IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 8, AUGUST 2005

939

Making LRU Friendly to Weak Locality
Workloads: A Novel Replacement Algorithm to
Improve Buffer Cache Performance

Song Jiang and Xiaodong Zhang, Senior Member, IEEE

Abstract—Although the LRU replacement algorithm has been widely used in buffer cache management, it is well-known for its inability
to cope with access patterns with weak locality. Previously proposed algorithms to improve LRU greatly increase complexity and/or
cannot provide consistently improved performance. Some of the algorithms only address LRU problems on certain specific and
predefined cases. Motivated by the limitations of existing algorithms, we propose a general and efficient replacement algorithm, called
Low Inter-reference Recency Set (LIRS). LIRS effectively addresses the limitations of LRU by using recency to evaluate Inter-
Reference Recency (IRR) of accessed blocks for making a replacement decision. This is in contrast to what LRU does: directly using
recency to predict the next reference time. Meanwhile, LIRS mostly retains the simple assumption adopted by LRU for predicting future
block access behaviors. Conducting simulations with a variety of traces of different access patterns and with a wide range of cache
sizes, we show that LIRS significantly outperforms LRU and outperforms other existing replacement algorithms in most cases.
Furthermore, we show that the additional cost for implementing LIRS is trivial in comparison with that of LRU. We also show that the
LIRS algorithm can be extended into a family of replacement algorithms, in which LRU is a special member.

Index Terms—Operating systems, memory management, replacement algorithms.

1 INTRODUCTION

1.1 The Problems of the LRU Replacement
Algorithm

THE effectiveness of cache block replacement algorithms
is critical to the performance stability of I/O systems.
The LRU (Least Recently Used) replacement is widely used
in managing buffer cache due to its simplicity, but many
anomalous behaviors have been found with some typical
workloads, where the hit rates of LRU may only slightly
increase with a significant increase of cache size. The
observations reflect LRU’s inability to cope with access
patterns with weak locality such as file scanning, regular
accesses over more blocks than the cache size, and accesses
on blocks with distinct frequency. Here are some repre-
sentative examples reported in the research literature to
illustrate how poorly LRU behaves:

1. Under the LRU algorithm, a burst of references to
infrequently used blocks, such as sequential scans
through large files, may cause the replacement of
frequently referenced blocks in cache. This is a
common complaint in many commercial systems:
Sequential scans can cause interactive response
time to deteriorate noticeably [17]. An effective

e S. Jiang is with the Performance and Architecture (PAL) Group, Los
Alamos National Laboratory, CCS-3, B256, PO Box 1663, Los Alamos,
NM 87545. E-mail: sjiang@lanl.gov.

o X. Zhang is with the Computer Science Department, College of William
and Mary, Williamsburg, VA 23187. E-mail: zhang@cs.wm.edu.

Manuscript received 26 Nov. 2003; revised 5 Nov. 2004; accepted 2 Mar.
2005; published online 15 June 2005.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0227-1103.

0018-9340/05/$20.00 © 2005 IEEE

replacement algorithm would be able to prevent
hot blocks from being evicted by cold blocks.

2. For a cyclic (loop-like) pattern of accesses to a file
that is only slightly larger than the cache size, LRU
always mistakenly evicts the blocks that will be
accessed the soonest because these blocks have not
been accessed for the longest time [22]. A wise
replacement algorithm would maintain a hit rate
proportional to the buffer cache size.

3. In an example of multiuser database application,
each record is associated with a B-tree index [17].
For a given number of records, assume their index
entries can be packed into 100 blocks and
10,000 blocks are needed to hold the records. We
use R(i) to represent an access to Record ¢ and I(¢)
to Index i. The database application alternates its
references to random index blocks and to the record
blocks in the access sequence of I(1), R(1), I(2),
R(2), I(3), R(3), Thus, the index blocks will be
referenced with a probability of 0.005 and the data
blocks are with a probability of 0.00005. Suppose that
the cache can only hold 101 blocks. Ideally, all
100 index blocks are cached and only one record
block is cached. However, LRU caches the 101 most
recently accessed blocks. So, LRU keeps an equal
number of index and record blocks in the cache and
perhaps even more record blocks than index blocks.
An intelligent replacement algorithm would choose
the resident blocks according to their reference
probability. Only those blocks with relatively high
access probability deserve to stay in the cache for a
longer time.

The reason for LRU to behave poorly in these situations
is that LRU makes a bold assumption—a block that has not

Published by the IEEE Computer Society

940

been accessed for the longest time would wait for the
longest time to be accessed again. This assumption cannot
capture the access patterns exhibited in those workloads
with weak locality. Generally speaking, there is less locality
in buffer caches than that in CPU caches or virtual memory
systems [20].

Meanwhile, LRU has its distinctive merits: simplicity
and adaptability. It only samples and makes use of very
limited history information—recency. While addressing the
weakness of LRU, existing algorithms either take more
history information into consideration, such as LFU (Least
Frequently Used)-like ones in the cost of simplicity and
adaptability or switch temporarily from LRU to other
algorithms whenever certain predefined regularities are
detected. In the switch-based approach, these algorithms
actually act as supplements of LRU in a case-by-case
fashion. To make a prediction of future access times, these
algorithms assume the existence of a relationship between
the future reference of a block with the behaviors of those
blocks in its temporal or spatial locality, while LRU only
associates the future behavior of a block with the block’s
own previous reference. This additional assumption in-
creases the complexity of their implementations as well as
their performance dependence on some specific character-
istics of workloads. The replacement algorithm we propose,
called LIRS, only samples and makes use of the same
history information as LRU does—recency, and mostly
retains the LRU assumption. Thus, it is simple and
adaptive. In our design, LIRS does not directly target
specific LRU problems, but fundamentally addresses the
limitations of LRU.

1.2 An Executive Summary of Our Algorithm

We use recent Inter-Reference Recency (IRR) as the history
information of a block, where the IRR of a block refers to the
number of other distinct blocks accessed between two
consecutive references to the block (IRR is also called reuse
distance in some literature). In contrast, recency refers to the
number of other distinct blocks accessed from last reference
to the current time. We refer to the IRR between the last and
the second-to-last references to a block as recent IRR or
simply call it IRR without ambiguity in the rest of the paper.
We assume that if the IRR of a block is large, the next IRR of
the block is likely to be large. Following this assumption, we
select the blocks with large IRRs for replacement because it
is highly possible that these blocks will be evicted later by
LRU before being referenced again under our assumption.
It is noted that these evicted blocks may have been recently
accessed, i.e., each has a small recency.

By adequately considering IRR in history information in
our algorithm, we are able to eliminate negative effects
caused by only considering recency, such as the problem
shown in the aforementioned examples. When deciding
which block to evict, our algorithm utilizes the block IRR
information. It dynamically and responsively distinguishes
low IRR (denoted as LIR) blocks from high IRR (denoted as
HIR) blocks and keeps the LIR blocks in the cache, where
the block recency is only used to help determine the LIR or
HIR statuses of the blocks. We maintain an LIR block set
and an HIR block set and manage to limit the size of the
LIR set so that all the LIR blocks fit in the cache. The blocks
in the LIR set are not selected for replacement and there are
no misses for the references to these blocks. Only a very

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO.8, AUGUST 2005

small portion of cache is allocated to store HIR blocks.
Resident HIR blocks may be evicted at any recency.
However, when the recency of an LIR block increases to a
certain value and an HIR block gets accessed at a smaller
recency than that of the LIR block, the statuses of the two
blocks are switched. We name the proposed algorithm Low
Inter-reference Recency Set (denoted as LIRS) replacement
because the LIR set is what the algorithm tries to identify
and keep in the cache. LIRS aims at addressing three issues
in designing replacement algorithms: 1) how to effectively
utilize multiple sources of history access information, 2) how
to dynamically and responsively distinguish blocks by
comparing their possibility to be referenced in the near
future, and 3) how to minimize implementation overheads.

In the next section, we give an overview of the related
work and highlight our technical contributions. The LIRS
algorithm is described in Section 3. In Section 4, we present
the trace-driven simulation results for performance evalua-
tion and comparisons. We provide sensitivity and overhead
analysis of the proposed replacement algorithm in Section 5
and conclude the paper in Section 6.

2 REeLATED WORK

The LRU replacement is widely used for the management of
virtual memory, file buffer caches, and data buffers in
database systems. The three representative problems
described in the previous section are found in the different
application fields. Many efforts have been made to address
the LRU problems. We classify existing algorithms into
three categories: 1) replacement algorithms based on user-
level hints, 2) replacement algorithms based on tracing and
utilizing history information of block accesses, and 3) re-
placement algorithms based on regularity detections.

2.1 User-Level Hints

Application-controlled file caching [3] and application-
informed prefetching and caching [19] are the schemes
based on user-level hints. These schemes identify blocks
less likely to be reaccessed in the near future based on the
hints provided by user programs. To provide appropriate
hints, programmers need to understand the data access
patterns, which adds to the programming burden. In [15],
Mowry et al. attempted to abstract hints by compilers to
facilitate I/O prefetching. In contrast, the LIRS algorithm
can adapt its behavior to different access patterns without
explicit hints. While the hint-based methods are orthogonal
to the LIRS replacement, the collected hints may help LIRS
refine the correlation of consecutive IRRs.

2.2 Tracing and Utilizing History Information

Realizing that LRU only utilizes limited access information,
some researchers have proposed several algorithms to
collect and use “deeper” history information, which include
the LFU-like algorithms such as FBR, MQ, LRFU, as well as
LRU-K and 2Q. We adopt a similar approach by effectively
collecting and utilizing access information to design the
LIRS replacement.

Robinson and Devarakonda proposed a frequency-based
replacement algorithm (FBR) by maintaining reference
counts for the purpose to “factor out” locality [20]. Zhou
et al. proposed Multi-Queue (MQ), which sets up multiple
queues and uses access frequencies to determine which

JIANG AND ZHANG: MAKING LRU FRIENDLY TO WEAK LOCALITY WORKLOADS: A NOVEL REPLACEMENT ALGORITHM TO IMPROVE... 941

queue a block should be in [23]. However, it is slow for the
frequency-based algorithms to respond to reference fre-
quency changes and some of their parameters have to be
found by trial and error. Having analyzed the advantages
and disadvantages of LRU and LFU, Lee et al. proposed
LRFU by combining them through weighing block recency
and frequency factors [14]. The performance of the LRFU
algorithm largely relies on a parameter called A\, which
determines the relative weight of LRU or LFU and has to be
adjusted according to the system configurations, even
according to different workloads. However, LIRS does not
have a tunable parameter that is sensitive to workloads.

The LRU-K algorithm addresses the LRU problems
presented in examples 1 and 3 in the previous section
[17]. LRU-K makes its replacement decision by comparing
the times of the Kth-to-last references to blocks. After such
a comparison, the oldest resident block is evicted. For
simplicity, the authors recommended K = 2. By taking the
time of the second-to-last reference to a block as the basis
for comparison, LRU-2 can quickly remove cold blocks
from the cache. However, for blocks without significant
differences of reference frequencies, LRU-2 does not work
well. In addition, LRU-2 is expensive: Each block access
requires log(/N) operations to manipulate a priority queue,
where N is the number of blocks in the cache.

Johnson and Shasha proposed the 2Q algorithm that has
constant time overhead [10]. They showed that the algorithm
performs as well as LRU-2. The 2Q algorithm can quickly
remove sequentially referenced blocks and loopingly refer-
enced blocks with long looping intervals out of the cache. This
is achieved by using a special buffer, called queue Alin, in
which all missed blocks are initially placed. When the blocks
are replaced from the Alin queue in a FIFO order, the
addresses of those replaced blocks are temporarily placed ina
ghost buffer called queue Alout. When a block is rerefer-
enced, it is promoted to a main buffer called queue Am if its
address is in the Alout queue. That is, only blocks that have a
short reuse distance measured in Alin and Alout can be
cached for a long time in Am. In this way, they are able to
distinguish frequently referenced blocks from those infre-
quently referenced. By setting the sizes of the Alin and Alout
queues as constants Kin and Kout, respectively, 2Q provides
a victim block either from Alin or from Am. However, Kin
and Kout are predetermined parameters, which need to be
carefully tuned and are sensitive to the types of workloads.
While both 2Q and LIRS have simple implementations with
low overheads, LIRS has overcome the drawbacks of 2Q by
properly updating the LIR block set. Another recent algo-
rithm, ARC, maintains two variable-size lists [16]. Their
combined size is two times the number of blocks that are held
in the cache. One half of the lists contain the blocks in the
cache and the other half are for the history access information
of replaced blocks. The first list contains the blocks that have
been seen only once recently (cold blocks) and the second list
contains the blocks that have been seen at least twice recently
(hot blocks). The buffer spaces allocated to the blocks in these
two lists are adaptively changed, depending upon in which
list recent misses take place. More buffer spaces will serve
cold blocks (respectively, hot blocks) if there are more cold
block (respectively, hot block) accesses. However, although
the authors advocated the superiority of the ARC algorithm
with its adaptiveness and avoidance of tunable parameters,
the locality of the blocks in the two lists, quantified by recency

or frequency, cannot be directly and consistently compared.
For example, a block that is regularly accessed with an IRR a
little bit more than the cache size may have no hits at all, while
a block in the second list can stay in the cache without any
accesses since it has been accepted into the list.

The Inter-Reference Gap (IRG) of a block is the number
of the references between consecutive references to the
block, which is different from IRR on whether duplicate
references to a block are counted. Phalke and Gopinath
considered the correlation between history IRGs and future
IRGs [18]. The past string of IRGs of a block is modeled by
Markov chain to predict its next IRG. However, as
Smaragdakis et al. indicated, replacement algorithms based
on a Markov model fail in practice because they try to solve
a much harder problem than the replacement problem itself
[22]. An apparent difference in their algorithm from the
LIRS algorithm is in how to measure the distance between
two consecutive references to a block. Our study shows that
IRR is more justifiable than IRG in this circumstance. First,
IRR only counts the distinct blocks and filters out high-
frequency events, which may be volatile with time. Thus,
the IRR is more relevant to the next IRR than the IRG to the
next IRG. Moreover, it is the “recency” rather than the
“gap” information that is used by LRU. An elaborate
argument favoring IRR in the context of virtual memory
page replacement can be found in [22]. Second, IRR can be
easily dealt with under the LRU stack model [2], on which
most popular replacements are based.

2.3 Detection and Adaptation of Access
Regularities

More recently, some researchers took another approach to
detect access regularities from the history information by
relating the accessing behavior of a block to those of the
blocks in its temporal or spatial locality scope. Then,
different replacements, such as Most Recently Used
(MRU), can be applied to those blocks with specific access
regularities.

Glass and Cao proposed the SEQ algorithm for adaptive
page replacement in virtual memory management [9]. It
detects sequential address reference patterns. If a long
sequence of page faults with continuous addresses is found,
MRU is applied to the sequence. If such a sequence is not
detected, SEQ performs the LRU replacement. These detec-
tions only take place when there are page faults, soithas alow
overhead acceptable in virtual memory management. How-
ever, Smaragdakis et al. argued that address-based detection
lacks generality and advocated using aggregate recency
information to characterize page behaviors [22]. Their EELRU
examines aggregate recency distributions of accessed pages
and changes the page eviction points using an online cost/
benefit analysis by assuming the correlation among tempo-
rally contiguously referenced pages. This is different from
LRU, which actually always sets the eviction point at the
bottom of the LRU stack. However, EELRU has to choose an
eviction point from a predetermined set of LRU stack
positions. And, the way to select the set affects its perfor-
mance. Moreover, by an aggregate analysis, EELRU cannot
quickly respond to the changing access patterns. Without
spatial or temporal detections, LIRS uses the independent
recency events of each block to effectively characterize their
references.

942

Choi et al. proposed an adaptive buffer management
algorithm called DEAR, which automatically detects the
block reference patterns of applications and applies
different replacement algorithms to different applications
based on their detected reference patterns [5]. Further, they
proposed an Application/File-level Characterization (AFC)
algorithm in [4], which first detects the reference character-
istics at the application level and then at the file level if
necessary. Accordingly, appropriate replacement algo-
rithms are used to the blocks with different patterns. The
Unified Buffer Management (UBM) algorithm by Kim et al.
also detects patterns in the recorded history [13]. Unlike the
detection method used in DEAR, which associates the
backward distance and frequency with the forward dis-
tances of blocks between two consecutive detection invoca-
tion points, UBM tracks the reference information such as
the file descriptor, start block number, end block number,
and loop period if a rereference occurs. More recently,
Gniady et al. proposed the PCC replacement algorithm,
which conducts its access pattern detection on a per-system-
call-site basis to improve the detection accuracy and
efficiency [8]. Although these elaborate detections of access
patterns provide a large potential for significant perfor-
mance improvements, they addressed the LRU problems in
a case-by-case fashion and have to deal with the allocation
problem, which does not appear in LRU. To facilitate the
online evaluation of buffer utilizations, certain premeasure-
ments are needed to set predefined parameters used in the
buffer allocation schemes [4], [5], [8]. LIRS does not have
these design challenges. While it chooses the victim block in
a global stack as LRU does, it can take the advantages
provided by the detection-based algorithms.

More work on program locality analysis, prediction, and
enhancement is conducted in the program behavior studies
using static compiler analysis, data profiling, and runtime
data analysis techniques (e.g., see [6]). There are two major
differences between these studies and those on replacement
algorithms in operating systems. First, program behavior
studies are usually conducted at a finer level such as data
elements and instructions rather than at the block or page
level defined by the system. Usually, they require much
more computing effort, which could be too expensive for a
replacement algorithm running in the operating system.
Second, program behavior studies focus on understanding
the behavior of a specific program. It doesn’t consider
system parameters such as memory size and interaction
among simultaneously running programs. However, a
replacement algorithm must be designed from the system
perspective, taking both the properties of workloads and
system configurations into consideration. These constraints
prevent the replacement algorithm from conducting an
aggressive locality analysis or pattern detection. Thus, a
simple yet effective replacement algorithm becomes a
critical system design issue.

3 THE LIRS ALGORITHM

3.1 General Idea

We classify referenced blocks into two sets: High Inter-
reference Recency (HIR) block set and Low Inter-reference
Recency (LIR) block set. Each block with its history
information in cache has a status—either LIR or HIR. Some
HIR blocks may not reside in the cache, but keep their

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO.8, AUGUST 2005

metadata in the cache, recording their status as nonresident
HIR. We divide the cache, whose size in blocks is L, into a
major part and a minor part in terms of their sizes. The
major part, with its size of Ly, is used to store LIR blocks
and the minor part, with its size of Ly, is used to store
blocks from HIR block set, where Lj;,.; + Ly;s = L. When a
miss occurs and a block is needed for replacement, we
choose an HIR block that is resident in the cache. The blocks
in the LIR block set always reside in the cache, i.e., there are
no misses for the references to the LIR blocks. However, a
reference to an HIR block is likely to encounter a miss
because Ly, is very small (its practical size can be as small
as 1 percent of the cache size).

We use Table 1 as a simple example to illustrate how a
replaced block is selected by the LIRS algorithm and how
LIR/HIR statuses are maintained. In Table 1, symbol “X”
denotes a block access at a virtual time." As an example,
block A is accessed at times 1, 6, and 8. Based on the
definition of recency and IRR in Section 1.2, at time 10,
blocks A, B, C, D, E have their IRR values of 1, 1, “infinite,”
3, and “infinite,” respectively, and have their recency values
of 1, 3, 4, 2, and 0, respectively. We assume the cache can
hold three blocks, Lj.s =2 and Ly;, = 1, thus, at time 10,
the LIRS algorithm leaves two blocks in the LIR set (the LIR
set = {A, B}). The rest of the blocks go to the HIR set (the
HIR set = {C, D, E}). Because block E is the most recently
referenced, it is the only resident HIR block due to Lj;,s = 1.
If there is a reference to an LIR block, we keep it in the LIR
block set. If there is a reference to an HIR block, we need to
know whether we should change its status to LIR.

The key to successfully making the LIRS idea work in
practice rests on whether we are able to dynamically and
responsively maintain the LIR block set and HIR block set.
When an HIR block is referenced, it gets a new IRR equal to
its recency. Then, we determine whether the new IRR
should be considered small relative to the current LIR blocks
so that we know whether we need to change its status to
LIR. Here, we have two options: compare the new IRR
either with the IRRs or with the recencies of the LIR blocks.
We take the recencies for the comparison for two reasons:
1) The IRRs are generated before their respective recencies
and may be outdated, which is not directly relevant to the
new IRR of the HIR block. A recency of a block is
determined not only by its own reference activity, but also
by the recent activities of other blocks. The outcome of
comparing the new IRR and the recencies of the LIR blocks
determines the eligibility of the HIR block to be considered
as a hot block. While we state that IRRs are used to
determine which blocks should be replaced, it is the new
IRRs that are directly used in the comparisons. 2) If the new
IRR of the HIR block is smaller than the recency of an
LIR block, it will be smaller than the upcoming IRR of the
LIR block. This is because the recency of the LIR block is a
part of its upcoming IRR and not greater than the IRR. Thus,
the comparisons with the recencies are actually the
comparisons with the relevant IRRs. Once we know that
the new IRR of the HIR block is smaller than the maximum
recency of all the LIR blocks, we switch the LIR/HIR
statuses of the HIR block and the LIR block with the
maximum recency. Following this rule, we can 1) allow an
HIR block with a relatively small IRR to join the LIR block

1. Virtual time is defined on the reference sequence, where a reference
represents a time unit.

JIANG AND ZHANG: MAKING LRU FRIENDLY TO WEAK LOCALITY WORKLOADS: A NOVEL REPLACEMENT ALGORITHM TO IMPROVE... 943
TABLE 1
An Example to Explain How a Victim Block Is Selected by the LIRS Algorithm and How LIR/HIR Statuses Are Maintained

Blocks / Virtual time | 1| 2| 3| 4| 5| 6| 7| 8| 910 || Recency || IRR
A X X X 1 1
B X X 3 1
C X 4 inf
D X X 2 3
E X 0 inf

An “X” refers to the block in a row that is referenced at the virtual time of a column. The recency and IRR columns represent their respective values at
virtual time 10 for each block. We assume Ly;,; = 2 and Ly;,; = 1 and, at time 10, the LIRS algorithm leaves two blocks in the LIR set (= {A, B}) and

the HIR set is {C, D, E}. The only resident HIR block is E.

set in a timely fashion by replacing a LIR block from the set
and 2) keep the size of LIR block set no larger than Ly,
thus the entire set of blocks can reside in the cache.

Again, in the example of Table 1, if there is a reference to
block D at time 10, a miss occurs. The LIRS algorithm
replaces resident HIR block E, instead of block B, which
would be replaced by LRU due to its largest recency.
Furthermore, because block D is referenced, its new IRR is
2, which is smaller than the recency of LIR block B (= 3),
indicating that the upcoming IRR of block B will not be
smaller than 3. So, the status of block D is switched to LIR
and the block joins the LIR block set, while block B becomes
an HIR block. Since block B becomes the only resident
HIR block, it is going to be evicted from the cache once
another free block is requested. If, at virtual time 10, block C,
with its recency of 4, rather than block D, with its recency of
2, gets accessed, there will be no status switching. Then,
block C becomes a resident HIR block, while the replaced
block is still E at virtual time 10. In this way, the LIR block
set and HIR block set are formed and dynamically
maintained.

3.2 The LIRS Algorithm Based on LRU Stack

The LIRS algorithm can be efficiently built on the model of
LRU stack, which is an implementation structure of LRU.
The LRU stack contains L entries, each of which represents
a block.”> Usually, L is the cache size in blocks. The LIRS
algorithm makes use of the stack to keep track of recency
and to dynamically maintain LIR block set and HIR block
set. In contrast to the LRU stack, where only resident blocks
are managed by the LRU algorithm in the stack, we store
LIR blocks and HIR blocks with their recencies less than the
maximum recency of the LIR blocks in a stack called LIRS
stack S. S is similar to the LRU stack in operation but has a
variable size. With this design, we do not need to explicitly
record the IRR and recency values and to search for the
maximum recency value. Each entry in the stack records the
LIR/HIR status of a block and its residence status,
indicating whether or not the block resides in the cache.
To facilitate the search of the resident HIR blocks, we link
all these blocks into a small stack, @, with its size of Ly;.s.
Once a free block is needed, the LIRS algorithm removes a
resident HIR block from the bottom of stack Q for
replacement. However, the replaced HIR block remains in

2. For simplicity, in the rest of the paper we use “a block in the stack”
instead of “the entry of a block in the stack” without ambiguity.

stack S with its residence status changed to “nonresident” if
it is originally in the stack. We ensure the block in the
bottom of stack S is an LIR block by removing HIR blocks
below it. Once an HIR block in the LIRS stack gets
referenced, which means there is at least one LIR block
whose upcoming IRR will be greater than the new IRR of
the HIR block (such as the one at the bottom of the stack),
we switch the LIR/HIR statuses of the HIR block and the
LIR block at the bottom. Then, the LIR block at the bottom is
evicted from stack S and goes to the top of stack Q as a
resident HIR block. This block will soon be replaced from
the cache due to the small size of stack @ (at most Ly;,).

Such a design is partially inspired by the observation of
improper LRU replacement behavior: If a block is evicted
from the bottom of an LRU stack, it means the block
occupies a buffer during the period of time when it moves
from the top to the bottom of the stack without being
referenced. Why do we have to afford a buffer for another
long idle period when the block is loaded into the cache the
next time as what LRU does? The rationale for the
correction of the LRU decision is the assumption that
temporal IRR locality holds for block references.

3.3 A Detailed Description

In the LIRS replacement, there is an operation called “stack
pruning” on LIRS stack .S, which removes the HIR blocks at
the stack bottom until an LIR block sits there. This operation
serves two purposes: 1) We ensure the block at the stack
bottom always belongs to the LIR block set. 2) After the LIR
block in the bottom is removed, those HIR blocks
contiguously located above it will not have a chance to
change their status from HIR to LIR since their recencies are
larger than the new maximum recency of the LIR blocks.

When an LIR block set is not full, all the accessed blocks
are given LIR status until its size reaches Lj;,,. After that,
HIR status is given to any blocks that are accessed for the
first time and to blocks that have not been accessed for a
long time so that currently they are not in stack S.

Fig. 1 shows a scenario where stack S holds three types
of blocks, LIR blocks, resident HIR blocks, nonresident HIR
blocks, and stack @ holds all of the resident HIR blocks. An
HIR block could either be in stack S or not. Fig. 1 does not
depict the nonresident HIR blocks that are not in stack S.
There are three cases for the references to these blocks in the
LIRS algorithm, which are also illustrated in Fig. 2, using
the example shown in Table 1.

944

I:l : LIR block (all LIR blocks are resident)

O : resident HIR block

O : non—resident HIR block

Z0--000m

LIRS stack S Stack O

Fig. 1. LIRS stack S holds LIR blocks as well as some HIR blocks, with
or without resident status, and stack @ holds all the resident HIR blocks.

1. Upon accessing an LIR block X. This access is
guaranteed to be a hit in the cache. We move it to the
top of stack S. If the LIR block is originally located at
the bottom of the stack, we conduct a stack pruning.
This case is illustrated in the transition from state (a)
to state (b) in Fig. 2.

2. Upon accessing an HIR resident block X. This is a
hit in the cache. We move it to the top of the stack S.
There are two cases for the original location of
block X: a) If X is in stack S, we change its status to
LIR. This block is also removed from stack (). The
LIR block at the bottom of S is moved to the top of
stack @ with its status changed to HIR. A stack
pruning is then conducted. This case is illustrated in
the transition from state (a) to state (c) in Fig. 2. b) If
X is not in stack S, we leave its status unchanged
and move it to the top of stack Q.

3. Upon accessing an HIR nonresident block X. This
is a miss. We remove the HIR resident block at the
bottom of stack Q (it then becomes a nonresident
block) and evict it from the cache. Then, we load the
requested block X into the freed buffer and place it
at the top of stack S. There are two cases for the
original location of block X: a) If X is in the stack S,
we change its status to LIR and move the LIR block
at the bottom of stack S to the top of stack @ with its
status changed to HIR. A stack pruning is then
conducted. This case is illustrated in the transition
from state (a) to state (d) in Fig. 2. b) If X is not in
stack S, we leave its status unchanged and place it at
the top of stack . This case is illustrated in the
transition from state (a) to state (e) in Fig. 2.

I:I : LIR block

O : resident HIR block

O : non—resident HIR block

B/le &)@

stack S stack Q stack S stack Q

(@) (b)

stack S

(©]

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO.8, AUGUST 2005

4 PERFORMANCE EVALUATION

4.1 Experiment Settings

We use trace-driven simulations with various types of
workloads to evaluate the LIRS algorithm and compare it
with other algorithms. We have adopted many application
workload traces used in the previous studies aiming at
addressing the LRU limitations. These are traces recording
file access requests from one or multiple running applica-
tions, representing a wide range of access patterns, sizes,
and sources. We have also generated a synthetic trace.
Among these traces, cpp, cs, glimpse, and postgres are used
in [4], [5] (cs is named as cscope, and postgres is named as
postgres2 there), sprite is used in [14], multil, multi2, and
multi3 are used in [13]. We briefly describe the traces here.

1. 2-pools is a synthetic trace which simulates applica-
tion behavior described in the third example in
Section 1.1. The trace contains 100,000 references.

2. cpp is a GNU C compiler preprocessor trace. The
total size of C source programs used as input is
roughly 11 MB.

3. c¢s is an interactive C source program examination
tool trace. The total size of the C programs used as
input is roughly 9 MB.

4. glimpse is a text information retrieval utility trace.
The total size of the text files used as input is roughly
50 MB.

5. postgres is a trace of join queries among four
relations in a relational database system from the
University of California at Berkeley.

6. sprite is from the Sprite network file system, which
contains requests to a file server from client work-
stations for a two-day period.

7. multil is obtained by executing two workloads, cs
and cpp, together.

8. multi2 is obtained by executing three workloads, cs,
cpp, and postgres, together.

9. multi3 is obtained by executing four workloads, cpp,
gnuplot, glimpse, and postgres, together. gnuplot is a
popular graph plotting tool.

The only parameter of the LIRS algorithm, Ly;,s, is set as

1 percent of the cache size or L;,.; = 99% of the cache size in
the experiments. This selection results from a sensitivity

study on the parameter, which is described in Section 5.1.

5] ()

stack S stack Q

(e)

5

stack Q stack S stack Q

(d)

Fig. 2. lllustration of reference effects on the stacks using the example shown in Table 1. In the figure, (a) corresponds to the state at virtual time 9.
References to B, E, D, or C at virtual time 10 result in states (b), (c), (d), and (e), respectively.

JIANG AND ZHANG: MAKING LRU FRIENDLY TO WEAK LOCALITY WORKLOADS: A NOVEL REPLACEMENT ALGORITHM TO IMPROVE... 945

4.2 Access Pattern-Based Performance Evaluation

Through an elaborate investigation, Choi et al. classified the
file cache access patterns into four types [4]:

e Sequential references: All blocks are accessed one
after another and never reaccessed;

e Looping references: All blocks are accessed repeat-
edly with a regular interval (period);

e Temporally clustered references: Blocks accessed
more recently are the ones more likely to be accessed
in the near future;

e Probabilistic references: Each block has a stationary
reference probability and all blocks are accessed
independently with their associated probability.

The classification serves as a basis for their access pattern
detections and for adapting to different replacement
algorithms. For example, MRU applies to sequential and
looping patterns, LRU applies to temporally clustered
patterns, and LFU applies to probabilistic patterns. Though
the LIRS algorithm does not rely on such a classification, we
would like to use it to present and explain our experiment
results. Because a sequential pattern is a special case of
looping pattern (with infinite interval), we only use the last
three types: looping, temporally clustered, and probabilistic
patterns.

Algorithms LRU, LRU-2, 2Q, ARC, LRFU, and LIRS
belong to the same replacement algorithm category. In other
words, these algorithms take the same technical approach—
predicting the access possibility of a block through its own
history access information. Thus, we focus on the perfor-
mance comparisons between LIRS and other algorithms in
this category. As representative algorithms in the category of
regularity detections, we choose two algorithms for compar-
isons: UBM for its spatial regularity detection and EELRU for
its temporal regularity detection. UBM simulation requires
the file ID, offset, and process ID of a reference. However,
some traces available to us only consist of logical block
numbers, which are unique numbers for the accessed blocks.
Thus, we only produce the UBM simulation results for the
traces used in paper [13], which are multil, multi2, multi3.
We also include the results of OPT, an optimum, offline
replacement algorithm [2] for comparison.

We divide the traces into four groups based on their
access patterns. Traces cs, glimpse, and postgres belong to
the looping type, traces cpp and 2-pools belong to the
probabilistic type, trace sprite belongs to the temporally
clustered type, and traces multil, multi2, and multi3 belong
to the mixed type.

We present the performance results for each trace using a
pair of figures: the time-space maps and the hit rate curves.
In a time-space map, the x axis represents virtual time, a
position in the reference sequence of a given workload, and
the y axis represents the logical block numbers of the
accessed blocks. The hit rate curves show the hit rates with
different cache sizes for the various replacement algorithms
on a workload trace.

4.2.1 Performance for Looping Type Workloads

Fig. 3 plots three pairs of time-space maps and the hit rate
curves generated by the various algorithms for workloads cs,
glimpse, and postgres, respectively. The time-space maps
show that all three programs have looping patterns with long
intervals. As expected, LRU performs poorly for these

workloads with the lowest hit rates. Let us take cs as an
example, which has a pure looping pattern. Each block is
accessed at almost the same frequency. Since all blocks in a
loop have the same eligibility to be kept in the cache, it is
desirable to keep the same set of blocks in the cache no matter
what blocks are referenced currently. That is indeed what
LIRS does: The same set of LIR blocks is fixed in the cache
because the HIR blocks do not have IRRs small enough to
change their status. In the looping pattern, recency indicates
the opposite of the future reference time of a block: The
larger the recency of a block is, the sooner the block will be
referenced. The hit rate of LRU for cs is almost 0 percent
until the cache size approaches 1,400 blocks, which can hold
all the accessed blocks in a loop. It is interesting to see that
the hit rate curve of LRU-2 overlaps with the LRU curve.
This is because LRU-2 selects the same victim block as the
one selected by LRU for replacement. When making a
decision, LRU-2 compares the second-to-last reference time,
which is the recency plus the recent IRG. However, the
IRGs are the same for all the blocks at any time after the first
reference. Thus, LRU-2 relies only on recency to make its
decision, the same as LRU does. In general, when recency
makes a major contribution to the second-to-last reference
time, LRU-2 behaves similarly to LRU.

Except for cs, the other two workloads have mixed
looping patterns with various sizes of intervals. LRU
exhibits the stair-step hit rate curves for the workloads.
LRU is not effective until all the blocks in its locality scope
are brought into the cache. For example, only after the cache
can hold 355 blocks does the LRU hit rate curve of postgres
have a sharp increase from 16.3 percent to 48.5 percent.
Because LRU-2 considers the last IRG in addition to the
recency, it is easier for it to distinguish blocks with different
loop intervals than LRU does. However, LRU-2 lacks the
capability of dealing with the varying recencies of these
blocks. Our experiments show that the performance
improvement achieved by LRU-2 over LRU is limited.

It is illuminating to observe the performance difference
between 2Q and LIRS because both employ two linear data
structures following a similar principle that only rereferenced
blocks deserve to be in cache for alonger time. We can see that
the hit rates of 2Q are significantly lower than those of LIRS
for all three workloads. As the cache size increases, 2Q even
performs worse than LRU for workloads glimpse and
postgres. Another observation for 2Q on glimpse and
postgres is a serious “Belady’s anomaly” [1]: Increasing the
cache size could reduce the number of hits. Although ARC is
anadaptive algorithm without tunable parameters, itactually
shares the same problem as 2Q. The performance improve-
ment of ARC over LRU is very limited. Belady’s anomaly also
appears in glimpse for ARC. This is mainly caused by the
inconsistent quantification and comparison of block locality
in the two lists of ARC. This issue has been effectively
addressed in LIRS. We will provide an in-depth analysis on
this issue in Section 4.3.

LRFU, which combines LRU and LFU, is not effective on
workloads with a looping pattern because the block
reference frequencies in looping references are hard to
distinguish. As an example, the LRFU and LRU hit rate
curves for workload cs are overlapped.

Our simulation results show LIRS significantly outper-
forms all of the other algorithms and its hit rate curves are
very close to those of OPT. Meanwhile, the results also

946

cs

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO.8, AUGUST 2005

cs

S

////

Logical block number

Hit Ratio (%)

. : ; PR S

3000 4000 5000
Virtual time

2000 EDUD 7000

GLIMPSE

400 600 800
Cache Size (# of blocks)

GLIMPSE

1500

Logical block number

/

////

Hit Ratio (%)

0 2000 3000 6000
Virtual time

7000

POSTGRES

1000 1500
Cache Size (# of blocks)

2500

POSTGRES

Logical block number

S0 i /

.//,/ Ll /.,/ L0

/
oy

LLLLLL Y

0

Hit Ratio (%)

0 2000 4000 6000
Virtual time

8000 10000 12000

1000 1500 2000
Cache Size (# of blocks)

0 L
0 500 3000

Fig. 3. The time-space maps and the hit rate curves of cs, glimpse, and postgres for the replacement algorithms.

show that the hit rates of cs and postgres are closer to those
of OPT than the hit rates of glimpse. This indicates that LIRS
can make a more accurate prediction on the future LIR/HIR
statuses when the looping intervals are of less variance.
Because cs and postgres have relatively fixed loop intervals,
their consecutive IRRs are of less variance, which makes the
IRR assumption hold well. However, the LIRS algorithm is
not sensitive to the variance of IRRs, which is reflected by
the significant hit rate improvements on workload glimpse.
This is further evidenced by the results for the mixed
pattern workloads described in Section 4.2.4.

4.2.2 Performance for the Probabilistic Type Workloads
Fig. 4 plots two pairs of time-space maps and the hit rate
curves generated by the various replacement algorithms for
traces cpp and 2-pools, respectively. According to the
detection results in [4], workload cpp exhibits a probabilistic
reference pattern. In cpp, before the cache size increases to
100 blocks, the hit rates of LRU are much lower than those
of LIRS. For example, when the cache size is 50 blocks, the
hit rate of LRU is 9.3 percent, while the hit rate of LIRS is
55.0 percent. This is because holding a reference locality

scope needs about 100 blocks. LRU cannot exploit the
locality until enough cache space is available to hold all the
recently referenced blocks. However, the capability for LIRS
to exploit locality does not rely on the cache size—when it is
identifying the LIR set, it always makes sure that the set will
be able to fit in the cache. 2-pools is generated to evaluate the
replacement algorithms on their abilities to recognize the
long-term reference behaviors. Though the reference fre-
quencies are very different between the record blocks and
the index blocks, it is hard for LRU to distinguish them
when the cache size is small relative to the number of the
referenced blocks because LRU takes only recency into
consideration. The LRU-2, 2Q, and LIRS algorithms take
one more previous reference into consideration—the time
for the second-to-last reference to a block is involved. Even
though the reference events to a block are randomized (i.e.,
the IRRs of a block are random with a certain fixed
frequency, which is unfavorable to LIRS), LIRS still outper-
forms LRU-2 and 2Q. However, LRFU utilizes “deeper”
history information. The constant long term frequency
becomes more visible to the LFU-like algorithm. Thus, the
performance of LRFU is slightly better than that of LIRS. It

JIANG AND ZHANG: MAKING LRU FRIENDLY TO WEAK LOCALITY WORKLOADS: A NOVEL REPLACEMENT ALGORITHM TO IMPROVE...

947

Logical block number

0 ot o i1 g i i 0 il gl i

Hit Ratio (%)

°
b m-a .
NS

e

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Virtual time:

2-POOLS

10000

400 500 600
Cache Size (# of blocks)

0 100 200 300

2-POOLS

9000 -

8000 -

7000 -

6000

5000 -

Logical block number

4000

3000 -

2000 -

1000

Hit Ratio (%)

o
0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Virtual time:

200 250 300 350 400
Cache Size (# of blocks)

50 100 150 450

Fig. 4. The time-space maps and the hit rate curves of cpp and 2-pools for the replacement algorithms.

is not surprising to see that the hit rate curve of EELRU
overlaps with that of LRU, showing its poor performance.
This is because EELRU relies on an analysis of a temporal
recency distribution to decide whether to conduct an early
point eviction. In 2-pools, the blocks with high access
frequency and the blocks with low access frequency are
alternatively referenced, thus no sign of an early point
eviction can be detected.

4.2.3 Performance for Temporally Clustered Type
Workloads

Fig. 5 presents the time-space map of workload sprite and
its hit rate curves generated by the various replacement
algorithms. sprite exhibits a temporally clustered reference
pattern. Fig. 5 shows that the LRU hit rate curve smoothly
climbs with the increase of the cache size. Although there is
still a gap between the LRU and OPT curves, the slope of
the LRU curve is close to the OPT curve. sprite is a so-called
LRU-friendly workload [22], which seldom accesses more
blocks than the cache size over a fairly long period of time.
For this type of workload, the behavior of the other
algorithms should be similar to that of LRU so that their
hit rates could be close to those of LRU. Before the cache
size reaches 350 blocks, the hit rates of LIRS are higher than
those of LRU. After that point, the hit rates of LRU become
slightly higher. Here is the reason for the slight performance
degradation of LIRS beyond that cache size: Whenever
there is a locality scope shift or transition, that is, some
HIR blocks get referenced, one more miss than would occur
in LRU may be experienced by an HIR block. Only the next
reference to the block in the near future after the miss makes
it switch from HIR to LIR status and then remain in the
cache. However, because of the strong locality, there are not
frequent locality scope changes. So, the negative effect of
the extra misses is limited.

4.2.4 Performance for Mixed Type Workloads

Fig. 6 presents three pairs of time-space maps and the hit rate
curves generated by the various replacement algorithms for
workloads multil, multi2, and multi3. The authors in [13]
provided a detailed discussion why their UBM shows the best
performance among the algorithms they have considered—
UBM, LRU-2, 2Q, and EELRU. Here, we focus on perfor-
mance difference between LIRS and UBM. UBM is a typical
spatial regularity detection-based replacement algorithm
that makes exhaustive reference pattern detections. UBM
tries to identify sequential and looping patterns and applies
MRU to the detected patterns. UBM further measures looping
intervals and conducts period-based replacements. For those
unidentified blocks without special patterns, LRU is applied.
A scheme for dynamically allocating buffers among the
blocks managed by different algorithms is employed. With-
out devoting specific efforts to specific regularities, LIRS
outperforms UBM for all three mixed type workloads, which
indicates that our assumption on IRR holds well and LIRS is
able to cope with weak locality in the workloads with mixed
type patterns.

4.3 LIRS versus Other Stack-Based Replacements

To get insights into the superiority of LIRS over other stack-
based replacement algorithms, including LRU, 2Q, we plot
a time-IRR graph to observe their actions on the blocks
accessed at different recencies. In a time-IRR graph, the
x axis represents virtual time, a reference in the access
stream, the y axis represents IRR, the recency where the
reference at a virtual time takes place. For first time
accessed blocks, their IRRs are infinite, which we do not
plot in the graph. We select two representative workloads, a
non-LRU-friendly one, postgres, and an LRU-friendly one,
sprite, for this study. Their IRRs are depicted in Fig. 7.

948

SPRITE

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO.8, AUGUST 2005

SPRITE

8000 T T T T T T

Logical block number

100 T T T T T T T T

Hit Ratio (%)

60000 80000
Virtual time

100000 120000 140000

1000
Cache Size (# of blocks)

Fig. 5. The time-space map and the hit rate curve of sprite for the replacement algorithms.

2000

3000

4000

MULTIH MULTH
3000 T T T T T T T 90 T T T T T T T T
2500 - J g
. 2000 | ’° 1
g oo o R g
= /)
: :
g / I S £
g
1000
/
I 'J!!J!Jssl/f/!/rmr”w‘r!’/f’
6000 8000 200 400 600 800 1000 1200 1400 1600 1800
Virtual time Cache Size (# of blocks)
MULTI2 MULTI2
6000 T T T T T
/
o /]
2
E -
2 . g
£ o
g 2o Y ! 1 %
2 / =
g I I
® !
= 2000 / g
/
i /// / // / H
5 it ildsi mﬁ/m ot e i
0 5000 10000 ISODD 20000 25000 30000 500 1000 1500 2000 2500
Virtual time Cache Size (# of blocks)
MULTI3 MULTI3
8000 T T T T T T 80 T T T T T T T
7000 / 1
6000 e <~ |
E // F; Z
5000 - R
5 =
H g
£ o
4000 o A 7 < 1 K
% . 3 ot /! &
g .] . -
§ soo0 - £ / / 1
2000 | /) / i
i ////// /////H /IHHI
Litll it W dbdel bl
0 /w/ //// TN Fi e o s gl s L2402 nrind ir i it i wﬂmm»« i A 10 1 N N N " " "
o 5000 10000 15000 20000 25000 30000 35000 500 1000 1500 2000 2500 3000 3500
Virtual time Cache Size (# of blocks)

Fig. 6. The time-space maps and the hit rate curves of multi1, multi2, and multi3 for the replacement algorithms.

The stack size of LRU, which is determined by the cache
size in blocks, is fixed. If the stack size is L, all the references
shown in the graphs with their IRRs less than L are hits and
those with IRRs larger than L are misses in LRU. Thus, the
hit rates of LRU are determined by the IRR distribution. If
most of the IRRs are concentrated in the low recency area,
such as what is shown in the graph for sprite, LRU will get

a high hit rate. For workloads with dispersed recency
distributions, LRU is incompetent in achieving high hit
rates. For example, in postgres, there are two IRR concen-
trations at around IRRs 350, 1150, and 1950. In correspond-
ing to the IRR distribution, there are some apparent “lift
ups” in the LRU hit rate curve when the cache size reaches
these values (see Fig. 3). If there are a large number of

JIANG AND ZHANG: MAKING LRU FRIENDLY TO WEAK LOCALITY WORKLOADS

POSTGRES

: A NOVEL REPLACEMENT ALGORITHM TO IMPROVE... 949

SPRITE

g

IRR (LRU stack position)

E

g

L L L
6000 8000 10000
Virtual Time

s s
2000 4000 12000

Fig. 7. The IRRs of the references in postgres and sprite.

IRR (LRU stack position)

7000

6000 -

5000

4000

3000

2000

20000 60000 140000

80000
Virtual Time

100000 120000

SPRITE

POSTGRES
45 T

a4}
35
3k

25

Ratio of stack sizes between LIRS and LRU

Ratio of stack sizes between LIRS and LRU

35

25 |

05 |

6000 8000 10000
Virtual time

2000 4000 12000

60000 80000 100000 120000

Virtual time

20000 40000 140000

Fig. 8. The ratios of LIRS stack size and LRU stack size for postgres and sprite. Cache size is 500.

references with their IRRs larger than the LRU stack size,
many blocks with their low recencies but high IRRs would
hold the stack spaces (residing in the cache) without being
accessed before being replaced from the stack. The occupied
buffers do not contribute to the hit rate. Thus, what really
matters is IRR, not recency. To improve LRU, the criterion
to determine which accessed blocks are to be cached should
be the L blocks with the smallest IRRs, rather than the
L blocks with their recencies no more than L (L is the cache
size). Following this criterion, the LIRS algorithm uses the
LIRS stack to dynamically predict the L blocks that will
have the smallest IRRs. The LIRS stack serves two purposes:
1) providing a threshold for being a LIR block and
2) holding the L blocks with the smallest IRRs (i.e.,
LIR blocks). In the LIRS algorithm, the threshold is Rmaz,
the recency of the LIR block at the LIRS stack bottom. The
threshold is also the LIRS stack size.

4.3.1 The Relationship between LIRS Stack Size and
Access Characteristics

To get insights into the relationship of the LIRS stack size
and workload access characteristics, we plot the ratio of the
LIRS stack size and the LRU stack size for two workloads,
postgres and sprite, in Fig. 8, where we fix the cache size at
500 blocks. We find that the LIRS stack size is an inherent
reflection of the LRU capability to exploit locality. If the
references have a strong locality, most of the references are
to the blocks with small recencies. Thus, the LRU stack still
holds these blocks while they get reaccessed and LRU
achieves a high hit rate. At the same time, these blocks are
low IRR blocks, i.e., most of the references go to the LIR

blocks, which would leave only a small number of
HIR blocks in the LIRS stack. So, the LIRS stack size is
small and close to the LRU stack size. This is the case for
workload sprite. With 500 buffer blocks, the LRU stack is
able to hold the most frequently referenced blocks. On the
other hand, LIRS can find enough low IRR blocks within the
recency range covered by the LRU stack. So, there is no
need for LIRS to significantly raise its stack size to hold a
large number of blocks with high recencies in the cache.
This is evidenced in Fig. 8 right, where the ratios of the LIRS
and LRU stack sizes are not far from 1 for most of the period
of time. However, once LIRS cannot find enough low
IRR blocks within the size of the LRU stack, it will raise its
size accordingly. We observe that the LIRS stack size of
postgres is significantly increased in several phases during
the periods when more references go to the blocks with
high recencies than to those with low recencies. With a
cache size of 500 and a fixed stack size, LRU cannot make
the locality distinction among the blocks with high
recencies and causes their references to all miss. By
increasing the stack size according to the current access
characteristics, LIRS can make the distinction among blocks
with weak locality and make a decision to replace the blocks
with a weak locality. The experiments also hint that the
LIRS stack size is a good indicator of the LRU-friendliness
of a workload.

The 2Q Replacement algorithm also tries to identify
blocks of small IRRs and to hold them in cache. It relies on
queue Alout to decide whether a block is qualified to be
promoted to stack Am so that it can be cached for a long
time or, consequently, to decide whether a block in Am

950

POSTGRES

<
8

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO.8, AUGUST 2005

SPRITE

N
3

2

3
T
\

Hit Rate (%)
N @
8 g

@
8

Hit Rate (%)

ddbbid

LIRS 150% -~
LRU

1500 2000

Cache Size (# of blocks)

1000 3000

100 200 300 400 500 600 700 800 900
Cache Size (# of blocks)

1000

Fig. 9. The hit rate curves of postgres and sprite by varying the ratio of the status switching threshold and Rmax in LIRS, as well as the curves for

OPT and LRU.

should be demoted out of Am. In 2Q, the size of Alout
serves as a threshold to identify the blocks of small IRRs
and Am holds these blocks. Because the threshold is
intended to predict the blocks with the L smallest IRRs
among all accessed blocks, 2Q should also consider the
access characteristics of blocks in Am. Unfortunately, it does
not and only the blocks in Alout are used for setting the
threshold. The recommended size of Alout in paper [10] is
50 percent of the cache size. With a fixed threshold, 2Q
could make it either too easy or too difficult for the blocks to
join in Am with the varying access patterns, This explains
why 2Q cannot provide a consistent performance improve-
ment over LRU.

4.3.2 LRU as a Special Member of the LIRS Family

In the LIRS algorithm, the largest recency of the LIR blocks,
Rmazx, serves as a threshold for status switching. An
HIR block with a new IRR smaller than the LIRS threshold
can change into LIR status and may demote an LIR block
into HIR status. The threshold controls how easily an HIR
block may become an LIR block or how difficult it is for an
LIR block to become an HIR one. We scale the threshold by
a weight factor to get insights into the relationship of LRU
and LIRS. A weight factor defines a particular LIRS
alternative. So, with the scaling, we have a family of LIRS
algorithms with various thresholds. Lowering the threshold
value, we are able to strengthen the stability of the LIR block
set by making it more difficult for HIR blocks to switch their
status into LIR. It also prevents the LIRS algorithm from
responding to the relatively small IRR variance. Increasing
the threshold value, we go in the opposite direction. In this
way, LRU becomes a special member of the LIRS family—
an LIRS algorithm with an indefinitely large threshold,
which always gives any accessed block an LIR status and
keeps it in the cache until it is evicted from the stack bottom.

Fig. 9 presents the results of a sensitivity study of the
threshold value. We again use workloads postgres and
sprite to observe the effects of changing the threshold
values from 50 percent, 75 percent, 100 percent, 125 percent
to 150 percent of Rmax. For postgres, we include a very
large threshold value—550 percent of Rmazx to highlight the
relationship between LIRS and LRU. We have two observa-
tions. First, LIRS is not sensitive to the threshold value
across a large range. In postgres, the curves for the

threshold values of 100 percent, 125 percent, 150 percent
of Rmax are overlapped and the curves for 50 percent,
75 percent of Rmax are slightly lower than the curve for
100 percent of the Rmaz threshold. Second, the LIRS
algorithm can simulate LRU behavior by significantly
increasing the threshold. As the threshold value increases
to 550 percent of Rmax, the LIRS curve of postgres is very
similar to that of LRU in its shape and is close to the
LRU curve. Further increasing the threshold value makes
the LIRS curve overlaps with the LRU curve. For sprite, an
LRU-friendly workload, increasing the threshold value
makes the LIRS hit rate curve move slowly to the
LRU curve.

5 SENSITIVITY AND OVERHEAD ANALYSIS

5.1 Cache Allocation for Resident HIR Blocks

Lpirs is the only parameter in the LIRS algorithm. The blocks
in the LIR block set can stay in the cache for a longer time
than those in the HIR block set and experience fewer page
faults. A sufficiently large Lj;s (the cache size for LIR blocks)
ensures there are a large number of LIR blocks. For this
purpose, we set Lj;,s to be 99 percent of the cache size, Ly
to be 1 percent of the cache size in our experiments, and
achieve expected performance. From the other perspective,
an increased Lj;,s may also be beneficial to the performance
in some cases: It reduces the first time reference misses. For
a large size of stack @ (large Ly,), it is more likely that an
HIR will be reaccessed before it is evicted from the stack,
which can help the HIR block change into LIR status
without experiencing an extra miss. However, the benefit of
large Ly is limited because the number of such kind of
misses is small.

We use two workloads, postgres and sprite, to observe the
effect of changing the size. We change Lj;,s from two blocks,
to 1 percent, 10 percent, 20 percent, and 30 percent of the cache
size. Fig. 10 shows the results of the sensitivity study on Ly,
for postgres and sprite. For each workload, we measure the hit
rates of OPT, LRU, and LIRS with different L;;,, sizes with
increasing cache sizes. We have two observations. First, for
both workloads, we find that LIRS is not sensitive to the
increase of Ly;,s. Even for a very large Lj;.s, which is not in
favor of LIRS, the performance of LIRS with different cache
sizes is still acceptable. With the increase of Ly;,, the hit rates

JIANG AND ZHANG: MAKING LRU FRIENDLY TO WEAK LOCALITY WORKLOADS: A NOVEL REPLACEMENT ALGORITHM TO IMPROVE...

POSTGRES

=
8

951

SPRITE
100

Hit Rate (%)
N @ P 3
8 g 3 3

Q
8

o
-]
]
588
R =
eomOX

Hit Rate (%)

40 -

30FF

=
H]
7]
588
555 =
somOXX

L L
1500 2000

Cache Size (# of blocks)

L L
0 500 1000 3000

400 500 600
Cache Size (# of blocks)

20 L L
100 200 300

Fig. 10. The hit rate curves of postgres and sprite by varying the size of stack @ (L;;s) of the LIRS algorithm, as well as the curves for OPT and
LRU. “LIRS 2" means the size of @ is 2, “LIRS x%” means the size of Q) is x percent of the cache size in blocks.

POSTGRES
T

SPRITE

Hit Rate (%)

c
o
21
DOON-
Cowondk
rbeomo

Hit Rate (%)

L L
1500 2000

Cache Size (# of blocks)

n
1000

3000

" " n
500 600 700
Cache Size (# of blocks)

L
400

Fig. 11. The hit rate curves of postgres and sprite by varying the LIRS stack size limit, as well as the curves for OPT and LRU. Limits are

represented by ratios of LIRS stack size limit and cache size in blocks.

of LIRS approach those of LRU. Second, our experiments
indicate that increasing Lj;s reduces the performance
benefits of LIRS to workload postgres, but slightly improves
performance of workload sprite.

5.2 Overhead Analysis

LRU is known for its simplicity and efficiency. Comparing
the time and space overhead of LIRS and LRU, we show
that LIRS keeps the LRU merit of low overhead. The time
overhead of LIRS algorithm is O(1), which is almost the
same as LRU with a few additional operations such as those
on stack () for resident HIR blocks. The extended portion of
the LIRS stack S is the additional space overhead of the
LIRS algorithm.

The stack S contains metadata for the blocks with their
recency less than Rmax. When there is a burst of first-time
block references, the LIRS stack could grow to be
unacceptably large. Imposing a size limit is a practical
issue in the implementation of the LIRS algorithm. In an
updated version of LIRS, the LIRS stack has a size limit that
is larger than L, and we remove the HIR blocks close to the
bottom from the stack once the LIRS stack size exceeds the
limit. We have tested a range of small stack size limits, from
1.5 times to 3.0 times of L. From Fig. 11, we can observe
that, even with these strict space restrictions, LIRS retains its
desirable performance. The effect of limiting LIRS stack size
is equivalent to reducing the threshold values in
Section 4.3.2. As expected, the results are consistent with
the ones presented there. In addition, since a stack entry
consists of only several bytes, it is easily affordable to have

an LIRS stack size limit much more than three times
LRU stack size. There would be little negative effect on LIRS
performance by enforcing the limit of such a large size.

6 CONCLUSIONS

Replacement algorithms play important roles in the buffer
cache management and their effectiveness and efficiency
are crucial to the performance of file systems, databases,
and other data management systems. We make two
contributions in this paper by proposing the LIRS algo-
rithm: 1) We show that LRU limitations with weak locality
workloads can be successfully addressed without relying
on the explicit access pattern detections. 2) We show earlier
work on improving LRU such as LRU-K or 2Q can evolve
into one algorithm with consistently superior performance,
without tuning or adaptation of sensitive parameters. The
effort of these algorithms, which only trace their own
history information of each referenced block, is promising
to produce an algorithm that is simple and low overhead
yet effective for weak locality access patterns. We have
shown the LIRS algorithm accomplishes this goal.

As a general-purpose replacement algorithm, the LIRS
algorithm also has its potential to be applied in the virtual
memory management for its simplicity and its LRU-like
assumption on workload characteristics. Because virtual
memory system cannot afford an overhead proportional to
the number of memory accesses, neither LRU nor LIRS can
be directly used there. We have designed an LIRS
approximation, called CLOCK-Pro, with a reduced over-
head comparable to that of the CLOCK replacement policy

952

[12]. The results of an implementation of the LIRS
approximation in a Linux kernel have shown its significant
performance advantages in terms of hit rates and program
run times.

ACKNOWLEDGMENTS

This work is supported in part by the US National Science
Foundation under grants CCR-9812187 and CCR-0098055.
The authors are grateful to Dr. Sam H. Noh at Hong-IK
University, Drs. Jong Min Kim, Donghee Lee, and Jongmoo
Choi at the Seoul National University for providing us with
their traces and simulators. They are also grateful to Dr.
Scott Kaplan at Amherst College and Dr. Yannis Smar-
agdakis at the Georgia Institute of Technology, who
provided them with the latest version of their EELRU
simulator and traces. The preliminary results of this work
were presented in [11].

REFERENCES

[1] L.A. Belady, R.A. Nelson, and G.S. Shedler, “An Anomaly in
Space-Time Characteristics of Certain Programs Running in a
Paging Machine,” Comm. ACM, vol. 12, pp. 349-353, 1969.

[2] E.G. Coffman and P.J. Denning, Operating Systems Theory.
Prentice-Hall, 1973.

[3] P. Cao, EW. Felten, and K. Li, “Application-Controlled File
Caching Policies,” Proc. USENIX Summer 1994 Technical Conf.,
pp- 171-182, June 1994.

[4]]. Choi, S. Noh, S. Min, and Y. Cho, “Towards Application/File-
Level Characterization of Block References: A Case for Fine-
Grained Buffer Management,” Proc. 2000 ACM SIGMETRICS Conf.
Measuring and Modeling of Computer Systems, pp. 286-295, June
2000.

[5] J.Choi, S. Noh, S. Min, and Y. Cho, “An Implementation Study of
a Detection-Based Adaptive Block Replacement Scheme,” Proc.
1999 Ann. USENIX Technical Conf., pp. 239-252, June 1999.

[6] C. Ding and Y. Zhong, “Predicting Whole-Program Locality
through Reuse-Distance Analysis,” Proc. ACM SIGPLAN Conf.
Programming Language Design and Implementation, pp. 245-257, June
2003.

[71 W. Effelsberg and T. Haerder, “Principles of Database Buffer
Management,” ACM Trans. Database Systems, pp. 560-595, Dec.
1984.

[8] C. Gniady, A.R. Butt, and Y.C. Hu, “Program Counter Based
Pattern Classification in Buffer Caching,” Proc. Sixth Symp.
Operating Systems Design and Implementation, pp. 395-408, Dec.
2004.

[9] G. Glass and P. Cao, “Adaptive Page Replacement Based on

Memory Reference Behavior,” Proc. 1997 ACM SIGMETRICS Conf.

Measuring and Modeling of Computer Systems, pp. 115-126, May

1997.

T. Johnson and D. Shasha, “2Q: A Low Overhead High

Performance Buffer Management Replacement Algorithm,” Proc.

20th Int’l Conf. Very Large Data Bases, pp. 439-450, Sept. 1994.

S. Jiang and X. Zhang, “LIRS: An Efficient Low Inter-Reference

Recency Set Replacement Policy to Improve Buffer Cache

Performance,” Proc. 2002 ACM SIGMETRICS Conf. Measuring and

Modeling of Computer Systems, pp. 31-42, June 2002.

S. Jiang, F. Chen, and X. Zhang, “CLOCK-Pro: An Effective

Improvement of the CLOCK Replacement,” Proc. 2005 Ann.

USENIX Technical Conf., pp. 323-336, Apr. 2005.

J. Kim, J. Choi, J. Kim, S. Noh, S. Min, Y. Cho, and C. Kim, “A

Low-Overhead, High-Performance Unified Buffer Management

Scheme that Exploits Sequential and Looping References,” Proc.

Fourth Symp. Operating System Design and Implementation, pp. 119-

134, Oct. 2000.

D. Lee, J. Choi, J. Kim, S. Noh, S. Min, Y. Cho, and C. Kim, “On the

Existence of a Spectrum of Policies that Subsumes the Least

Recently Used (LRU) and Least Frequently Used (LFU) Policies,”

Proc. 1999 ACM SIGMETRICS Conf. Measuring and Modeling of

Computer Systems, pp. 134-143, May 1999.

(10]

(1]

(2]

(13]

(14]

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO.8, AUGUST 2005

[15] T.C. Mowry, A.K. Demke, and O. Krieger, “Automatic Compiler-
Inserted I/O Prefetching for Out-of-Core Application,” Proc.
Second USENIX Symp. Operating Systems Design and Implementa-
tion, pp. 3-17, Oct. 1996.

N. Megiddo and D. Modha, “ARC: A Self-Tuning, Low Overhead
Replacement Cache,” Proc. Second USENIX Conf. File and Storage
Technologies, pp. 115-130, Mar. 2003.

EJ. O'Neil, P.E. O'Neil, and G. Weikum, “The LRU-K Page
Replacement Algorithm for Database Disk Buffering,” Proc. 1993
ACM SIGMOD Int'l Conf. Management of Data, pp. 297-306, May
1993.

V. Phalke and B. Gopinath, “An Inter-Reference Gap Model for
Temporal Locality in Program Behavior,” Proc. 1995 ACM
SIGMETRICS Conf. Measuring and Modeling of Computer Systems,
pp- 291-300, May 1995.

R.H. Patterson, G.A. Gibson, E. Ginting, D. Stodolsky, and J.
Zelenka, “Informed Prefetching and Caching,” Proc. 15th Symp.
Operating System Principles, pp. 1-16, Dec. 1995.

J.T. Robinson and N.V. Devarakonda, “Data Cache Management
Using Frequency-Based Replacement,” Proc. 1990 ACM SIG-
METRICS Conf. Measuring and Modeling of Computer Systems,
pp- 134-142, May 1990.

C. Ruemmler and J. Wilkes, “UNIX Disk Access Patterns,”
Usenix Winter 1993 Technical Conf., pp. 405-420, Jan. 1993.
Y. Smaragdakis, S. Kaplan, and P. Wilson, “EELRU: Simple and
Effective Adaptive Page Replacement,” Proc. 1999 ACM SIG-
METRICS Conf. Measuring and Modeling of Computer Systems,
pp- 122-133, May 1999.

Y. Zhou, J.F. Philbin, and K. Li, “The Multi-Queue Replacement
Algorithm for Second Level Buffer Caches,” Proc. 2001 Ann.
USENIX Technical Conf., pp. 91-104, June 2001.

[1o]

(171

(18]

[19]

[20]

[21] Proc.

[22]

(23]

Song Jiang received the BS and MS degrees in
computer science from the University of Science
and Technology of China in 1993 and 1996,
respectively, and received the PhD degree in
computer science from the College of William
and Mary in 2004. He is a postdoctoral research
associate at the Los Alamos National Labora-
tory, developing next generation operating sys-
tems for high-end systems. He received the S.
Park Graduate Research Award from the Col-
lege of William and Mary in 2003. His research interests are in the areas
of operating systems, computer architecture, and distributed systems.

Xiaodong Zhang received the BS degree in
electrical engineering from Beijing Polytechnic
University in 1982 and the MS and PhD degrees
in computer science from the University of
Colorado at Boulder in 1985 and 1989, respec-
tively. He is the Lettie Pate Evans Professor of
computer science and the department chair at
the College of William and Mary. He was the
program director of Advanced Computational
Research at the US National Science Founda-
tion from 2001 to 2003. He is a past editorial board member of the IEEE
Transactions on Parallel and Distributed Systems and currently serves
as an editorial board member for the IEEE Transactions on Computers
and an associate editor of /IEEE Micro. His research interests are in the
areas of parallel and distributed computing and systems and computer
architecture. He is a senior member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

