LOOK-AHEAD ARCHITECTURE
ADAPTATION TO REDUCE
PROCESSOR POWER

CONSUMPTION

AN EFFECTIVE APPROACH TO REDUCING PROCESSOR POWER CONSUMPTION IS

Zhichun Zhu
University of lllinois at
Chicago

Xiaodong Zhang
College of William and
Mary

TO ADAPTIVELY ACTIVATE AND DEACTIVATE HARDWARE RESOURCES. THE

AUTHORS PROPOSE A LOOK-AHEAD SCHEME THAT ADJUSTS THE PROCESSOR

ISSUE RATE TRIGGERED BY MAIN-MEMORY ACCESSES. THIS ARCHITECTURE-

INDEPENDENT TECHNIQUE IS PARTICULARLY EFFECTIVE FOR MEMORY-

INTENSIVE APPLICATIONS. COMBINED WITH AN EXISTING TECHNIQUE BASED

ON IPC VALUES, IT ALSO REDUCES POWER CONSUMPTION FOR COMPUTATION-

INTENSIVE APPLICATIONS.

e e o 0 0 o Asanegative by-product of the ded-
icated pursuit of high performance in gener-
al-purpose processors, the last decade has seen
a dramatic increase in power consumption.
To address this issue, researchers have aimed
at reducing the processor’s power dissipation
with minimum effect on performance. One
effective architecture-level approach, archi-
tecture adaptation, dynamically activates and
deactivates hardware resources in accord with
the changes in a running program’s execution
behavior.'” The two key factors in architec-
ture adaptation are when to trigger the adap-
tation and what adaptation techniques to
apply.’ Our work focuses on the first issue.
Most existing architecture adaptation solu-

Published by the IEEE Computer Society

tions try to meet the current program require-
ment with a minimum number of active
resources. However, these approaches share a
common limitation: They trigger the adapta-
tion after the processor has detected a change
in demand. Without foreknowledge of future
demand variants, the processor keeps resources
active when current demand is high, even if
demand is going to drop. Figure 1a shows an
example of power-saving optimization based
on current system status. The monitored IPC
value is compared with a threshold at the end
of each sampling window (the dots). At time
A, the scheme puts the processor into normal
execution mode on the basis of current knowl-
edge that the measured value is higher than the

0272-1732/05/$20.00 © 2005 IEEE

threshold. However, the
scheme does not foresee that a
slack exists between times B

Normal
execution

and D, when the processor is) Monitored
| dl instructions per -----
almost 1dle. cycle value
Ideally, hardware resources
should be deactivated earlier ---®
than the demand drop point (@
to maximize power saving
without affecting perfor-
mance. In Figure 1b, a look- Low power mode S)?é?ﬁilon
ahead scheme delays part of . :'"":WOI‘S fed"sf':'b“t'on e Mode
the work until time C. How- _ Monitored : A R : ===
instructions per ----- 1777 fi=ooscoosos r---- A - - - Threshold
ever, because the same : V. .e---@ -
. . cycle value i 3 A i
amount of work is finished I B -
before time D, overall perfor- ---e Ly
mance remains the same (b) i Slack

while the processor stays in
low-power mode for a longer
time. In this article, we show
that some hardware events
can accurately predict future
demand degradation, and thus hardware
resources can be deactivated in advance even if
current demand is high.

Specifically, we can use main-memory
accesses to trigger architecture adaptation.
Memory access latency has increased consis-
tently relative to processor cycle time. Once a
low-level cache load miss falls to main mem-
ory, the processor almost certainly will stall for
this miss (although the processor can perform
some useful work for subsequent instructions
before stalling). For example, considering a
moderate system configuration, a four-way-
issue processor with a 128-entry instruction
window runs at a 2 GHz clock rate, and its
memory access latency is 100 ns. Once a load
miss occurs, the load cannot be resolved with-
in 200 cycles, and the instruction window will
become full in 32 cycles at the full issue rate.
Thus, after a load miss, maintaining the full
processor issue width is wasteful even if cur-
rent program demand is high.

We propose a new scheme called load indi-
cator, in which main-memory accesses trigger
the issue rate adaptation. In particular, the
scheme reduces the issue width when a load
miss occurs and resumes the full issue rate when
all outstanding loads finish. Previous studies
have shown that adjusting the processor issue
rate is an effective adaptation technique for
power saving.>> Our experiments show that for

memory-intensive applications, this scheme
saves more power than the pipeline-balancing
technique,? which periodically adjusts the
processor issue rate to the average issued IPC
(instructions per cycle), with a comparable per-
formance loss. For seven memory-intensive
applications from the SPEC2000 benchmark
suite, the load indicator scheme reduces power
consumption in the issue logic and execution
units by 24 and 11 percent, respectively. It
reduces total processor power consumption by
5.4 percent on average, with a performance loss
of 0.5 percent, reaching 69 percent of the max-
imum power saving that reducing the issue rate
can achieve. In comparison, the pipeline-bal-
ancing technique reduces processor power by
4.2 percent on average, with a performance loss
of 0.7 percent.

The load indicator scheme foresees the
degradation on resource demands caused by
memory accesses, whereas the pipeline-bal-
ancing scheme captures current program
behavior variants caused by program-inher-
ent parallelism and hardware constraints. We
have combined these two indicators into a
new technique, the load-instruction scheme,
which uses information about both load miss-
es and IPC variants (in the absence of load
misses). This technique captures more power-
saving opportunities and covers a wider range
of applications. (We summarize other research

Figure 1. Comparison of optimization based on current system status (a) and look-ahead
optimization (b).

JULY—AUGUST 2005

I

LOOK-AHEAD ARCHITECTURE ADAPTATION

Related work

An increasing number of researchers are investigating ways to reduce
the power consumption of general-purpose processors. One technique,
pipeline gating, reduces processor energy consumption by preventing
wrong-path instructions from entering the pipelines.' Some researchers
propose using the current rate of instructions passing through pipeline
stages to throttle the processor front end?; others propose a combination
of fetch gating and issue queue adaptation to reduce the power consumed
by the front-end instruction delivery path.® These techniques make con-
tinuous changes in processor resource utilization. In contrast, our method
switches the processor between two or more power modes over rela-
tively long periods. This allows us to more effectively shut down portions
of the pipeline, including the clocking network, which we could not ordi-
narily fully shut down on a clock-by-clock basis, as making continuous
changes would imply.

Issue logic is one of the most power-intensive system components and
has been a research focus in recent years. Researchers have proposed
several techniques to avoid unnecessary comparisons in the wake-up
logic.* Dynamically adjusting issue queue size, reorder buffer size, and
load/store queue size is an effective approach to reducing issue logic's
power consumption.*® In contrast, our method uses pipeline balancing,
which saves power on both the issue logic and the execution units. This
is also the goal of Bahar and Manne, but they don't consider load miss-
es as a trigger.”

Other techniques make a processor run in low-power mode. One
method switches processor execution between out-of-order and in-order
modes under the guidance of an external performance indicator.? The Pen-
tium 4 processor explores the StopClock structure, which briefly halts the
clock signal to a portion of processor logic.? Another method targets ener-
gy saving in multimedia applications by using dynamic voltage scaling
and architectural adaptation.'® Unlike these studies, our work focuses on
reducing power consumption for memory-intensive applications.

References
1. S. Manne, A. Klauser, and D. Grunwald, “Pipeline Gating:
Speculation Control for Energy Reduction,” Proc. 25th Ann.
Int’l Symp. Computer Architecture (ISCA 98), |IEEE Press,
1998, pp. 132-141.

on reducing power consumption in the

“Related work” sidebar.)

Look-ahead schemes

2. A. Baniasadiand A. Moshovos, “Instruction Flow-Based Front-
End Throttling for
Processors,” Proc. 2001 Int’l Symp. Low Power Electronics
and Design (ISLPED 01), IEEE Press, 2001, pp. 16-21.

3. A. Buyuktosunoglu et al., “Energy Efficient Co-Adaptive

Power-Aware High-Performance

Instruction Fetch and Issue,” Proc. 30th Ann. Int’l Symp.
Computer Architecture (ISCA 98), IEEE Press, 2003, pp.
147-156.

4. D.Folegnaniand A. Gonzalez, “Energy-Effective Issue Logic,”
Proc. 28th Ann. Int’l Symp. Computer Architecture (ISCA 01),
|IEEE Press, 2001, pp. 230-239.

5. A. Buyuktosunoglu et al., “An Adaptive Issue Queue for
Reduced Power at High Performance,” Power-Aware
Computer Systems, LNCS vol. 2008, Springer Verlag, 2001,
pp. 25-39.

6. D. Ponomarev, G. Kucuk, and K. Ghose, “Reducing Power
Requirements of Instruction Scheduling through Dynamic
Allocation of Multiple Datapath Resources,” Proc. 34th Ann.
Int’l Symp. Microarchitecture (Micro 34), IEEE Press, 2001,
pp. 90-101.

7. R.l. Bahar and S. Manne, “Power and Energy Reduction via
Pipeline Balancing,” Proc. 28th Ann. Int’l Symp. Computer
Architecture (ISCA 01), IEEE Press, 2001, pp. 218-229.

8. S. Ghiasi, J. Casmira, and D. Grunwald, “Using IPC Variation
in Workloads with Externally Specified Rates to Reduce Power
Consumption,” Proc. Workshop Complexity-Effective Design,
in conjunction with 27th Ann. Int’l Symp. Computer
Architecture, 2000; www.systems.cs.colorado.edu/Papers/
Architecture/WWCED2000-Adaptive/paper.pdf.

9. S.H. Gunther et al., “Managing the Impact of Increasing
Microprocessor Power Consumption,” Intel Technology J.,
Q1, 2001, pp. 1-9.

10. R. Sasanka, C.J. Hughes, and S.V. Adve, “Joint Local and
Global Hardware Adaptations for Energy,” Proc. 10th Int’l
Conf. Architectural Support for Programming Languages and
Operating Systems (ASPLOS 10), ACM Press, 2002, pp.
144-155.

these techniques use a slack period’s initial
phase as the indicator. For example, a proces-
sor in a notebook computer enters a lower-
power mode after being idle for a certain time.

[EEE MICRO

Many low-power processor techniques
switch the processor’s execution between a
normal mode and one or more power-saving
modes. They normally exploit slack periods
in program execution to utilize power-saving
modes, making it critical to predict such slacks
accurately and in a timely manner. Most of

This indicator is always available and reason-
ably reliable; thus, it is a good choice if the
slack’s duration is long enough. However, this
technique doesn’t exploit the power-saving
opportunities in the initial phases.
Look-ahead techniques, on the other hand,
use indicators whose changes can be detected

just before the start of a slack, maximizing the
utilization of power-saving modes through the
slack. These techniques are attractive, espe-
cially when slack periods are frequent but
short, making the loss of power-saving oppor-
tunities in initial phases significant. A critical
issue of any look-ahead technique, however,
is to find a reliable slackness indicator.

There are ways to identify performance
degradation in advance, such as by providing
hints from the application, compiler, or oper-
ating system. For example, the cool-fetch
technique uses compiler-driven static IPC pre-
diction at the loop level to guide fetch throt-
tling for energy saving.® Another method,
positional processor adaptation, associates the
use of power-saving modes with program sub-
routines.” Either static or dynamic instru-
mentation and decisions associate each
subroutine with a power mode activated when
the subroutine is executing.

A distinctive feature of our method is that it
uses load miss information, a simple but accu-
rate slack indicator. It does not require profil-
ing, compiler analysis, or history-based
hardware prediction. For superscalar proces-
sors, a load miss event is a reliable indicator of
impending processor stalls. With the increas-
ing gap between processor and memory speed,
slacks due to memory accesses make up increas-
ingly larger portions of programs’ execution.

Load indicator scheme

Today’s high-performance processors run
at multi-GHz speeds and issue multiple
instructions each cycle, whereas each main-
memory access takes tens of nanoseconds.
Once a cache load miss to main memory
occurs, it is almost certain that the processor
will stall because of long main-memory access
time, even after applying latency-tolerant
techniques such as nonblocking load/store
and out-of-order execution. Thus, maintain-
ing a partial processor issue width is enough
to retain performance from the time the load
miss occurs to the time the data returns.

Figure 2 shows the sampled IPC values of
the SPEC2000 program swim and the num-
ber of outstanding cache load misses in a rep-
resentative 1,024-cycle interval during the
program’s execution. For clarity, the figure pre-
sents only the floating-point IPC values. The
integer IPC values show a similar pattern. We

Time interval (cycles)

6
—— Load
—IPC_FF |.{5
4
©
3 8
4
2
BTN 1
ol H L 0
032 128 256 512 1,024

Figure 2. Sampled IPC values in 32-cycle windows and
number of outstanding loads during an arbitrarily selected

1,024-cycle interval for program swim.

can see that for this application, multiple
cache load misses normally occur together.
This is also usually the case for many other
memory-intensive applications.

From the time of the first cache load miss to
the time all the load misses return, the pro-
gram execution behavior forms a “frame”—an
active period followed by an idle period. This
means that load miss information can accu-
rately predict future performance degradation.

In our load indicator scheme, when a load
miss occurs, if the processor is in normal exe-
cution mode (that is, with the full issue rate),
it shifts to low-power mode. (We consider only
cache load misses because the write buffers
usually handle write misses well.) In low-power
mode, the processor issue rate and the num-
ber of active functional units are reduced by
half. When all load misses return, the proces-
sor returns to normal execution. For simplic-
ity, the scheme does not distinguish between
true and speculative load misses. Our experi-
ments show that this has little impact on power
consumption and performance. The scheme
does not consider load miss criticality and
switches to the low-power mode on each load
miss. This can cause some performance loss if
the load miss is in the critical path. However,
identifying the load’s criticality would require
complex logic and consume additional power.
Thus, our scheme treats each load miss the
same; and our experiments indicate that this
simplification causes negligible performance

JULY—AUGUST 2005

LOOK-AHEAD ARCHITECTURE ADAPTATION

[EEE MICRO

loss. Of course, if a mechanism identifying
load criticality has already been implemented
on a processor for performance improvement,
the load indicator can use the information to
put the processor into low-power mode only
after noncritical load misses.

The load indicator identifies execution peri-
ods when a program does not require full com-
puting power. Several power-saving techniques
can be applied during those periods. For
instance, if the processor has a dual-speed
pipeline structure,®’ instructions can be issued
to the slow pipeline upon cache load misses.
We use the technique of reducing the proces-
sor issue rate because this is an effective tech-
nique with low switching overhead and is
applicable to most architectures. Li et al. pro-
pose scaling down the supply voltage of certain
sections of the processor during an L2 miss.'
Because scaling voltage requires dozens of CPU
cycles to stabilize the circuit, this technique
necessitates additional effort to monitor the
current degree of instruction-level parallelism
and doesn’t scale down the voltage when the
ILP is above a certain threshold. This can cause
the loss of power-saving opportunities.

The load indicator scheme’s overhead is triv-
ial. Only one register is added to record the
number of outstanding loads. The control
logic is also simple because it only checks the
register value and then makes the adaptation.
The scheme requires some additional logic to
adjust the processor issue rate. However, com-
pared with clock gating at each component on
a cycle-by-cycle basis, the issue rate adjustment
occurs at a coarser level. The additional power
consumed by the scheme is negligible.

Load-instruction indicator

The existence of outstanding cache load
misses is a strong indicator of future variants
of program requirements on processor
resources. However, this technique has sig-
nificant effects only on memory-intensive
applications. Bahar and Manne propose a
technique called pipeline balancing, which
dynamically adjusts processor issue width for
each sampling window by comparing the
average issued IPC measured in the previous
window with a predetermined threshold.> We
call the indicator to trigger the processor issue
rate in this technique the instruction indicator
scheme in the rest of this article.

The load indicator scheme simply uses the
existence of load misses to adjust power modes,
whereas the instruction indicator scheme needs
predetermined thresholds for controlling issue
width adjustments, and the optimal values of
those thresholds depend on applications and
platforms. The load indicator captures the
future program variants caused by memory
accesses, while the instruction indicator cap-
tures the current program variants caused by
the program’s inherent ILP and hardware con-
straints. We combine these two optimizations
in the load-instruction indicator scheme.

When there are no outstanding load miss-
es, the hardware monitors the issued IPC and
adjusts the processor issue rate accordingly.
When a cache load miss occurs and the
processor is in normal execution mode, the
processor switches to low-power mode. Dur-
ing cache load miss servicing, the hardware
suspends its monitoring of the issued IPC.
Monitoring resumes when the outstanding
load misses finish. By combining local and
look-ahead optimizations, the load-instruc-
tion indicator scheme switches the processor
issue rate in a more effective and timely man-
ner. The combined scheme’s overhead is neg-
ligible because both the load indicator and the
instruction indicator have trivial overhead.

Methodology

We used the Sim-Alpha simulator, which
has been validated against a 466-MHz Alpha
21264 processor.!! The processor can issue up
to four integer instructions and two floating-
point instructions every cycle. It contains 64-
Kbyte, two-way instruction and data caches
and a 2-Mbyte direct-mapped L2 cache. We
scaled processor speed to 1 GHz and 2 GHz
in our experiments. We scaled cache access
latency, DRAM access latency, and bus band-
width accordingly. We used the CACTI 3.0
model to estimate scaled cache access laten-
cy.'> We assumed that DRAM access latency
and bus bandwidth improve by 30 percent
when processor speed doubles. Table 1 shows
cache access latency and memory bus band-
width as processor speed changes.

We modified the simulator to model our
schemes and the instruction indicator tech-
nique. Each of the three schemes (load, load-
instruction, and instruction indicators) is
implemented independently. The processor

dynamically adjusts the processor issue rate
when the conditions defined by the schemes
are met. We used the precompiled Alpha ver-
sion of SPEC CPU2000 benchmark programs
as workloads and reference input data files as
input. The simulator generated detailed sta-
tistics on 1 billion instructions after the first 4
billion instructions were fast-forwarded.

Reducing the processor issue rate reduces
the power consumed by the issue logic and
execution units.? The instruction issue units,
integer execution units, and floating-point
execution units consume about 18, 10, and
10 percent, respectively, of total processor
power.”> We use these data in calculating
power savings. We assume that as processor
speed increases, the percentage of power con-
sumed by the issue logic and the execution
units stays the same. This conservative
assumption doesn’t favor our schemes. The
Alpha 21264’s pipeline structure consists of
two integer clusters and one floating-point
cluster. We also conservatively assume that
reducing the processor issue rate saves power
only on the integer clusters. One integer clus-
ter is gated at the low-power mode.

Reducing the issue rate reduces only the
power consumed by the clocks driving the
execution units but not the execution units
themselves (if we don’t consider the small
reduction in the number of wrong-path
instructions obtained by lowering the issue
rate). Assuming that the 32 percent of power
consumed by clocks is evenly distributed for
each component, halving the issue rate
reduces the integer execution units’ power
consumption by 32% X 1/2 = 16%.

We usually don’t know how many instruc-
tions can be issued in a given cycle until all
choices are exhausted. Therefore, reducing the
issue rate can directly save power in issue
arbiters. For the issue logic, the arbiters,
including the driving clocks, consume 70 per-
cent of the power. Thus, reducing the issue

Table 1. Memory system parameters.

Processor speed 466 NHz 1 GHz 2 GHz

| cache latency 1 cycle 1 cycle 2 cycles
D cache latency 3 cycles 3 cycles 4 cycles
L2 cache latency 7 cycles 12 cycles 14 cycles
Bus bandwidth 1.2 GB/s 1.6 GB/s 2.1 GB/s

rate by half saves issue logic power by 35 per-
cent. The total processor power reduction is
10% X 16% + 18% %X 35% = 7.9%. This esti-
mation method is the same as that used in the
instruction indicator scheme.?

One might argue that reducing the proces-
sor issue rate cannot save much energy when
aggressive clock-gating techniques are applied
to each component cycle by cycle. However,
reducing the processor issue rate works at a
coarser grain than clock-gating techniques and
decreases design complexity. In addition, it can
save more power than clock gating because an
entire resource or block can be powered off.>!
Even with aggressive clock gating, it reduces
the remaining power consumption.’

Results

We evaluated the load indicator scheme’s
effectiveness in memory-intensive applica-
tions. Then, we analyzed how various system
configurations affect the scheme’s effective-
ness. Finally, we compared the load indicator,
instruction indicator, and load-instruction
indicator schemes.

Load indicator’s effectiveness

From the SPEC2000 benchmark suite, we
selected seven memory-intensive applications
with memory stall portions greater than 20
percent under our experimental setup. (A pro-
gram’s memory stall portion is the percentage
of time difference between running the pro-
gram under a real system and under a system
with an infinitely large L2 cache.) Table 2

Table 2. Execution time spent in low-power mode and power reduction in issue logic and execution units
achieved by load indicator scheme.

SPEC2000 applications mcf art swim Iucas applu ammp facerec Average
Time in low-power mode (%) 91.9 73.8 88.1 79.9 70.2 47.8 30.8 68.9
Power reduction in issue logic (%) 32.2 25.8 30.8 28.0 24.6 16.7 10.8 241
Power reduction in execution units (%) 14.7 11.8 14.1 12.8 11.2 7.6 4.9 11.0

JULY—AUGUST 2005

Figure 3. Variants of IPC values as issue queue (IQ) size increases. Both integer issue queue
size and floating-point issue queue size double for “Normal-IQ2" and “Load-IQ2" and

Normalized IPC values

1.05

1.00 |

0.95 |

0.90 |

0.85 |

0.80

performance loss of up to 1.7

mcf

O Normal

M Load

O Normal-1Q2
Oload-IQ2 |
B Normal-1Q4
O Load-1Q4

percent (/ucas) when the inte-
ger issue queue has 20 entries
and the floating-point issue
queue has 15 entries. (Actu-
ally, the performance of pro-

gram applu improved slightly
because fewer misspeculative
instructions were issued and
executed.) The average per-
formance loss is 0.54 percent.

As issue queue size doubles,
a greater number of subse-
quent instructions can be
held in the issue queue when
a load miss occurs. Thus,
reducing the issue rate might
cause a greater performance
loss, but because the issue
queue is still not large enough

to fully cover the memory

art

swim lucas applu ammp

quadruple for “Normal-IQ4" and “Load-1Q4."

[EEE MICRO

shows the percentage of power reduction in
the issue logic and execution units for the
seven applications achieved by the load indi-
cator scheme for systems with a 1-GHz
processor. The load indicator scheme puts the
processor in low-power execution mode at
30.8 to 91.9 percent of total execution time.
On average, the processor spends 68.9 per-
cent of the time in low-power mode. This
translates to 24.1 percent (35% X 68.9%) and
11.0 percent (16% X 68.9%) average reduc-
tions in power consumed by the issue logic
and execution units, respectively, compared
with the normal execution scheme. Thus, the
load indicator scheme is highly effective in
capturing power-saving opportunities in
memory-intensive applications.

Effect of system configurations

Figure 3 compares IPC values obtained in
normal execution mode with those obtained
by the load indicator scheme as integer and
floating-point issue queue sizes increase. All
IPC values are normalized to those of normal
execution mode. The load indicator causes a

facerec access latency, the perfor-
mance loss is negligible.
When issue queue size dou-
bles, the load indicator’s
average performance loss
increases slightly to 0.56 per-
cent. When issue queue size
quadruples, average performance loss is only
0.59 percent. Significant performance loss
might occur only when issue queue size is larg-
er than the product of issue width and mem-
ory access latency in terms of processor cycles.
However, with the increasing processor and
memory speed gap, such large issue queues are
unlikely to appear in future processors.

Figure 4 shows the percentage of reduction
in total processor power consumption as
processor speed scales. (Table 1 shows the
memory system parameters.) As we expected,
when processor speed scales from 466 MHz to
1 GHz and 2 GHz, the load indicator
scheme’s average power reduction increases
continuously from 5.1 percent to 5.4 percent
and 5.8 percent. As processor speed increases,
memory access latency in terms of processor
cycles also increases. Thus, the load indicator
has more opportunities to put the processor
in low-power mode. Energy savings also
increases, from 4.5 percent to 4.9 percent and
5.7 percent (not shown in the figure).

In summary, as the processor and memory
speed gap enlarges, the load indicator scheme

becomes more effective in

8
power and energy savings.
With realistic issue queue :
sizes, doubling the issue queue
entries causes almost no addi-
tional performance loss from - 6
the load indicator, and perfor- 2
mance loss is still negligible. § 5.
The load indicator’s effective- g
ness is quite stable as the sys- = ..
tem configuration varies. '~§
) B
Comparing schemes = 5
To compare the three dif- 2
ferent schemes’ effectiveness & ol
on a wide range of applica-
tions, we used the seven 1l-
memory-intensive applica-
tions mentioned earlier and "

added eight computation-
intensive applications with
small memory stall portions
(3 to 14 percent). Figure 5
shows processor power reduc-
tions for the 15 programs.
The instruction indicator

0466 MHz
B 1 GHz
"""""""""" 02 GHz
mcf art swim lucas applu ammp facerec average

scheme monitors each appli-
cation’s IPC values and then
adjusts the processor’s power
mode every 64 cycles. When
the processor runs at the full
issue rate, if the issue IPC is
lower than 1.1 and the float-
ing-point issue IPC is lower
than 0.4, the processor
switches to low-power mode.

Power reduction (percentage)

If the processor is in low-
power mode with an issue
IPC higher than 1.2 and a
floating-point issue IPC
higher than 0.5, the proces-

sor switches back to normal

execution mode. The para-
meters are system- and appli-
cation-dependent and have
already been tuned for these
applications.

For the seven memory-intensive applica-
tions, the load indicator scheme saves more
power than the instruction indicator. It
reduces processor power consumption by 5.4
percent with a performance loss of 0.5 per-
cent, compared with the instruction indica-

O Load

M Instruction

O Load-

instruction

tor’s 4.2 percent power saving with a perfor-
mance loss of 0.7 percent. For some applica-
tions, the power-saving difference is large. For
example, for program swim, the load indica-
tor saves 7.0 percent of total power while the
instruction indicator saves 2.1 percent of total

Figure 5. Processor power reduction achieved by three schemes.

JULY—AUGUST 2005

Figure 4. Load indicator's power reduction with processor speed scaling from 466 MHz to 1
GHz and 2 GHz.

LOOK-AHEAD ARCHITECTURE ADAPTATION

[EEE MICRO

power. For this program, 60.4 percent of sam-
pling windows have IPC values higher than
the thresholds under normal execution,
although almost no instructions are issued in
21.9 percent of the sampling windows. The
load indicator scheme foresees low-demand
and idle periods and delays current work.
Thus, the processor can stay in low-power
mode far longer without causing performance
loss. For all 15 applications, the average power
reductions by the load indicator and the
instruction indicator are 3.3 and 3.1 percent,
respectively.

The load indicator performs better for
memory-intensive applications, whereas the
instruction indicator performs better for pro-
grams with small memory stall portions. The
load-instruction indicator combines the mer-
its of both techniques and achieves greater
power savings than either. The load-instruc-
tion indicator’s power reduction ranges from
1.5 to 7.3 percent. The average power savings
is 4.4 percent.

The load indicator and the load-instruction
indicator don't increase processor energy con-
sumption for any program. However, the
instruction indicator increases energy con-
sumption for facerecslightly, because the ener-
gy saved by the scheme cannot pay off the
increase caused by performance loss. The
load-instruction technique achieves the low-
est energy consumption for 11 programs. The
load-instruction indicator’s average energy
reduction is 3.2 percent, compared with the
load indicator’s 2.9 percent and the instruc-
tion indicator’s 2.2 percent. The load, instruc-
tion, and load-instruction indicators reduce
the average energy-delay product (EDP) by
2.4, 1.3, and 2.0 percent; and the average
ED*P (energy-delay-delay product) by 1.9,
0.3, and 1.0 percent, respectively.

djusting the processor issue rate accord-

ing to program resource requirements
effectively reduces processor power con-
sumption with negligible performance loss.
Our study has shown that the existence of
memory accesses is a strong indicator reflect-
ing the reduction of a near future resource
requirement. For memory-intensive applica-
tions, simply applying this indicator can cap-
ture most program behavior variants in a
timely manner. Compared with the instruc-

tion indicator scheme, the load indicator saves
more power with comparable performance
losses.

The load-instruction scheme adaptively uti-
lizes both the load indicator and the instruc-
tion indicator used in the pipeline-balancing
technique. Compared with the load indica-
tor, the load-instruction scheme captures cur-
rent power-saving opportunities caused by the
program’s ILP variants. Compared with the
instruction indicator, it identifies future pro-
gram variants and redistributes current work.
The load-instruction scheme works well for
both computation- and memory-intensive
applications. In our continuing work, we are
looking for other predictors that can foresee
future program variants and perform look-
ahead optimizations.

Acknowledgments

We thank the anonymous referees for their
constructive comments. This work is sup-
ported in part by National Science Founda-
tion grants CNS-0098055, CCF-0129883,
and CNS-0405909, and a grant from
Hewlett-Packard Labs.

References
1. A. Buyuktosunoglu et al., “An Adaptive

Issue Queue for Reduced Power at High
Performance,” Power-Aware Computer
Systems, LNCS vol. 2008, Springer Verlag,
2001, pp. 25-39.

2. R.l. Bahar and S. Manne, “Power and
Energy Reduction via Pipeline Balancing,”
Proc. 28th Ann. Int'l Symp. Computer
Architecture (ISCA 01), IEEE Press, 2001,
pp. 218-229.

3. D. Folegnani and A. Gonzalez, “Energy-
Effective Issue Logic,” Proc. 28th Ann. Int’l
Symp. Computer Architecture (ISCA 01),
IEEE Press, 2001, pp. 230-239.

4. D. Ponomarev, G. Kucuk, and K. Ghose,
“Reducing Power Requirements of
Instruction Scheduling through Dynamic
Allocation of Multiple Datapath Resources,”
Proc. 34th Ann. Int'l Symp. Micro-
architecture (Micro 34), IEEE Press, 2001,
pp. 90-101.

5. R. Sasanka, C.J. Hughes, and S.V. Adve,
“Joint Local and Global Hardware
Adaptations for Energy,” Proc. 10th Int’l
Conf. Architectural Support for Programming

Languages and Operating Systems (ASPLOS
10), ACM Press, 2002, pp. 144-155.

6. O. Unsal et al, “Cool-Fetch: Compiler-
Enabled Power-Aware Fetch Throttling,”
IEEE Computer Architecture Letters, vol. 1,
April, 2002, pp. 100-103.

7. M. Huang, J. Renau, and J. Torrellas,
“Positional Adaptation of Processors:
Application to Energy Reduction,” Proc. 30th
Ann. Int’l Symp. Computer Architecture
(ISCA 03), IEEE Press, 2003, pp. 157-168.

8. R.Pyreddy and G. Tyson, “Evaluating Design
Tradeoffs in Dual Speed Pipelines,” Proc.
Workshop Complexity-Effective Design, in
conjunction with 28th Int’l Symp. Computer
Architecture, 2001;
rochester.edu/~albonesi/wced01/papers/
rpyreddy.ps.

9. J.S. Seng, E.S. Tune, and D.M. Tullsen,
“Reducing Power with Dynamic Critical Path

http://www.ece.

Information,” Proc. 34th Ann. Int’l Symp.
Microarchitecture (Micro 34), IEEE Press,
2001, pp. 114-123.

10. H. Lietal., "VSV: L2-Miss-Driven Variable
Supply-Voltage Scaling for Low Power,”
Proc. 36th Int’l Symp. Microarchitecture
(Micro 36), IEEE Press, 2003, pp. 19-28.

11. R. Desikan, D. Burger, and S.W. Keckler,
“Measuring Experimental Error in
Microprocessor Simulation,” Proc. 28th
Ann. Int’l Symp. Computer Architecture
(ISCA 01), IEEE Press, 2001, pp. 266-277.

12. P. Shivakumar and N. Jouppi, An Integrated
Cache Timing, Power, and Area Model, tech.
report, Compaqg Western Research Lab,
2001.

13. M.K. Gowan, L.L. Biro, and D.B. Jackson,
“Power Considerations in the Design of the
Alpha 21264 Microprocessor,” Proc. 1998
Design Automation Conf. (DAC 98), ACM
Press, 1998, pp. 726-731.

14. D.M. Brooks et al., “Power-Aware Micro-
architecture: Design and Modeling

Challenges for Next-Generation Micro-

processors,” IEEE Micro, vol. 20, no. 6,

Nov./Dec. 2000, pp. 26-44.

Zhichun Zhu is an assistant professor of elec-
trical and computer engineering at the Uni-
versity of Illinois at Chicago. Her research
interests include computer architecture, per-
formance evaluation, and low-power designs.
Zhu has a BS in computer engineering from

Huazhong University of Science and Tech-
nology, China, and a PhD in computer sci-
ence from the College of William and Mary.
She is a member of the IEEE and the ACM.

Xiaodong Zhang is the Lettie Pate Evans Pro-
fessor of Computer Science and the depart-
ment chair at the College of William and
Mary. His research interests include parallel
and distributed computing and systems and
computer architecture. Zhang has a BS in
electrical engineering from Beijing Polytech-
nic University and an MS and a PhD, both in
computer science, from the University of Col-
orado at Boulder. He is a senior member of
the IEEE.

Direct questions and comments about this
article to Zhichun Zhu, Dept. of Electrical
and Computer Engineering, 1020 SEO (M/C
154), University of Illinois at Chicago, Chica-
go, IL 60607-7053; zhu@ece.uic.edu.

For further information on this or any other
computing topic, visit our Digital Library at
http://www.computer.org/publications/dlib.

IE[E

COMPUTER
SOCIETY

Be alerted to

e articles and
special issues

e conference
news

e registration
deadlines

Available
for FREE
to members.

computer.org/e-News

JULY—AUGUST 2005

