
1070-986X/05/$20.00 © 2005 IEEE Published by the IEEE Computer Society 59

Feature Article

Streaming media content delivery has
become increasingly important
because of the media content prolif-
eration in many application areas,

such as education, medical treatment, and
entertainment. Although proxy caching suc-
cessfully delivers static text-based content, it has
difficulty delivering streaming media content.
One reason for this is that a media object’s size is
generally much larger than a text-based object.
Thus, caching entire media objects can quickly
exhaust the proxy cache, making it infeasible.
The other is that the client requesting a media
object demands continuous streaming delivery.

The occasional delays that occur when trans-
ferring data over the Internet are acceptable for
text-based Web browsing. However, for stream-
ing media data, this transfer delay causes the
client to experience playback jitter. This is
annoying and could drive clients away from the
streaming service. A download-before-watching
solution certainly provides continuous playback,
but it also introduces a tremendous startup delay.

Additionally, it requires the client to have a large
buffer space.

To overcome these hurdles in streaming
media delivery, people have resorted to purchas-
ing the services of proprietary content delivery
networks (CDNs). These CDNs can smoothly
deliver media content with their dedicated high-
bandwidth networks and large storage capacities,
but they can be costly.

At the same time, the success of proxy caching
text-based Web objects has seen a number of
deployed proxies (or proxy-like nodes) across the
Internet. These intermediate proxies have plenty
of resources—such as computing power, storage,
and bandwidth—that can cache common-inter-
est content to serve different clients more quickly
than the client directly accessing the servers. As
an alternative to expensive CDNs, these existing
proxy resources can deliver media content inex-
pensively through effective resource management
strategies, since the content of a media object
doesn’t change with time.

Researchers have tried using proxy caching to
deliver streaming media. Several partial caching
approaches1-5 have been developed, because full-
object caching isn’t generally feasible. Nevertheless,
these approaches can’t really adapt to the dynami-
cally changing popularity of objects and user access
patterns. For example, when an object is popular,
most or all of its data should be cached. When the
object is unpopular, a small amount or none of its
data should be cached. Furthermore, existing
schemes have paid little attention to the client
demand for a continuous streaming service.

To address these concerns, we studied how to
leverage existing proxy resources (including par-
tial caching strategies) to efficiently deliver media
content over the Internet. We proposed, evalu-
ated, and implemented the following techniques
to resolve existing problems:

❚ Adaptive and lazy segmentation. We use this to
cache partial streaming media objects at the
proxy and maximize cache usage.

❚ Active prefetching. We use this to actively
prefetch uncached segments that a client is
likely to access, thus providing the client with
continuous streaming delivery.

Partial caching and its limitations
As we previously mentioned, many partial-

caching approaches exist to divide media
objects into smaller units so that only partial

Segment-Based
Proxy Caching
for Internet
Streaming Media
Delivery

Songqing Chen
George Mason University

Haining Wang and Xiaodong Zhang
College of William and Mary

Bo Shen and Susie Wee
Hewlett-Packard LabsThe proliferation of

multimedia content
on the Internet poses
challenges to existing
content delivery
networks. While
proxy caching can
successfully deliver
traditional text-based
static objects, it faces
difficulty delivering
streaming media
objects because of
the objects’ sizes as
well as clients’
rigorous continuous
delivery demands.
We present two
techniques
supporting segment-
based proxy caching
of streaming media.
We evaluated these
techniques in
simulations and real
systems.

units are cached. Typically, we can consider one
of two partitioning directions.

The first direction is to divide objects in the
viewing time domain. We call these segment-
based proxy caching approaches. Typical meth-
ods include prefix caching,4 uniform
segmentation,6 and exponential segmentation.5

Prefix caching always caches the prefix of objects
to reduce the client-perceived startup latency
because the proxy can immediately serve the
cached prefix from the proxy to clients. The
proxy can retrieve the subsequent segments from
the origin server while serving the prefix. In pre-
fix caching, the prefix size plays a vital role in sys-
tem performance.7

In uniform segmentation, objects are seg-
mented according to a uniform length; while in
exponential segmentation, objects are segment-
ed in a way that the size of a succeeding segment
can double the size of its preceding one. These
segmentation-based strategies favor the caching
of beginning segments of media objects. Chae et
al.1 proposed a hybrid methodology in which
uniform lengths and exponentially increasing
lengths are both considered.

The second direction is to divide objects in the
quality domain. For example, the layered media
caching3 and the multiple-version caching
approaches8 belong to this category. Layered
caching requires that we encode the object in lay-
ers. The base layer is always cached, while the
proxy transfers the enhancement layer(s) if the
network bandwidth is available. Multiple-version
caching statically caches different versions of a
media object with different encoding rates. Each
version corresponds to a specific type of client
network connection. After detecting the connec-
tion type, the system streams the corresponding
version to the client. Caching different versions
is easy, but it consumes a lot of storage space.

These solutions improve the performance of
proxy caching streaming media. However, partial
caching along the quality domain requires vari-
ous types of infrastructure support that aren’t
widely available yet, such as the online reassem-
bly of multiple layers and the transport of multi-
ple layers to the client. Partial caching along the
time line doesn’t have such infrastructure
requirements. However, it can’t address the fol-
lowing concerns:

❚ Client accesses to media objects typically represent
a skewed pattern. Most accesses are for a few
popular objects, and it’s likely that clients will

watch these in their entirety or near entirety.
This is often true for movie content in a video-
on-demand (VoD) environment and training
videos in a corporate environment. A heuris-
tic segment-based caching strategy with a pre-
defined segment size—exponential or
uniform—always favorably caches the begin-
ning segments of media objects and doesn’t
account for the fact that most accesses are tar-
geted to a few popular objects.2

❚ The access characteristics of media objects are
dynamically changing. A media object’s popu-
larity and its most-watched portions may vary
with time. For instance, some objects may be
popular only for an initial time period when
most users access the entire object. In this sce-
nario, using a fixed strategy of caching the
first several segments may not work. The rea-
sons are as follows: When the object is popu-
lar, it may overload the network because the
system needs to retrieve the remaining seg-
ments for each client access. On the other
hand, as the object’s popularity diminishes,
caching the initial segments may waste proxy
resources. The lack of adaptability in the exist-
ing proxy-caching schemes might render
proxy caching ineffective.

❚ The uniform or the exponential segmentation
methods always use the fixed base segment size to
segment all the objects through the proxy.
However, a proxy is always exposed to objects
with a wide range of sizes from different cate-
gories, and the access characteristics to these
objects can be quite diverse. Without an adap-
tive scheme, an overestimate of the base seg-
ment length may cause an inefficient use of
cache space, while an underestimate may
induce increased management overhead.

Besides lacking adaptiveness to the dynamical-
ly changing popularity of objects and users’ access
patterns, existing schemes don’t address the
client’s demand for a continuous streaming ser-
vice. They can’t always guarantee a continuous
delivery because the to-be-viewed segments may
not be in the proxy when clients access them. The
problem exists for all segment-based proxy
caching approaches, and the fetching delay results
in proxy jitter. The aggregation of proxy jitter may
result in playback jitter at the client side. As we
previously noted, playback jitter is annoying and
can potentially drive the client away from access-

60

IE
EE

 M
ul

ti
M

ed
ia

ing the content. So it’s important for a proxy to
fetch and relay the demanded segments to the
client in real time and without delay.

The key to removing the proxy jitter is to
prefetch the uncached segments in a timely man-
ner. Some previous work has studied the
prefetching of multimedia objects.3,9,10 For lay-
ered-encoded objects,3 the prefetching of
uncached layered video is conducted by main-
taining a prefetching window of the cached
stream. The proxy identifies and prefetches all
the missing data within the prefetching win-
dow—whose length is fixed—before its playback
time. In Khan and Tao,10 the prefetching preloads
a certain amount of data to take advantage of the
caching power. In Chesire et al.,11 a proactive
prefetching method uses any partially fetched
data from a connection abortion to improve the
network bandwidth usage.

To the best of our knowledge, so far little
research exists on prefetching methods in the
context of segment-based proxy caching.
Particularly, no previous prefetching methods
considered the conflicting interests that we note
in delivering streaming media objects.

On the one hand, the late prefetching of
uncached segments causes proxy jitter; this clear-
ly suggests that the proxy should prefetch the
uncached segments as early as possible. On the
other hand, aggressively prefetching uncached
segments significantly increases the buffer space
needed for temporarily storing the prefetched
data and the network bandwidth needed for
transferring this data.

Also, it’s quite possible that a client may abort
an ongoing session before accessing the
prefetched segments. The resource efficiency sug-
gests that the proxy should prefetch the
uncached segments as late as possible. Therefore,
an effective media streaming proxy should be
able to decide when to prefetch which uncached
segments, subject to minimizing the proxy jitter
with low resource overhead.

Adaptive and lazy segmentation
We first propose an adaptive and lazy

segmentation-based caching strategy, which
responsively adapts to user access behaviors and
lazily segments objects as late as possible.

The scheme consists of an aggressive admis-
sion policy, a lazy segmentation strategy, and a
two-phase iterative replacement policy. As Figure
1 shows, because of our aggressive admission pol-
icy, each object is fully cached when our system

accesses it the first time. The system keeps the
fully cached object in the proxy until the replace-
ment policy chooses it as an eviction victim.

During this process, we can use the lazy seg-
mentation strategy to segment the object and
evict some segments according to the first phase
of the two-phase iterative replacement policy.
From then on, our aggressive admission and
replacement policies can admit and replace
object segments as needed.

Aggressive admission policy
Our system activates cache admission each

time the object is accessed. The system fully
admits the object if the object is accessed for the
first time (see Figure 1a). The system fully caches
the object for two reasons: it’s unknown whether
the object will be popular, and if it is popular, the
portion that clients will access most is unknown.

After the first access, the system keeps track of

61

July–Sep
tem

b
er 2005

(a)

(b)

(c)

(d)

(f)

(e)

Figure 1. Adaptive and lazy segmentation.

(a) Caching the entire object the first time a client

accesses it. (b) Calculating the average access

length when the server selects it as a victim.

(c) Segmenting the object uniformly. (d) Replacing

segments (other than the first two). (e) Admitting

a segment when the average client access length

increases. (f) Evicting a segment when the average

client access length decreases.

the average client access length by recording nec-
essary information. Later, the system can seg-
ment the object with respect to the user access
pattern. From that point, the admission policy
works in segments. When the average users’
access length changes, the admission policy
adapts to the dynamics of user access patterns
correspondingly, which we show in Figure 1e.

Lazy segmentation strategy
In current segmentation strategies, the system

performs the segmentation with a predetermined
base segment length before accessing an object
for the first time, such as the exponential seg-
mentation strategy. By contrast, our adaptive and
lazy segmentation strategy segments the object
as late as possible: when the system selects a vic-
tim to make room for some incoming objects, it
waits before segmenting the selected victim.

As Figure 1b shows, the proxy uses the aver-
age client access length computed at that
moment as the unit for segmentation—that is,
the base segment length of this object. The sys-
tem then segments the whole object uniformly
according to its base segment length, as we illus-
trate in Figure 1c. Because the lazy segmentation
strategy delays the segmentation process as late
as possible, the proxy can gather a sufficient
amount of accessing statistics to properly seg-
ment each media object. Moreover, the proxy
can adaptively set different base segment lengths
for different media objects according to online
users’ access behaviors.

Two-phase iterative replacement policy
Since the proxy has a limited cache space, the

replacement is inevitable. Figures 1d and 1f show
two phases of the replacement policy. The
amount of replaced data at these two phases is
different. A crucial aspect of the replacement pol-
icy lies in selecting a victim. The more appropri-
ate the selected victim, the higher benefit the
caching system gains. Instead of adopting a least
recently used (LRU) algorithm to select the least
recently used object as a victim (exponential seg-
mentation uses this approach), our system con-
siders the following factors:

❚ average number of accesses;

❚ average duration of accesses;

❚ length of the cached data, in terms of storage
costs; and

❚ predicted probability of future accesses.

We can track the first three items based on client
accesses, whereas the last one depends on pre-
dicting future accesses. However, the last one
plays a more important role, because it predicts
the trend of the object’s popularity variations.

We take the following approach to come up
with the prediction: When the object is first
accessed, we denote the time as T1. The current
time is Tc, and the access time of the last (or
most recent) access is Tr. The number of access-
es so far is n.

Thus, the system computes the Tc − Tr, the time
interval between now and the most recent access,
and (Tc − T1)/n, the average time interval for an
access occurring in the past. If Tc − Tr ≥ (Tc − T1)/n,
the possibility that a new request arrives soon for
this object is small. Otherwise, it’s likely that a
new request may arrive in the near future.

In our utility function, the utility value of an
object is thus proportional to the average num-
ber of accesses, average duration of accesses, and
predicted probability of future accesses. It’s
inversely proportional to the length of the
cached data.

According to this utility function, the system
always chooses the object with the smallest util-
ity value as the victim. If the selected object turns
out to be entirely cached, the system activates
the first phase of the replacement policy. After
completing the segmentation, the system keeps
the first two segments in the cache, while it evicts
all other segments. Figure 1d depicts this step.

The system keeps the first two segments
because caching these two segments covers most
client accesses that follow a normal distribution.
If the selected victim is already partially cached,
then the system activates the second phase of the
replacement policy. As Figure 1f shows, it always
evicts the last cached segment of the selected vic-
tim, and the system iteratively performs replace-
ment until it finds sufficient cache space.

The design of the two-phase iterative replace-
ment policy reduces the chance of making a
wrong replacement decision, and gives a fair
chance to the replaced segments so that the
aggressive admission policy can cache them back
into the proxy if they become popular again.

Typical performance in simulations
To test our design’s performance, we used three

synthetic workloads and one actual workload
extracted from Hewlett-Packard (HP) Media Server

62

IE
EE

 M
ul

ti
M

ed
ia

logs. The general trends reflected on these work-
loads are similar but the detailed variations depend
on the individual workload. For brevity, we only
present the results based on the real workload.

The actual workload of HP Corporate Media
Solutions covers the period from 1–10 April 2001.
It includes access to a total of 403 objects, and the
unique object size amounts to 20 Gbytes. There
were 9,000 requests. Our trace analysis revealed
that 83 percent of the requests only view the
objects for less than 10 minutes, and 56 percent
only view the objects for less than 10 percent of
their content. Only about 10 percent view the
whole object. For synthetic workloads, we assume
Poisson distribution for request interarrivals and
Zipf-like distribution for object popularities.

Figures 2 and 3 show the performance results
of the actual workload. We define the byte–hit
ratio as the amount of data delivered from the
proxy, normalized by the total amount of data
demanded by clients. In these figures, lazy seg-
mentation represents our proposed strategy. For
the uniform segmentation strategy, we used dif-
ferent segment sizes, and their results vary to a
certain extent. We can see that lazy segmentation
always achieves the best performance in terms of
the byte–hit ratio, leading to the highest network
traffic reduction. This proves the effectiveness of
our proposed approach’s adaptability.

When the cache size is in the range of 20 to 60
percent of the total object size, the performance
improvement is much higher than when the
cache size is larger than 70 percent of the total
object size. The reason for this is because when the
cache size reaches 70 percent, the cache space is
large enough to accommodate the beginning por-
tions and most popular segments in the workload.
Thus, the byte–hit ratio improvement is trivial.

However, when the available cache isn’t large
enough, our proposed algorithm caches the seg-
ments according to their popularities. Other
strategies try to cache the beginning segments of
each object first, regardless of whether the object
is popular, thus resulting in a lower cache per-
formance (see Figure 2).

We can see similar performance trends when
evaluating other synthetic workloads. Note that
we generated the synthetic workloads based on
previous research results on streaming media
workload characterizations,11 and our scheme’s
performance depends on the client access pat-
tern. For workloads with the same object popu-
larities and lengths, our scheme won’t achieve a
better performance.

Figure 3 shows the performance of different
schemes with respect to startup delay. We define
a delayed start–request ratio as the number of
requests with a start delay normalized by the
total number of requests. We can see that the
proposed adaptive–lazy scheme performs almost
as well as the best existing scheme.

Active prefetching
Streaming media systems provide streaming

services to clients. Thus, the performance met-
ric—such as the byte–hit ratio—is only important
for a proxy caching system from the system’s

63

July–Sep
tem

b
er 2005

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Cache size (percentage of the total object size)

By
te

–h
it

ra
tio

 (
%

)

Lazy segmentation
Exponential segmentation
Uniform segmentation (1 Kbyte)
Uniform segmentation (1 Mbyte)

Figure 2 . Byte–hit ratio of an actual workload.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Cache size (percentage of the total object size)

D
el

ay
ed

 s
ta

rt
 r

eq
ue

st
 r

at
io

 (
%

)

Lazy segmentation
Exponential segmentation
Uniform segmentation (1 Kbyte)
Uniform segmentation (1 Mbyte)

Figure 3. Delayed start–request ratio of an actual workload.

point of view, but it’s not the client’s ultimate
concern.

From the client’s viewpoint, quality streaming
is jitter free and has small startup latency. Thus,
the client always expects the streaming delivery
to start immediately after clicking the link. More
importantly, during the delivery, the client
expects playback to be continuous and without
interruption.

On the other hand, these client-side metrics
are tied to the system-side metrics, and better
system resource usage might not result in bet-
ter service quality to clients. For instance, if an
object’s beginning segments are already cached
in the proxy when the client accesses the
object, the client experiences no delay.
However, to cache all the beginning portions of
each object in the proxy requires a huge
amount of cache space and leaves less space for
caching popular segments, thus decreasing the
cache performance.

Similarly, if an object’s later segments aren’t
already cached when the client tries to access
them, the delay—resulting in playback jitter at
the client side—is inevitable if the network link
bandwidth from the proxy to the server is insuf-
ficient. But to cache an object’s later segments,
the system may need to evict the popular seg-
ments or the beginning segments of other

objects. An efficient system needs to
balance these goals in the design.

Therefore, to provide a continu-
ous streaming delivery to clients,
we propose an active prefetching
scheme. This scheme can prefetch
the uncached segments from the
content server in anticipation of
the client’s continuous access. In
comparison to passive fetching, in
which the fetching of uncached
segments happens when the client
misses it, our scheme’s active
prefetching proxy prefetches the
uncached segments that are likely
to be accessed based on the predic-
tion of future client accesses. In this
scheme, the system carefully bal-
ances the aforementioned conflict-
ing objectives so that it removes
proxy jitter without wasting net-
work and proxy resources.

To conduct our prefetching
scheme, we made the following
assumptions:

❚ Streaming is faster than data transfer.
Otherwise, prefetching is less critical.

❚ Media objects are already segmented and
accessed sequentially.

❚ Bandwidth of the proxy–client link is large
enough for the proxy to deliver the content to
a client smoothly.

❚ A media server delivers each object segment
in a unicast way.

Figure 4 shows a case study in prefetching.
Figure 4a illustrates that at the beginning the sys-
tem caches the first three object segments. When
a client accesses the object, Figure 4b shows one
possible scenario where the proxy prefetches the
fourth (uncached) segment after the client starts
to access the third one. This is one-segment-ahead
prefetching. In this scenario, to guarantee a con-
tinuous stream, the prefetching of the entire
fourth segment must be faster than the stream-
ing of the third segment plus the fourth segment.

If the system always performs the prefetching
one segment ahead, we can infer that the stream-
ing speed can’t be two times faster than the
prefetching delay. Otherwise, a continuous

64

IE
EE

 M
ul

ti
M

ed
ia

Streaming Prefetching Streaming Prefetching

Prefetching

(a)

(b)

Streaming Prefetching Streaming

(c)

≤

≤

Figure 4. Example for segment prefetching. (a) Caching three object segments. (b) Assume

that prefetching of the fourth segment begins as the client accesses the third segment.

Prefetching the fourth segment must be faster than the streaming of the rest of the third

segment plus the fourth segment. (c) The system needs to prefetch the segment earlier, when

the client accesses the first segment.

stream could be interrupted. So, if the time dif-
ference between the streaming speed and the
prefetching delay is large, the proxy has to
prefetch earlier. Figure 4c shows such a scenario,
in which the prefetching of the fourth segment
should occur when the client begins accessing the
first segment. Overall, based on the streaming
speed and prefetching delay, the system can accu-
rately calculate the starting point of the prefetch.

The prefetching delay depends on the avail-
able bandwidth between the proxy and the con-
tent server. We can periodically measure the
bandwidth using tools such as the Packet
CAPture (PCAP) library.

Correspondingly, we can figure out the tem-
porary storage requirement for prefetching.
Figure 5 shows how to precisely calculate the
storage size. Figure 5a indicates the time when
the system schedules prefetching to start, while
Figure 5b illustrates when the actual streaming of
the prefetched data begins. If the storage is a cir-
cular buffer, the amount of prefetched data
between time 1 and time 2 is the maximum
buffer size that the proxy needs. Therefore, if the
client terminates before viewing any prefetched
data, it maximizes the resource wastage. The
maximum wastage includes the network band-
width for data transferring and the storage size
for storing this amount of data.

Typical performance in real systems
We implemented the active prefetch system

in our system. To evaluate the performance of
active prefetch, we reproduced the three-month
actual workload. Among the reproduced work-
load, we extracted a 12-hour trace to run in the
deployed system. In the 12-hour workload, file
sizes ranged from 1 to 100 minutes, and the
object encoding rates include 28, 56, 112, 156,
180, and 256 Kbps. The unique object size
amounted to 8.826 Gbytes.

We conducted the experiments by putting the
system in a local network. Both the server and
the proxy used a 2-GHz Pentium III with 1 Gbyte
of memory. We show our experimental results in
Figure 6. Lazy-OnDemand represents the scheme
without the prefetching support, and Lazy-Active
represents the scheme with the active prefetch-
ing support.

The performance of Lazy-OnDemand in
Figure 6 shows that in this 12-hour trace, the
client access isn’t skewed. Meanwhile, the per-
formance gain by Lazy-Active with respect to
Lazy-OnDemand shows the importance of

prefetching. Clearly, with the assistance of active
prefetching, the system can deliver a much larg-
er percentage of uncached data to the clients in
time, resulting in a higher byte–hit ratio.

The higher byte–hit ratio implies that the sys-
tem can serve more data from the proxy to
clients in time, resulting in the client experienc-
ing less playback jitter. Active prefetching is effec-
tive because then the system uncaches segments
at the right time, and considers the streaming
rate and available bandwidth for prefetching.

Compared to other strategies, such as intuitive
sliding-window-based prefetching, the schedul-
ing for active prefetching needs some computa-
tional adjustments and the efficiency is much
higher. Note that the computation of the starting
point of prefetching only costs 0.1 percent of the
total CPU cycles at the proxy in our experiments.

On the other hand, compared with the simu-
lation results in Figure 2, the implemented sys-

65

July–Sep
tem

b
er 2005

Streaming Prefetching

PrefetchingStreaming

Time 1

Time 2

(a)

(b)

Figure 5. Storage size

needed for prefetching.

(a) A prefetching

scenario when the

prefetching starts.

(b) Prefetching

continues until the

system begins

streaming the

prefetched data.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Cache size (percentage of the total object size)

By
te

–h
it

ra
tio

 (
%

)

LazyOnDemand
LazyActive

Figure 6. Byte–hit ratio from a real system.

tem achieves fewer gains (although these gains
are more realistic). The reasons are a shorter trace
and some tradeoffs made in the implementation.
Because we extracted the real workload with the
12-hour trace from a workload containing a lot
of premature client terminations (where the
client only accesses a small portion of the object
before terminating it), the byte–hit ratio achieved
with the active prefetching quickly reaches its
plateau when the cache size is only a small per-
centage of its total object size.

Current efforts
Today a client can use a PDA, cell phone, or

other mobile device (instead of a high-end per-
sonal computer) to access the Internet. The wide
use of mobile devices further complicates
Internet streaming media delivery. Because of dif-
ferent screen sizes and color depths, a media
object that’s appropriate to a desktop computer
might not be appropriate to a PDA. The media
delivery network has to distinguish and adapt to
different client devices. In accordance with the
type of client device, networks will need to
choose an appropriate version for streaming.

Moreover, using mobile devices induces the
mobility problem. The media delivery network
must consider the mobility of clients, as the
client could frequently move from one place to
another. Thus, we’re trying to address the fol-
lowing questions:

❚ How can we convey different versions of a
media object to different client devices?

❚ How can we deal with clients’ mobility?

Proxy-enabled transcoding
To deal with the diversity of client browsing

devices, we’re considering proxy-enabled
transcoding as a solution. A proxy can cache the
transcoded media objects and deliver them for a
variety of future client references, which prevents
repeatedly transcoding operations.

The challenge here is that the media delivery
network must be able to distinguish and adapt
to different client devices. So far, two different
ways exist to perform continuous media
transcoding.

The first one is to store multiple versions of an
object in advance—called offline transcoding—in
which different versions for all kinds of devices
are well prepared before their streaming service
is available. The drawback, though, is huge stor-

age consumption for holding onto all of the
object versions.

The second solution is online transcoding,
where the network transcodes and delivers simul-
taneously. While the storage requirement is mod-
erate, this approach burns a large amount of CPU
cycles on the fly. Based on media segments, we’re
considering a hybrid solution that meets the
diversity requirement of media delivery with rea-
sonable overhead at a proxy server.

Proxy hand-off
Using mobile devices not only incurs the

aforementioned transcoding problem, but also
introduces the mobility problem. When a client
holding a PDA or cell phone reads video-based
news, the client might be on a train, or walking
on the street. Thus, the media delivery network
should provide a nomadic streaming service.

This implies one streaming proxy isn’t capa-
ble of providing a continuous streaming service,
given that each base station is associated with a
proxy. To cope with the client’s mobility, we
resort to cooperative proxy caching techniques
to reduce the number of expensive proxy hand-
offs. However, coordinating different proxies for
continuous media delivery is difficult because the
hand-off between the base stations and the client
can easily disrupt the continuity of streaming
media delivery.

Numerous problems exist related to proxy-
based streaming delivery, such as live streaming
or power consumption in mobile devices. It’s
more difficult to exploit current proxy caching
techniques for delivering live streams because the
real-time requirements of live stream delivery are
even more rigorous.

Conclusion
We’ve shown significant performance benefits

of our segment-based caching methods and their
effectiveness in practice for delivering streaming
media over the Internet. We’re currently making
efforts to further improve the quality of Internet
streaming in a cost-effective way. MM

Acknowledgments
Our research activities are supported by the

National Science Foundation and Hewlett-
Packard Labs.

References
1. Y. Chae et al., “Silo, Rainbow, and Caching Token:

Schemes for Scalable Fault Tolerant Stream

66

IE
EE

 M
ul

ti
M

ed
ia

Caching,” IEEE J. Selected Areas in Comm., vol. 20,

no. 7, 2002, pp. 1328-1344.

2. Z. Miao and A. Ortega, “Scalable Proxy Caching of

Video under Storage Constraints,” IEEE J. Selected

Areas in Comm., vol. 20, no. 7, 2002, pp. 1315-

1327.

3. R. Rejaie et al., “Multimedia Proxy Caching

Mechanism for Quality Adaptive Streaming

Applications in the Internet,” Proc. IEEE Conf.

Computer Comm. (Infocom), IEEE CS Press, 2000,

pp. 3-10.

4. S. Sen, J. Rexford, and D. Towsley, “Proxy Prefix

Caching for Multimedia Streams,” Proc. IEEE Conf.

Computer Comm. (Infocom), IEEE CS Press, 1999,

pp. 36-44.

5. K. Wu, P.S. Yu, and J. Wolf, “Segment-Based Proxy

Caching of Multimedia Streams,” Proc. World Wide

Web, ACM Press, 2001, pp. 36-44.

6. R. Rejaie et al., “Proxy Caching Mechanism for

Multimedia Playback Streams in the Internet,” Proc.

Int’l Web Caching Workshop, 1999.

7. B. Wang et al., “Proxy-Based Distribution of

Streaming Video over Unicast/Multicast

Connections,” tech. report UM-CS-2001-005, Univ.

of Massachusetts, 2001.

8. T. Kim and M.H. Ammar, “A Comparison of

Layering and Stream Replication Video Multicast

Schemes,” Proc. ACM Network and Operating

System Support for Digital Audio and Video (Nossdav

2001), ACM Press, 2001, pp. 63-72.

9. J. Jung, D. Lee, and K. Chon, “Proactive Web

Caching with Cumulative Prefetching for Large

Multimedia Data,” Proc. World Wide Web, Elsevier,

2000.

10. J.I. Khan and Q. Tao, “Partial Prefetch for Faster

Surfing in Composite Hypermedia,” Proc. 3rd

Usenix Symp. Internet Technologies and Systems,

2001, pp. 13-24.

11. M. Chesire et al., “Measurement and Analysis of a

Streaming Media Workload,” Proc. 3rd Usenix Symp.

Internet Technologies and Systems, 2001, pp. 1-12.

Songqing Chen is an assistant

professor in the Department of

Computer Science at George

Mason University. His research

interests include operating sys-

tems and distributed systems.

Chen received a PhD in computer science from the

College of William and Mary.

Haining Wang is an assistant

professor of computer science at

the College of William and Mary.

His research interests include net-

working, security, and distributed

computing. Wang received a PhD

in computer science and engineering from the

University of Michigan at Ann Arbor.

Xiaodong Zhang is the Lettie

Pate Evans Professor of Computer

Science and the department chair

at the College of William and

Mary. His research interests

include high-performance and

distributed systems. Zhang received a PhD in computer

science from the University of Colorado at Boulder. He

is an associate editor for IEEE Transactions on Computers

and IEEE Micro magazine.

Bo Shen is a senior research scientist with Hewlett-

Packard Laboratories. His research interests include

image/video processing and multimedia systems. Shen

received a PhD in computer science from Wayne State

University. He’s a senior member of the IEEE.

Susie Wee manages the

Multimedia Communications

and Networking Department at

Hewlett-Packard Laboratories and

is a consulting assistant professor

at Stanford University. Her

research interests include multimedia networking and

secure streaming. Wee received a PhD in electrical engi-

neering from the Massachusetts Institute of

Technology. She received the Technology Review’s Top

100 Young Investigators award in 2002 and is associate

editor of IEEE Transactions on Image Processing.

Readers may contact Songqing Chen at sqchen@

cs.gmu.edu.

For further information on this or any other computing

topic, please visit our Digital Library at http://www.

computer.org/publications/dlib.

67

July–Sep
tem

b
er 2005

