dedicated infrastructure

support and is protocol dependent. Furthermore, RTSP-based

Windows, RealNetworks, and QuickTime streaming services

have their own extensions on the standard RTSP protocols [8],

which have to be implemented individually for a general

purpose RTSP proxy.

A client-centric scheme [13] is proposed to reshape the TCP

traffic into bursts, and put the WNI into sleep between two

bursts by modifying the client TCP stack. Besides lacking

specific consideration for the streaming traffic, this scheme



increases the data transmission time as a trade-off, which

can be a high cost for some bulk data transmissions and

unacceptable for streaming media applications with stringent

QoS demands.

Streaming, pseudo streaming, and file downloading are

the most commonly used media delivery approaches on the

Internet today [8]. These techniques typically use TCP as the

transmission protocol. With the increasingly abundant Internet

bandwidth, the transmission rate of media traffic is often not

constrained by the TCP congestion control mechanism on the

network, but by the control on the server side, which we

refer to as bandwidth throttling, due to an increasingly high

demand of server resources. With bandwidth throttling, the

Internet transmission is constrained by the server side instead

of the available Internet bandwidth. That is, there may be idle

Internet bandwidth without full utilization. Our observations

show that bandwidth throttling has been commonly adopted in

practice in a large variety of TCP-based bulk data transmission

applications, in which media services are the most typical.

In this paper, we aim to take this unique opportunity

offered by bandwidth throttling to exploit unused Internet

bandwidth for power saving at the client side in WLANs.

We propose an application-independent PSM protocol, called

PSM-throttling, to significantly improve the power saving

efficiency for bulk data communication applications with

stringent QoS requirements. In PSM-throttling, with a quick

detection of the TCP flow throughput, a client can identify

bandwidth throttling connections with a low cost. Since the

effective data transmission rate is often much lower than the

available Internet bandwidth due to bandwidth throttling at

the server side, the unused network bandwidth enables us

to reshape the traffic into periodic bursts with an average

throughput the same as the server transmission rate. With such

periodic burst transmission patterns, idle and busy phases on

the network transmissions can be clearly distinguished. Thus

packet arrivals can be accurately predicted at the client side.

As a result, the WNI can be turned on and off at the right time,

in order to minimize energy consumption without degrading

the user-perceived performance. The protocol can also detect

dynamic changes of the server transmission rate in time with

a small cost by tuning the burst size and burst intervals to

maximize client perceived throughput and minimize energy

consumption. Since PSM-throttling works at the transmission

layer on the client and does not affect server transmission rate,

it is application independent and client-centric.

Our Internet-based evaluation results show that PSM-

throttling can effectively improve energy savings by up to 75%

on the WNI or the QoS for a broad types of TCP-based bulk

communications, including streaming, pseudo streaming, and

large file downloading, than other power saving schemes.

The remainder of this paper is organized as follows. Section

II presents our observations and measurements on typical bulk

data transmission applications on the Internet and lab environ-

ments. We present PSM-throttling system designs in Section
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Fig. 1. Bandwidth throttling in streaming servers and Web servers

III. Based on an implemented prototype, we evaluate PSM-

throttling with real experiments on the Internet environments

and lab environments in Section IV. Section V outlines the

related work on power saving in WLANs. Concluding remarks

are made in Section VI.

II. BANDWIDTH THROTTLING IN TCP-BASED MEDIA

TRANSMISSIONS

In this section, we characterize the performance of rep-

resentative bandwidth throttling applications through Internet

measurements, in order to explore the power saving space

for TCP-based long duration and bulk data transmissions. We

focus on the TCP-based Internet media delivery since media

content is prevailing in online services and accounts for the

majority of the Internet traffic [8].

Current Internet media traffic is mainly delivered via stream-

ing, pseudo streaming, and file downloading techniques, where

the bandwidth throttling is commonly used in practice.

• Streaming: Although traditionally UDP is the ideal pro-

tocol for streaming delivery, today TCP-based streaming

accounts for more than 80% of the Internet streaming traf-

fic, due to the wide deployment of NAT routers/firewalls

and the overhead of protocol rollover [8].

For streaming services, typically each stream is delivered

at its encoding rate, even if there is more bandwidth

available between the client and the server. Although Fast

Cache [2] based streaming can deliver a media object

with a rate up to five times of its encoding rate, it is

not resource efficient and is disabled by most media

services in practice [8]. Furthermore, with the increas-

ing popularity of streaming services, a streaming server

may need to serve hundreds or thousands of concurrent

requests at the same time. Delivering a media object

with a much higher rate than its encoding rate would

significantly decrease the number of concurrent requests

a server can service, and the user-perceived performance

will be degraded when a burst of requests arrive.



• Pseudo Streaming and Downloading: Besides stream-

ing services, many content providers and Internet media

services, such as YouTube and Google video, leverage

pseudo streaming techniques to deliver media content

with common Web servers [6]. The transmission in

pseudo streaming is essentially normal HTTP download-

ing. However, the client player can play the received data

when a small playout buffer is fulfilled, without waiting

for the complete downloading of the entire media.

In order to serve a large number of concurrent requests,

typically a pseudo streaming server has to limit the maxi-

mal throughput of each TCP downloading session, which

is often much smaller than the end-to-end bandwidth

between the server and its clients on the Internet.

Figure 1 illustrates the bandwidth throttling on either a

streaming server or a Web server. The bandwidth throttling

by a streaming server is often conducted in a fine granularity,

so that the outgoing packets are evenly distributed in the

stream. In contrast, the bandwidth throttling by a Web server

is often conducted in a coarse granularity, and the outgoing

packets may be sent with a bursty stream. Next, we present our

Internet measurements to further understand the implications

of bandwidth throttling on power saving.

First, we studied the widely used streaming services on

the Internet, including RealNetworks media streaming and

Window media streaming. All servers in our measurements,

including Window media servers and RealNetworks media

servers, are hosted by a CDN. For TCP-based RealNetworks

media streaming, the server sends media packets with regular

packet intervals. In order to test whether it is bandwidth-

throttling or not (i.e., whether there is any unused bandwidth

between the client and the server), we suppress the media

transmission by setting the receiving window of TCP ACK to

zero for 200 milliseconds at the client side, and then restore the

original receiving window size to let the server send the data

buffered in the TCP congestion queue. When the first packet

is received, we choke the connection by sending a TCP ACK

with zero receiving window size for 200 milliseconds again.

Figure 2(a) shows the original data transmission sequence,

while Figure 2(b) shows the sequences after our periodical

choking. It shows that the TCP traffic becomes bursty, while

the overall throughput keeps unchanged. The reason is as

follows. As shown in Figure 1, when the TCP connection

is choked by the client, the TCP layer at the server side

cannot send more data. However, at the application layer, the

streaming server continues to send data to the TCP layer,

until the TCP congestion window is full. As a result, once

the connection is unchoked, the TCP layer at the server side

sends all data in the congestion window immediately. Since

the average sending rate of the streaming server, i.e., the

streaming rate, which is equal to the media encoding rate

by default, is much smaller than the end-to-end bandwidth

between the client and the server, when the buffered data is

sent, no more data can be filled in the TCP congestion window

in time, resulting the traffic bursts. For TCP-based Windows

media streaming, we have similar observations, as shown in

Figure 3(a) and Figure 3(b).

Second, we study the Internet pseudo streaming from

YouTube. Figure 4 shows the time sequences of typical TCP

connections of pseudo streaming media served by YouTube

servers. Figure 4(a) shows the sequence without our inter-

ferences. The figure indicates that the traffic of YouTube is

already bursty, due to the coarse granularity scheduling of

packet sending for each connection.

Although the traffic bursts in pseudo streaming provide

potentials to save energy by scheduling the on and off of the

WNI, such bursts are not periodic and it is difficult for the

client to predict the arriving time and finishing time of a burst.

However, with a synchronized choking and unchoking on the

client side, it is possible to predict packet arrivals in a high

accuracy. Figure 4(b) shows the situation after our periodic

choking is applied with a period of 200 milliseconds. The

figure shows that both the burst length and the interval are

approximately periodic with our choking scheme. Thus, the

client can sleep and wake up at the right time and the energy

consumption on the WNI can be minimized.

Although the above experiments confirm that bandwidth

throttling is common in the Internet applications and it could

be leveraged to save more power at the client side by choking

and unchoking corresponding TCP flows, inappropriately flow

choking may lead to unacceptable penalty. Figure 5(a) shows

the time-sequence of a typical TCP connection for HTTP

downloading served by a Apache Web server. Figure 5(b)

shows the corresponding result after the traffic is shaped by

periodic choking and unchoking. As shown in Figure 5(b),

although the reshaped traffic becomes bursty and more energy

could be saved, the TCP throughput is actually reduced. The

reason is that in this case, the server does not use bandwidth

throttling to limit the transmitting rate at the application layer.

Choking the connection will cause the server to pause the data

transmitting, but the TCP transmitting rate cannot be increased

after unchoking, and the overall throughput is decreased.

Therefore, choking and unchoking must be carefully used to

reshape the traffic. Unless bandwidth throttling is detected,

traffic reshaping via choking/unchoking is not encouraged.

Besides Internet experiments, we have also conducted ex-

periments on Windows media server, RealNetworks media

server, and Apache Web server in the lab by simulating the

Internet environment with NIST Net emulator 1. All the ex-

perimental results are consistent and confirm our observations.

III. PSM-THROTTLING PROTOCOL DESIGN

Our study in the last section shows that 1) bandwidth

throttling commonly exists in various Internet applications,

which implies that there are great potentials for further power

savings on the WNI at the client side, and 2) the simple

1http://www-x.antd.nist.gov/nistnet/



(a) Bandwidth throttling without reshaping (b) Bandwidth throttling with reshaping

Fig. 2. Time-sequence graph of TCP-based streaming media by RealNetworks media server

(a) Bandwidth throttling without reshaping (b) Bandwidth throttling with reshaping

Fig. 3. Time-sequence graph of TCP-based streaming media by Windows media server

(a) Bandwidth throttling without reshaping (b) Bandwidth throttling with reshaping

Fig. 4. Time-sequence graph of YouTube streaming

choking and unchoking scheme to reshape the traffic may

affect the performance of the running application. Therefore, to

explore this power saving space, first, the bandwidth-throttling

must be correctly detected in time. Second, the client must be

able to predict the packet arrivals accurately so that the WNI

can be turned on and off at the right time.

Aiming to achieve maximal power savings without de-

grading application level performance, in this section, we

propose PSM-throttling, an efficient power saving mechanism

for TCP-based bulk data communications. After presenting our

detection algorithm, we will present our two level traffic burst

generation algorithm. Lastly, we discuss how our proposed

protocol promptly adapts to the fluctuations of the server

transmission rate and network transmission rate.

A. Bandwidth Throttling Detection

In the experiments presented in Section II, we have shown

that the traffic of pseudo streaming from YouTube is already

bursty, for which bandwidth throttling is easy to be identified.

However, other applications, such as TCP-based streaming



(a) Bandwidth throttling without reshaping (b) Bandwidth throttling with reshaping

Fig. 5. Time-sequence graph of TCP-based file downloading by Apache Web server

media, does not normally have traffic bursts. In order to exploit

the under-utilized bandwidth on the Internet for power savings

at the client side, a quick bandwidth throttling detection

algorithm with low overhead is designed as follows.

First, the detection algorithm needs to measure the round

trip time (RTT) between a client and its server. Thus, the

TCP timestamp option is enabled in the TCP header when

the client initiates a TCP connection. Once a TCP connection

is established, the protocol agent monitors the flow rate and

the transmission duration. If the TCP connection maintains a

stable flow rate r for a specific duration T0 (T0 > 5 seconds),

the protocol agent begins to test the bandwidth utilization

of this connection. The threshold T0 is set based on the the

default playout buffer size of widely used media players such

as Windows media player [1]. The throttling test is conducted

as follows. The client sends a choke ACK to the server, in the

TCP header of which the receive window is set to zero. After

sending the choke ACK, the client will still receive packets for

a RTT, because it takes half of a RTT for the choke ACK to

arrive at the server. Then after two RTTs, the client sends an

unchoke ACK, and restores the original receive window size.

Thus, the server will buffer the data sent from the application

layer for two RTTs, and then send these buffered packets in

a burst if they can be held in a congestion window. Upon

receiving the first packet after sending the unchoke ACK, the

protocol agent can estimate the flow rate r′ for the 2RTT ∗ r

number of bytes. If r
′ ≥ 2r, that means the server only

uses less than half of the end-to-end bandwidth for the data

transmission, and we can exploit this potential to save energy

at the client side.

In this detection algorithm, the threshold of end-to-end

bandwidth to media encoding rate ratio is set to 2 above which

PSM-throttling is enabled. That is, if the un-utilized bandwidth

is less than the end-to-end bandwidth, PSM-throttling will not

be activated. One reason is that if the un-utilized bandwidth

is too small, the power saving would be trivial and may not

offset the overhead. This will also be considered in the burst

generation. On the other hand, some previous research has

studied the relationship of the end-to-end bandwidth with the
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Fig. 6. TCP level burst generation with flow choking and unchoking

object encoding rate, i.e., the ideal data transmission rate.

For example, Wang et al. [11] have conducted a modeling

study and found TCP-based streaming can achieve good per-

formance when the end-to-end bandwidth between the client

and the server is about twice of the object encoding rate, with a

small playout buffer for only a few seconds. A measurement

study by Guo et al. [8] shows that transmitting the media

traffic with a much higher rate than the object encoding

rate helps little on the client performance while limits the

system capacity for serving more client requests. Therefore,

in our current design and experiment, the bandwidth to media

encoding rate threshold is set to 2.

B. Two Level Traffic Burst Generation

After bandwidth throttling is detected, we can start to

reshape the traffic to form periodic packet bursts. We achieve

this through well tuned two level burst generation schemes.

Accordingly, the client is able to predict when a packet burst

arrives, and when the packet burst terminates. In addition, the

interval between bursts should be non-trivial so that the WNI

can be turned off.
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Fig. 7. MAC level reconciliation for burst generation with access point buffering

1) Initial Traffic Burst Generation at TCP Layer: For the

TCP level burst generation, assume the connection round trip

time is RTT , the end-to-end bandwidth between the client and

the server is BW . Denote the media transmission rate as r,

according to our detection algorithm, BW > r. Assume the

duration of receiving a packet burst is Trecv and the duration

of the sleep interval is Tsleep, and the duration of a flow burst

period, Tburst, is the sum of Trecv and Tsleep. As long as the

sleep duration is not trivial, this burst generation mechanism

is engaged to save power in a coarse granularity.

The server traffic bursts are generated by leveraging the TCP

flow control as follows. As shown in Figure 6, after bandwidth

throttling detection, the client sends an unchoke ACK to the

server, specifying the receive window size in the TCP header.

Upon receiving the unchoke ACK, the server sends the number

of bytes that the client requests to the network interface (if it

is smaller than congestion window size) together in a burst.

Then after the client receives the first data packet, it sends a

choking ACK with zero receive window in the TCP header.

Then after a RTT, the client receives the last packet the server

sends in the burst. In order to let the choking ACK sent by

the client block the data flow before the client receives the last

packet in the burst, the burst duration Trecv should be larger

than one RTT.

The unchoke ACK must be sent before a RTT when the

client wakes up to receive data. Since the unchoke ACK may

be lost, the client may need to retransmit this packet when

necessary. As a result, the next choke ACK cannot be sent

before the client receives the first data packet for the current

unchoke ACK. That is, a flow burst period must not be less

than two RTTs.

Note that in the above settings, by setting the receive

window size in the TCP headers of ACK packets, the client

can specify the total number of bytes in a packet burst. When

the entire burst has been received by the client, the client can

safely put the WNI into sleep to save energy.

2) Traffic Burst Reconciliation at MAC Layer: Following

the above protocol, we can get traffic bursts. However, this

initial design would not enable us to minimize the power

consumption on the WNI. The problem comes from the

mismatch transmission speed on the Internet and the WLAN.

Typically, for most high speed Internet users, the end-to-end

bandwidth between a client and its server is about 1 - 2 Mbps,

while the effective bandwidth in current WiFi networks such as

802.11g can be up to more than 24 Mbps. In such a WLAN,

there are still great potentials to save energy further if the

WLAN is lightly loaded, because the packet transmission over

wireless networks is much faster than that over the Internet:

with our initial traffic burst generation algorithm, the burst

traffic is transmitted with the rate of end-to-end bandwidth.

If the number of packets in a burst is large, the interval of

successive packets when they arrive is non-trivial. A significant

amount of energy will have to be wasted to keep the WNI

awake to wait for these packets if nothing further is performed.

Motivated by the speed mismatch of the Internet and the

WLAN, we further refine our burst generation protocol at the

MAC layer through access point buffering. The basic idea is as

follows. We divide a long TCP burst into several MAC frame

bursts. The duration of each MAC frame burst should be short

enough so that buffering them on the access point will trivially

affect the RTT estimation. Meanwhile, the duration of each

MAC frame burst should be long enough so that the energy

cost of mode switching of the client WNI is smaller than the

energy saved for receiving this burst. For many commercial

WNI products like what we use in our experiments, the mode

switching overhead is about 4 ms. Thus, we set the duration

of each MAC frame burst as 20 ms.

Figure 7 shows the generation of MAC level bursts. The

arriving TCP bursts are buffered at the access point. The client

can predict the burst arrival accurately, since the burst arrives a

RTT after the unchoke ACK. The client also knows the number

of bytes in this burst. Thus, the client waits for about 20 ms

so that there are enough packets buffered at the access point,

and then polls the access point to receive data. After receiving

one MAC level frame burst, the client sleeps another 20 ms

and then polls the access point. As a result, in a lightly loaded

WLAN, the client can save more energy.

When the WLAN is heavily loaded or even congested, the

poll message sent by the client may not be responded quickly.

In this case, the client may wait for a longer time to receive

the polled packet. As a result, after the client polls all packets

in a MAC level burst, it may have no time to sleep, and will

continue to poll the next burst, which will not outperform the
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Fig. 8. Adaptation to server transmission rate

initial TCP layer traffic burst generation algorithm.

C. Adaptation to Network and Server Transmission Fluctua-

tions

On the Internet, the end-to-end bandwidth between the client

and the server may fluctuate from time to time. As a result, it

is difficult to predict the duration of a TCP level burst at the

client side. A delay in packet receiving may cause prolonged

RTT or even time out, which may affect the TCP performance

significantly. On the other hand, if the client keeps awake

waiting for packets in a burst, the energy consumption for

idle awake time may be non-trivial, since it cannot predict

burst duration accurately.

In the design of PSM-throttling, we have considered such

a situation. As discussed before, a client detects when a burst

ends based on the number of bytes it receives, not based on

the duration of the burst, since the number of bytes in a burst

is specified by the receive window size. Thus, the client only

needs to keep awake receiving the specified number of packets,

and the sleep time of the client WNI is the remaining time

during a burst period. In this way, the network bandwidth

fluctuations can be smoothed out automatically.

In addition to the network fluctuations, the server transmis-

sion rate may change, although in most bandwidth throttling

transmission cases, such cases are rare. A server may increase

or decrease its transmission rate suddenly during a user

session. For example, in streaming media services, a user may

use fast forward. In the response, the server transmits media

content to the client in a higher speed (about five times of

the media encoding rate for Windows media services). If our

client
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Fig. 9. Implementation testbed

detection protocol cannot detect such changes in time, the user

may experience a degraded fast forwarding experience.

In order to quickly detect the server transmission rate

variations, in PSM-throttling, the receive window size in

the TCP ACK headers is dynamically adjusted. Initially, the

receive window is set based on the average transmission

rate estimated during bandwidth throttling detection. PSM-

throttling monitors the sleep time, as well as the average

throughput during a flow burst period. If the sleep time falls

below a RTT, it is a signal that the receive window size

is so large that it takes too long to receive the entirety of

specified bytes. PSM-throttling will then decrease the receive

window size by two packets in order to recover from this

situation. If the observed average throughput is the same or

even higher than the average throughput in the previous period,

it is highly likely that the receive window size is still less

than the server-side buffer size. PSM-throttling will increase

the receive window size in order to drain off the server-side

buffer. Figure 8 illustrates this scheme. We will evaluate its

effectiveness in Section IV.

IV. PERFORMANCE EVALUATION

In this section, we evaluate PSM-throttling based on a

prototype we have implemented. Figure 9 shows the archi-

tecture of the prototype system. The client runs Linux with

kernel 2.6.18, equipped with D-Link DWL-G520 wireless

card (Atheros chipset). We have implemented our protocol

based on the madwifi driver 0.9.2. In order to emulate

the bandwidth, the round trip time, and the loss rate of the

Internet bulk data transmission, we run NIST Net emula-

tor 2.0.12b under Linux kernel 2.4.27. The experiments are

run with the prototype system to access Windows media

streaming, RealNetworks media streaming, YouTube pseudo

streaming, and common HTTP downloading. For Windows

and RealNetworks media streaming, we use MPlayer v1.0rc1,

a movie player on Linux. MPlayer can support Windows media

service with MMS and RealNetworks media service with

RTSP protocol. The encoding bit rates of media objects used

in Windows streaming, RealNetworks streaming, and YouTube

pseudo streaming evaluations are 330 Kbps, 350 Kbps, and

300 Kbps, respectively. For YouTube, we test a YouTube video



with the Adobe Flash Player plug-in for Linux. Due to page

limit, we only present our representative results conducted on

the Internet, the results of experiments in the lab environment

are similar and omitted.

Four different metrics are used for the performance com-

parisons of PSM-throttling with other four mechanisms. We

measure the average TCP throughput, the energy consumption,

the total object transmission time, and the total awake time of

the WNI when the experiments are conducted. PSM-throttling

(denoted as PSM-T on the figure) is evaluated against Con-

tinually Aware Mode (denoted as CAM), the Client-Centered

(denoted as CC) power saving approach [13], 802.11 power

saving mode (denoted as PSM), and a PSM adaptive (denoted

as PSM-A) approach used in commercial WNIs.

Among the four approaches we have implemented for per-

formance comparisons, with Continually Aware mode (CAM),

the client WNI always keeps awake even it is idle for a long

time. CAM can provide the best TCP performance since it

does not delay any packet. However, it consumes a significant

amount of energy due to continuous idle awake time. In

contrast, with 802.11 power saving mode (PSM), the client

WNI only wakes up to listen to the beacon message. When

there is a traffic notification in the beacon, the client polls the

access point to receive data, and then returns to sleep mode

again. Due to its significant impact to TCP throughput by

increasing the round trip time, PSM is rarely used in practise

although its power consumption is often quite low. We evaluate

this scheme here in order to have an idea on whether we can

achieve the minimum power consumption in our experiments.

The client-centered power saving approach (CC) aims to

reduce the energy consumption on TCP downloading without

increasing the product of energy and transmission delay, i.e.,

energy×delay, which could save energy consumption with

the cost of increased transmission time.

The PSM adaptive (PSM-A) approach has been widely used

in commercial products recently by switching between PSM

and CAM mode adaptively. Initially, the overhead of mode

switching on the WNI is non-trivial. With the help of advanced

hardware technologies, this overhead has been significantly

reduced. For example, as reported in 2003 [3], the mode

switching overhead could be as high as 100 ms for Cisco

Aironet wireless cards. In contrast, our experiments on latest

Atheros chipset WNI show this overhead is only about 4 ms.

As a result, recently many manufacturers of laptops and PDAs

have adopted this PSM adaptive method to save energy with

little network performance degradation. For example, with this

trivial mode switching overhead, the system built-in wireless

cards in IBM ThinkPad laptops can automatically go to sleep

after it is idle for 75 ms, and wake up when receiving a traffic

notification beacon.

Figures 10(a), 10(b), 10(c) and 10(d) show the throughput,

the energy consumption, the object transmission time, and

the WNI awake time, for Windows streaming media services

in different power saving approaches. As shown in Figure

10(a) and Figure 10(b), PSM-throttling achieves the maximal

throughput (same as that of CAM) and the minimum energy

consumption (about 25% of that in CAM) among all five

approaches. Compared to the most advanced mechanism used

in commercial products, the energy consumption of PSM-

throttling is only about 50% of PSM-A due to traffic reshaping

in PSM-throttling. This amount of power savings is due to

the minimum awake time of the WNI in PSM-throttling as

indicated on Figure 10(d) (in fact, the sleep time is often

comparable to awake time for bulk data transmission, and

thus does not contribute much for power consumption). For

Windows media streaming, PSM-throttling does not increase

the transmission time. Figure 10(c) shows that the transmission

time for all five approaches are similar (except for PSM). This

is because the streaming server transmits data in a low rate

continuously.

Figures 11 shows the corresponding results for RealNet-

works streaming media services. Similar to Windows media

streaming, PSM-throttling achieves the same throughput as

that of CAM while it consumes approximately the minimum

amount of energy among all five approaches. Again, it is only

about 25% of that in CAM and the most advanced PSM-A.

PSM degrades the QoS experienced by the user because the

throughput is reduced to be below 310 Kbps, while PSM-

throttling can maintain the desired media streaming quality

although its power consumption is a bit higher than that of

PSM. Comparing Figure 11(b) to Figure 10(b), we find that the

energy consumption of PSM-A in Windows media streaming

is much smaller than that in RealNetworks media streaming.

The analysis reveals that for TCP-based streaming, Windows

media services send media data to the client in block. Thus, the

TCP streaming traffic of Windows media services is already

bursty. So the client in the PSM adaptive mode can go to

sleep to save energy after 75 ms of a burst. In contrast, in

RealNetworks media streaming, the server transmits media

data to the client packet by packet evenly. Since the interval

between two successive packets is small, the WNI of the client

cannot sleep.

Figures 12 shows our experimental results when YouTube

video is accessed with different power saving approaches.

Figure 12(a) shows that the throughput of PSM-throttling is

comparable to that of CAM. On the other hand, Figure 12(b)

shows the energy consumption of PSM-throttling is much less

than CAM and PSM adaptive. Our evaluation results also show

that the throughput and energy savings in CC are the worst

among the five. This is due to the largest transmission time

and awake time as shown in Figure 12(c) and Figure 12(d).

These results indicate that this scheme may not be suitable for

YouTube video services.

For HTTP downloading, Figures 13 shows the correspond-

ing results achieved by different power saving approaches. In

terms of power savings, Figure 13(b) shows PSM-throttling is

among the lowest of all schemes. The throughput achieved by
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Fig. 10. TCP-based Windows media streaming
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Fig. 11. TCP-based RealNetworks media streaming
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Fig. 12. YouTube pseudo streaming
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Fig. 13. HTTP downloading with bandwidth throttling

PSM-throttling and PSM-A is close to CAM while PSM and

CC get the worst throughput as shown in Figure 13(a).

Our evaluation results show that PSM-throttling is very

effective for the widely used Internet TCP-based bandwidth

throttling services. However, for non-bandwidth throttling ser-

vices, although it can save power, it may increase the delay

due to degraded throughput. Thus, a trade-off must be carefully

balanced if PSM-throttling is used in such applications.

We also evaluate the effectiveness of PSM-throttling in

adaptation to server transmission fluctuations by playing an

RMVB (RealMedia Variable Bitrate) video. Figure 14 shows

that PSM-throttling is able to detect the change of server trans-

mission rate and achieve the similar transmission fluctuations

as CAM when the media encoding rate changes.

V. OTHER RELATED WORK

With pervasive wireless Internet accesses, research issues

of power saving and utilization on mobile devices have been

paid attention. For example, a self-tuning power management
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Fig. 14. PSM-throttling adaptation to server transmission fluctuations

approach to adapting the behavior of a station’s WNI to the

access pattern and the intent of its applications is proposed

in [3], and a cooperative relay service to exploit the idle

communication power of WNI to improve network throughput

is studied in [7].

As power saving is critical to applications with long and

bulk data transmissions, a number of studies have focused on

Internet media applications. However, existing power saving

studies for media traffic mainly focus on UDP-based media

data transmissions. For example, work in [4] characterizes the

traffic patterns of Windows, Real, and QuickTime streaming

media services, and analyzes the implications on the energy

consumption on the WNI under varying stream bandwidth and

network loss rates. This paper shows 802.11 PSM does not

offer any energy savings for multimedia streams over 56 Kbps

for commercial access points. A number of packet prediction

algorithms have been proposed to put the WNI into sleep

and wake up the WNI based on the prediction of packet

arrivals, such as history-based prediction strategies [4] and

linear prediction-based strategy [12]. In addition to the proxy-

based work in [5], a priority-based bulk scheduling for proxy

buffering is proposed in order to provide delay assurance and

achieve power efficiency simultaneously [14].

However, TCP accounts for more than 90% media traffic

on the present Internet [8]. Due to the TCP congestion control

mechanism, the power saving for TCP-based streaming is

more difficult than UDP-based streaming, although a number

of studies have been conducted in order to reduce power

consumption for TCP-based communications. The effect of

prolonged connection round trip time on Web traffic has been

studied, and a bounded slowdown algorithm to save energy

and bound the throughput reduction within a specified range

is proposed [9]. While these existing studies aim to reduce

power consumption for applications constrained by the TCP

congestion control mechanism, nowadays on the Internet, for

many TCP based long and bulk data communications, such

as streaming, pseudo streaming, and file downloading, the

TCP congestion control is no longer a constraint with the

increasingly abundant Internet bandwidth. Instead, the trans-

mission rate is controlled by the server due to the high resource

demand per stream in media delivery [8]. Targeting such

applications, instead of manipulating the trade-off between the

power saving and application performance, our PSM-throttling

scheme aims to utilize under-utilized bandwidth to minimize

the power consumption of bandwidth throttling applications

without degrading user-perceived performance.

VI. CONCLUSION

Effectively saving the limited battery power of mobile

devices is a key issue for improving increasingly pervasive

wireless Internet accesses. Instead of further addressing the

trade-off between power-saving and the incurred delay of data

communications, we have explored a unique opportunity from

bandwidth throttling that has been widely adopted in practice.

Accordingly, in this paper, we have presented our design and

implementation of a new power saving protocol, called PSM-

throttling, to reduce power consumption on wireless devices

in bandwidth throttling bulk data communications. Our exper-

imental evaluation results show that PSM-throttling has the

following merits: (1) it can minimize the power consumption

of the WNI without degrading the application performance;

(2) it is client-centric and does not demand any infrastructure

support; and (3) it is application independent, and is highly

effective for both typical and emerging Internet applications.
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