
Designs of High Quality Streaming Proxy Systems
Songqing Chen

Department of Computer Science
The College of William and Mary

Williamsburg, VA 23187, USA
sqchen@cs.wm.edu

Bo Shen, Susie Wee
Mobile and Media System Lab
Hewlett-Packard Laboratories
Palo Alto, CA 94304, USA
{boshen, swee}@hpl.hp.com

Xiaodong Zhang
Department of Computer Science
The College of William and Mary
Williamsburg, VA 23187, USA

zhang@cs.wm.edu

Abstract— Researchers often use segment-based proxy caching
strategies to deliver streaming media by partially caching media
objects. The existing strategies mainly consider increasing the
byte hit ratio and/or reducing the client perceived startup latency
(denoted by the metric delayed startup ratio). However, these
efforts do not guarantee continuous media delivery because the
to-be-viewed object segments may not be cached in the proxy
when they are demanded. The potential consequence is playback
jitter at the client side due to proxy delay in fetching the uncached
segments, which we call proxy jitter. Thus, for the best interests
of clients, a correct model for streaming proxy system design
should aim to minimize proxy jitter subject to reducing the
delayed startup ratio and increasing the byte hit ratio. However,
we have observed two major pairs of conflicting interests inherent
in this model: (1) one between improving the byte hit ratio and
reducing proxy jitter, and (2) the other between improving the
byte hit ratio and reducing the delayed startup ratio. In this
study, we first propose an active prefetching method for in-time
prefetching of uncached segments, which provides insights into
the first pair of conflicting interests. Second, we further improve
our lazy-segmentation scheme [1] which effectively addresses the
second pair of the conflicting interests. Finally, considering our
main objective of minimizing proxy jitter and optimizing the
two trade-offs, we propose a new streaming proxy system called
Hyper Proxy by effectively coordinating both prefetching and
segmentation techniques. Synthetic and real workloads are used
to systematically evaluate our system. The performance results
show that the Hyper Proxy system generates minimum proxy
jitter with a low delayed startup ratio and a small decrease of
byte hit ratio compared with existing schemes.

Keywords: System Design, Content Distribution, Streaming
Media, Proxy Caching

I. BACKGROUND AND MOTIVATION

Proxy caching has been widely used to cache static
(text/image) objects on the Internet so that subsequent re-
quests to the same objects can be served directly from the
proxy without contacting the server. However, the prolif-
eration of multimedia content makes caching challenging
(e.g. [2], [3], [4], [5], [6], [7], [8], [9]) due to the typical large
size and the low-latency and continuous streaming demand of
media objects.

To solve the problems caused by large-sized media objects,
researchers have developed a number of segment-based proxy
caching strategies (e.g. [1], [8], [10], [11], [12], [13], [14])
that cache partial segments of media objects instead of their
entirety. The existing segment-based proxy caching strategies
can be classified into the following two types based on their

performance objectives. The first type focuses on the reduction
of the client perceived startup latency (denoted by the delayed
startup ratio) by always giving a higher priority to caching the
beginning segments of media objects based on the observa-
tion [15], [16] that clients tend to watch the beginning portions.
For example, prefix caching [8], [17] breaks the media object
into prefix segment and suffix segment. The proxy caches
the prefix segments only so that the cache can preserve
prefix segments for more objects. The second type aims at
reducing network traffic and server workload by improving
proxy caching efficiency, namely the byte hit ratio. For ex-
ample, uniform segmentation strategy [10] considers caching
of fixed-sized segments of layer-encoded video objects. The
exponential segmentation strategy [12], [13] caches segments
of media objects in a way that the succeeding segment doubles
the size of the preceding one. The most recently proposed
adaptive-lazy segmentation strategy [1] can achieve the highest
byte hit ratio by delaying the object segmentation as late as
possible till some real time access information is collected
for this object. Some of these caching strategies also consider
the client perceived startup latency while emphasizing on the
proxy caching efficiency.

However, these segment-based proxy caching strategies can
not automatically ensure continuous streaming delivery to the
client. In a segment-based proxy caching system, since only
partial segments of objects are cached in the proxy, it is im-
portant for the proxy to fetch and relay the uncached segments
in time whenever necessary. A delayed fetch of the uncached
segments, which we call proxy jitter, causes the discontinuous
delivery of media content. Proxy jitter aggregates onto the
playback jitter at the client side. Once a playback starts, jitter
is not only annoying but can also potentially drive the user
away from accessing the content. Thus, for the best interests
of clients, the highest priority must be given to minimize proxy
jitter, and a correct model for media proxy cache design should
aim to minimize proxy jitter subject to reducing the delayed
startup ratio and increasing the byte hit ratio.

To reduce proxy jitter, one key is to develop prefetch-
ing schemes that can timely prefetch uncached segments.
Some early work has studied the prefetching of multimedia
objects (e.g. [10], [11], [18], [19]). For layer-encoded ob-
jects [10], [11], the prefetching of uncached layered video
is done by always maintaining a prefetching window of the
cached stream, and identifying and prefetching all the missing

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

data within the prefetching window with a fixed time period
(length of T) ahead of their playback time. In [19], the
proactive prefetch utilizes any partially fetched data due to
the connection abortion to improve the network bandwidth
utilization. In [18], prefetching is used to prefetch a certain
amount of data so that caching is feasible. Unfortunately, little
prefetching work has been found to efficiently solve the proxy
jitter problem in the context of segment-based proxy caching.

Improving the byte hit ratio increases proxy caching effi-
ciency, while reducing proxy jitter provides clients with a con-
tinuous streaming service. Unfortunately, these two objectives
conflict with each other. Furthermore, we have also observed
that improving the byte hit ratio conflicts with reducing the
delayed startup ratio [1]. These three conflicting objectives
form two pairs of trade-offs that complicate the design model.
No previous work has been found to address the balancing
of these trade-offs, which are uniquely important to streaming
media proxy systems.

In this study, we first propose an active prefetching method
for the in-time prefetching of uncached segments, which
not only gives an effective solution to address the proxy
jitter problem, but also provides insights into the trade-off
between improving the byte hit ratio and reducing proxy jitter.
Second, we further improve our lazy-segmentation scheme [1],
which effectively addresses the conflicting interests between
reducing startup latency and improving byte hit ratio. Finally,
considering our main objective of minimizing proxy jitter
and balancing the two trade-offs, we propose a new media
proxy caching system called Hyper Proxy by effectively co-
ordinating these two schemes. Hyper Proxy depends on the
HTTP channel for prefetching, while it interfaces with clients
in a RTP [20]/RTSP [21] streaming channel. Synthetic and
real workloads are used to systematically evaluate the system.
The performance results show that the Hyper Proxy system
generates minimum proxy jitter with a low delayed startup
ratio and a small decrease of byte hit ratio compared with
existing schemes. Our study also indicates that the standard
objective of improving the byte hit ratio commonly used in
proxy caching is not suitable to streaming media delivery.

The paper is organized as follows. We propose the active
prefetching method and provide insights into proxy jitter in
Section II. The second pair of conflicting interests is addressed
in Section III. The Hyper Proxy system is presented in
Section IV. We evaluate it in Section V. Some related work
is introduced in Section VI and we make concluding remarks
in Section VII.

II. ACTIVE PREFETCHING METHOD AND INSIGHTS INTO

PROXY JITTER

Prefetching schemes can reduce proxy jitter by fetching
uncached segments before they are accessed. However, an
efficient prefetching method should consider the following two
conflicting interests in the proxy. On one hand, proxy jitter
occurs if the prefetching of uncached segments is delayed. To
avoid jitter, the proxy should prefetch uncached segments as
early as possible. On the other hand, aggressive prefetching of

uncached segments requires extra network traffic and storage
space to temporarily store the prefetched data. Even worse,
the client session may terminate before the prefetched seg-
ments are accessed. This observation indicates that the proxy
should prefetch uncached segments as late as possible. This
contradiction requires that the proxy accurately decides when
to prefetch which uncached segment in a way to minimize
the proxy jitter as well as to minimize the resource usage
(network and storage). In this section, we propose a prefetch-
ing method, called active prefetching, which jointly considers
both objectives. Our subsequent analysis further provides the
insights into the conflicting interests between reducing proxy
jitter and improving the byte hit ratio.

A. Active Prefetching

The objective of our active prefetching is to determine when
to prefetch which uncached segment so that proxy jitter is
minimized with the minimum amount of resource requirement.
In our analysis, the following assumptions are made.

• The object has been segmented and is accessed sequen-
tially;

• The bandwidth of the proxy-client link is large enough
for the proxy to stream the content to the client smoothly;
and

• Each segment of the object can be fetched from the server
(either the origin server or a cooperative one) in a unicast
channel.

Since the prefetching is segment based, several related
notations used in the discussion are listed in Table I. Note

Bs the average encoding rate of a certain object segment
Bt the average network bandwidth of the proxy-server link

k the total number of segments of the object
n the number of cached segments of the object

Si the ith segment of the object
Li the length of the ith segment
Lb the base segment length of the object, Lb = L1

TABLE I

THE NOTATIONS FOR ACTIVE PREFETCHING

that each media object has its inherent encoding rate, which
is the playback rate. The rate is not a constant in variable bit
rate video, but we use Bs to denote its average value. Bt may
vary dynamically when different segments are accessed. The
proxy monitors Bt by keeping records of the data transmission
rate of the most recent prior session with the same server.
The transmission rate is calculated by dividing the amount of
transferred data by the transferring duration.

For a requested media object, assume there are n segments
cached in the proxy. The goal is to determine when to schedule
the prefetching of Sn+1 so that proxy jitter is avoided. We
denote the scheduling point as x.

Note that prefetching is not necessary when Bs ≤ Bt, so
the following discussion is based on Bs > Bt. At position
x, the length of the to-be-delivered data from the cache is∑i=n

i=1 Li − x. To avoid proxy jitter, the time that the proxy

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

takes to prefetch Sn+1 must not exceed the time that the proxy
takes to deliver the rest of the cached data and the fetched
data. That is, the following condition must be satisfied to avoid
proxy jitter:

∑i=n
i=1 Li − x + Ln+1

Bs
≥ Ln+1

Bt
.

Therefore, the latest prefetching scheduling point to avoid
proxy jitter is:

x =

i=n∑
i=1

Li − Ln+1 × (Bs − Bt)

Bt
. (1)

Refer back to our objectives, when x is selected as the
prefetching scheduling point, the buffer size required for the
prefetched data reaches minimum:

∑i=n
i=1 Li − x

Bs
× Bt. (2)

We now discuss the active prefetching method for two
typical segment-based caching schemes by first determining
the prefetching scheduling point and then discussing the
prefetching scheme and resource requirements.

1) Active Prefetching for Uniformly Segmented Object: For
a uniformly segmented object, Li = L1, based on Equation 1,
we have the latest scheduling points x as

x = (n + 1)L1 − Bs

Bt
L1. (3)

Equation 3 states that if n+1 ≥ Bs

Bt
, in-time prefetching of

Sn+1 is possible with the minimum required buffer size of

L1 × Bs − Bt

Bs
. (4)

However, Equation 3 also indicates that if n + 1 < Bs

Bt
,

in-time prefetching of Sn+1 is not possible! Therefore, when
n + 1 < Bs

Bt
and the segments between n + 1th and �Bs

Bt
�th

are demanded, proxy jitter is inevitable. To minimize future
proxy jitter under this situation, the proxy needs to prefetch
the �Bs

Bt
�th segment instead of the n + 1th segment.

For uniformly segmented objects, active prefetching works
as follows:

• n = 0: No segment is cached. Proxy jitter (in this
case, startup latency) is inevitable. To avoid future proxy
jitter, prefetching of the �Bs

Bt
�th segment is necessary. The

minimum buffer size required is (1 − Bt

Bs
)L1.

• n > 0 and n + 1 < Bs

Bt
: The proxy starts to prefetch

the �Bs

Bt
�th segment once the client starts to access the

object. If the segments between n + 1th and �Bs

Bt
− 1�th

are demanded, they are fetched on demand, and proxy
jitter is inevitable. The minimum buffer size required is
(1 − Bt

Bs
)L1.

• n > 0 and n + 1 ≥ Bs

Bt
: The prefetching of Sn+1 is

scheduled when the streaming reaches the position of
(n + 1 − Bs

Bt
)L1 of the first n cached segments. Proxy

jitter can be completely eliminated in this case, and the
minimum buffer size required is (1 − Bt

Bs
)L1.

2) Active Prefetching for Exponentially Segmented Object:
Through similar analysis, active prefetching for exponentially
segmented objects works as follows. Here, we assume Bs ≤
2Bt. When Bs ≥ 2Bt, no prefetching of the uncached
segments can be in time for the exponentially segmented
objects.

• n = 0: No segment is cached. Proxy jitter (in this case,
startup latency) is inevitable. To avoid future proxy jitter,
the prefetching of the �1 + log2(1

2−Bs
Bt

)�th segment is

necessary once the client starts to access the object. The
minimum buffer size required is L1 × Bt

2

2×Bs×Bt−Bs
2 .

• n > 0 and n ≤ log2(1

2−Bs
Bt

): The proxy starts to prefetch

the �1 + log2(1

2−Bs
Bt

)�th segment once the client starts

to access this object. Proxy jitter is inevitable when
the client accesses data of the n + 1th segment to the
�1 + log2(1

2−Bs
Bt

)�th segment. The minimum buffer size

is LiBt/Bs, where i = �1 + log2(1

2−Bs
Bt

)�.

• n > 0 and n > log2(1

2−Bs
Bt

): The prefetching of the

n + 1th segment starts when the client accesses to the
1− 2n

2n−1×(Bs

Bt
−1) portion of the first n cached segment.

The minimum buffer size is Ln+1 × Bt

Bs
and increases

exponentially for later segments.

Our proposed active prefetching method gives the optimal
prefetching scheduling point whenever possible with mini-
mum resource usage. However, under certain conditions the
prefetching of uncached segments may still be delayed as
our analysis showed, for both uniformly and exponentially
segmented objects. Furthermore, the analysis also finds that the
uniformly segmented object has advantages over the exponen-
tially segmented object: it offers enhanced capability for in-
time prefetching and the in-time prefetching can always begin
in a later stage.

B. Segment-based Proxy Caching and Proxy Jitter Free Strate-
gies

The previous section shows that active prefetching can not
always guarantee continuous media delivery, which is one
of the most important objectives for the streaming delivery.
However, for any caching strategy, if there are always enough
number of segments being cached in the proxy, prefetching of
the uncached segments can always be in time. To evaluate this
situation, we define prefetching length as follows:

• prefetching length: the minimum length of data that
must be cached in the proxy in order to guarantee the
continuous delivery when Bs > Bt. We denote m as the
number of segments with the aggregated length equal to
the prefetching length.

In-time prefetching must guarantee, in the worst case, that
the prefetching of the rest of segments is completed before the
delivery of the whole object, that is:

∑i=k
i=1 Li

Bs
≥

∑i=k
i=1 Li −

∑i=m
i=1 Li

Bt
. (5)

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

This indicates that the following condition must be satisfied
to guarantee in-time prefetching:

i=m∑
i=1

Li ≥
i=k∑
i=1

Li(1 − Bt

Bs
). (6)

• In the uniform segmentation scheme, since Lb is the base
segment length, the minimum m to satisfy the above
condition is:

m = � (1 − Bt

Bs
)
∑i=k

i=1 Li

Lb
�. (7)

• In the exponential-segmentation scheme, 1, since Li =
2Li−1, the minimum m to satisfy the condition is:

m = �log2(
(1 − Bt

Bs
)
∑i=k

i=1 Li

Lb
)� + 1. (8)

Interested readers are referred to [22] for more detailed deriva-
tion.

C. Trade-off Between Low Proxy Jitter and High Byte Hit
Ratio

We have calculated the minimum number of segments that
must always be cached in the proxy to guarantee a continuous
delivery of the streaming media object. Thus we can estimate
how much cache space we need to guarantee a proxy-jitter-free
delivery. However, in practice, we always have limited cache
space and can not cache all these segments for each object.

In an actual segment-based proxy caching system, popular
objects are always cached to reduce network traffic and server
load. If an object is popular enough, all its segments can
be cached in the proxy, possibly larger than its prefetching
length. If an object is not popular enough, some segments
may get evicted and only a few of its segments are cached.
The aggregated length of these segments may be less than
its prefetching length, which causes proxy jitter when the
uncached segments are demanded by the client. Given a higher
priority in reducing the proxy jitter, the proxy can choose to
evict segments of the object whose cached data length is larger
than its prefetching length. The released cache space can be
used to cache more segments of the object whose cached data
length is less than its prefetching length so that the prefetching
of its uncached segment can always be in time. It is possible
that segments of popular objects are evicted, which may reduce
the byte hit ratio. However, since there are more objects with
enough segments cached to avoid delayed prefetching, overall
proxy jitter is reduced. From this example, we can see that the
byte hit ratio can be traded for less proxy jitter.

The insights of the conflicting interests between improving
the byte hit ratio and reducing proxy jitter have motivated us to
revise the principle to design a highly effective proxy caching
system, aiming to minimize the proxy jitter. However, in the
design model, we have also observed that segment-based proxy
caching strategies always perform well in the byte hit ratio,

1To be consistent with the uniform segmentation case, the segments are
counted from 1 instead of 0 as in [12].

but perform not so well in the delayed startup ratio, or vice
versa. The evaluation of the adaptive-lazy segmentation based
scheme provides such a case study for this observation, as in
[1]. We must understand these insights before we can design
a correct system according to the design model. We formalize
the problem and mathematically analyze this trade-off in the
next section.

III. BYTE HIT RATIO VS. DELAYED STARTUP RATIO

The observation in [1] leads us to conjecture that there are
some conflicting interests between the objectives of improving
the byte hit ratio and reducing the delayed startup ratio. In
this section, we present our understanding and a method to
effectively balance the trade-off.

A. Analytical Model

To formalize the problem, we build a general analytical
model for the segment-based caching system. We assume:
(1) The popularity of the objects follows a Zipf-like dis-
tribution, which models the probability set pi, where pi =

fi∑i=N

i=1
fi

, (i =1, 2, ...,N, N is the total number of objects) and

fi = 1
iθ , where θ > 0 and is the skew factor;

(2) The request arrival interval process follows Poisson distri-
bution with a mean arrival rate λ. The request arrival interval
process to each individual object is independently sampled
from the aggregate arrival interval process based on probability
set pi, where

∑i=n
i=1 pi = 1;

(3) The clients view the requested objects completely. This is
to simplify the analysis and does not affect the conclusion.

These assumptions indicate that the mean arrival rate for
each object is:

λi = λpi = λ ×
1
iθ∑i=N

i=1
1
iθ

. (9)

To evaluate the delayed startup ratio, we define the follow-
ing notation:

• startup length: the length of the beginning part of an
object. If this portion of the object is cached, no startup
delay is perceived by clients when the object is accessed.
We use α to denote the percentage of the startup length
with respect to the full object length. 2.

Other notations used in the discussion are listed below:

• Li
obj : the full length of the ith object, where 1 ≤ i ≤ N ;

• Lave
obj : the average length of the objects;

• C: the total cache size;
• β: the percentage of total cache space reserved for the

caching of first α percent (startup length) of objects;
• Cprefix: the size of reserved cache space for caching

startup length of objects. Cprefix = βC;
• Crest: the size of the cache space other than the space

reserved for caching of startup length of objects. Crest =
C − Cprefix = (1 − β)C.

2Note that instead of caching the first α percent, caching a constant length
of the prefix segment for each object leads to the same results.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

Consider the ideal case that the cache space is always
allocated to cache the most popular objects. If we sort the
objects according to their decreasing popularities, the ideal
case indicates that Cprefix is used to cache the segments
(within startup length) of the first t most popular objects. That
is,

i=t∑
i=1

αLi
obj ≤ Cprefix and

i=t+1∑
i=1

αLi
obj > Cprefix.

Similarly, the ideal case indicates that Crest is used to cache
the segments (beyond startup length) of the first q most popular
objects. That is,

i=q∑
i=1

(1 − α)Li
obj ≤ Crest and

i=q+1∑
i=1

(1 − α)Li
obj > Crest.

Under this ideal circumstance, the delayed startup ratio can
be expressed as:

Pdelay =
∑i=N

i=t+1 λi∑i=N
i=1 λi

. (10)

Denoting U = C
Lave

obj
, we can derive that t = βU/α. The

upper bound of the delayed startup ratio is obtained when
θ �= 1:

PMax
delay =

N1−θ − (U × β
α)1−θ

(N + 1)1−θ − 1
. (11)

Now we derive an upper bound of the byte hit ratio in the
ideal case. Without considering the misses when the object is
accessed for the first time, the corresponding byte hit ratio is
expressed as:

Phit = 1 −
∑i=N

i=t+1
αλiL

i
obj +

∑i=N

i=q+1
(1 − α)λiL

i
obj∑i=N

i=1
λiLi

obj

. (12)

Again, given t = βU/α, the upper bound of the byte hit
ratio is obtained when θ �= 1:

PMax
hit = 1 − (

(N + 1)1−θ − α
(

β
α × U + 1

)1−θ

N1−θ − θ

−
(1 − α)

(
1−β
1−α × U + 1

)1−θ

N1−θ − θ
). (13)

B. Analytical Results

To give an intuition into the dynamic nature of the two
performance objectives, an example is given in Figure 1 based
on Equation 11 and Equation 13. Here, given a total of 10000
original objects, we assume a cache size 20% of the total
object size. Thus, U is set as 2000 object units. Furthermore,
θ and α are set as 0.47 and 5%, respectively. As shown in the
figure, the decrease of the byte hit ratio is much slower than
the decrease of the delayed startup ratio when β increases.
Therefore, we can use a small decrease of byte hit ratio to
trade for a significantly large reduction in the delayed startup
ratio.

Mathematically, the partial derivative of PMax
delay with respec-

tive to β yields |∆Delay| which denotes the change of the

0 5 10 15 20 25
0

20

40

60

80

100
U=2000,θ=0.47,α=5%

β (%)

B
y
te

 H
it
 R

a
ti
o

 o
r

D
e

la
y
e

d
 S

ta
rt

u
p

 R
a

ti
o

 (
%

)

Delayed Startup Ratio
Byte Hit Ratio

Fig. 1. Byte Hit Ratio vs. Delayed Startup Ratio

delayed startup ratio. The partial derivative of PMax
hit with

respective to β yields |∆Hit| which denotes the change of
the byte hit ratio. Therefore, we have

|∆Delay|
|∆Hit| =

1

α
×

N1−θ−θ
(N+1)1−θ−1(

1−β
1−α

× α
β

+ α
Uβ

)−θ
+

(
α

Uβ
+ 1

)−θ
. (14)

It can be shown that |∆Delay|/|∆Hit| is always greater than
1 when α and β are less than 50%. For a long but complete
derivation, please refer to [14].

The above analysis provides us with a solid basis to restruc-
ture the adaptive-lazy segmentation strategy in [1] by giving
a higher priority to caching the startup length of objects in
the replacement policy. The objective is to effectively address
the conflicting interests between improving the byte hit ratio
and reducing the delayed startup ratio for the best quality of
media delivery. The analysis leads to the following improved
replacement policy design.

C. Improved Adaptive-Lazy Segmentation Strategy

In order to significantly reduce the startup latency with
a small decrease of the byte hit ratio as suggested by our
previous analysis result, a three-phase iterative replacement
policy is re-designed as follows.

Based on a utility function defined similarly as in [1], upon
an object admission, if there is not enough cache space, the
proxy selects the object with the smallest utility value at that
time as the victim, and the segment of this object is evicted
in one of the two phases as follows. (1) First Phase: If the
object is fully cached, the object is segmented by the lazy
segmentation method [1]. The first 2 segments are kept and
the remaining segments are evicted right after the segmentation
is completed. (2) Second Phase: If the object is partially
cached with more than 1 segment, the last cached segment
of this object is evicted. (3) Third Phase: If the victim has
only the first segment and is to-be-replaced, then its startup
length and the base segment length, Lb, is compared. If its
startup length is less than the base segment length, the startup

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

length is kept and the rest is replaced. Otherwise, it will be
totally replaced. The utility value of the object is updated after
each replacement and this process repeats iteratively until the
required space is found.

This restructured adaptive and lazy segmentation strategy
has shown its effectiveness in [14] by well balancing the two
performance objectives. Interested reader can refer to [14].

IV. THE HYPER PROXY SYSTEM

Coordinating the two schemes in previous sections, we
design a high quality media streaming proxy system, called
Hyper Proxy system. In our design, for any media object
accessed through the proxy, a data structure containing the
following items in Table II is created and maintained. This
data structure is called the access log of the object.

T1 the time instance the object is firstly accessed
Tr the last reference time of the object
Tc the current time instance

Lsum the sum of each access duration to the object
na the number of accesses to the object
Lb the length of the base segment
n the number of the cached segments of the object

FGadm the admission flag for admitting segments
Lthd the threshold length used in the replacement policy
Lavg the average access duration of an object

F the access frequency

TABLE II

ITEMS OF THE HYPER PROXY DATA STRUCTURE FOR EACH OBJECT

For each object, the Lthd is calculated after the segmen-
tation (see section IV-C). It is equal to max(startup length,
prefetching length, 2Lb) and its value varies due to the
dynamic nature of Bs and Bt. In the system, two object lists
(premium list and basic list) are maintained. The basic list
contains all the objects whose length of cached segments is
larger than its Lthd while the premium list contains all the
objects whose cached data length is equal to or less than
its Lthd. FGadm is the flag used to indicate the priority of
new segment admission. Items Lavg and F can be derived
from the items above. They are used as measurements of
access activities to each object. At time instance Tc, the access
frequency F is na/(Tr −T1), and the average access duration
Lavg is Lsum/na.

When an object is accessed for the first time, it is fully
cached and linked to the basic list according to the admission
policy. A fully cached object is kept in the cache until it is
chosen as an eviction victim according to the replacement
policy. At that time, the object is segmented and some of
its segments are evicted. The object is also transferred to the
premium list. Once the object is accessed again, the proxy uses
the active prefetching method to determine when to prefetch
which uncached segment. Then the segments of the object
are adaptively admitted by the admission policy or adaptively
replaced by the replacement policy.

We now present the detailed description of four major
modules in the Hyper Proxy caching system.

A. Priority-based Admission Policy

For any media object, cache admission is considered when-
ever the object is accessed.

• A requested object with no access log indicates that
the object is accessed for the first time. The object is
then cached in full regardless of the request’s accessing
duration. The replacement policy (see section IV-D) is
activated if there is not sufficient space. The victim is
selected from objects in the basic list, or premium list
when the basic list is empty. In the premium list, objects
with PRIORITY flag are searched if no object with NON-
PRIORITY flag is in premium list. The fully cached object
is linked to the basic list and an access log is created
for the object and the recording of the access history
begins. If an access log exists for the object (not the first
access to the object), but the log indicates that the object
is fully cached, the access log is updated. No other action
is necessary.

• If an access log exists for the object, and its FGadm

is PRIORITY (see section IV-B), the proxy considers
the admission of the next uncached segment or seg-
ments determined by its prefetching length. Whether the
segment(s) can be admitted or not depends on if the
replacement policy can find a victim or not. Victim
selection is limited to objects in the basic list or premium
list with NON-PRIORITY flag if basic list is empty. Note
that for this admission, the system does not need to
compare the caching utility value of this object with the
victim’s, but only to find a victim with the smallest utility
value.

• If an access log exists for the object, and its FGadm is
NON-PRIORITY (see section IV-B), the next uncached
segment is considered for admission only if Lavg ≥
(n + 1)Lb/Lthd. (Note Lavg is changing dynamically.)
The inequality indicates that the average access duration
is increasing to the extent that the cached n segments
can not cover most of the requests while a total of n + 1
segments can. Whether the next uncached segment is
eventually admitted or not depends on whether or not
the replacement policy can find a victim whose caching
utility is less than this object. The victim selection is
limited to the basic list only.

After the admission, the object will be transferred to the
basic list if it is in the premium list and its cached data length
is larger than its Lthd.

In summary, using the priority-based admission, the object
is fully admitted when it is accessed for the first time. Then
the admission of this object is considered segment by segment
with the higher priority given to the admissions that are
necessary for in-time prefetching.

B. Active Prefetching

After the object is segmented and some of its segments
are replaced (see section IV-D), the object becomes partially
cached. Then, upon each subsequent access, active prefetching

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

is activated to determine when to prefetch which segment
once the object is accessed according to the following various
conditions.

• n = 0: No segment is cached. The prefetching of the
�Bs

Bt
�th segment is considered. The FGadm of this object

is set to be PRIORITY.
• n > 0 and n + 1 < Bs

Bt
: The proxy starts to prefetch

the �Bs

Bt
�th segment once the client starts to access the

object. If the segments between n + 1th and �Bs

Bt
− 1�th

are demanded, proxy jitter is inevitable and the FGadm

of this object is set to be PRIORITY.
• n > 0 and n + 1 ≥ Bs

Bt
: The prefetching of n + 1th

segment starts when the client accesses to the position
of (n + 1 − Bs

Bt
)Lb of the first n cached segments. The

FGadm of this object is set to be NON-PRIORITY.

Note that Bs and Bt are sampled when each segment is
accessed. As a result, Lthd is also updated accordingly.

C. Lazy Segmentation Policy

The key of the lazy segmentation strategy is as follows.
Once there is no cache space available and replacement is
needed, the replacement policy calculates the caching utility
of each cached object (see section IV-D). Subsequently, the
object with the smallest utility value is chosen as the victim
if it is not active (no request is accessing it). If the victim
object turns out to be fully cached, the proxy segments the
object as follows. The average access duration Lavg at current
time instance is calculated. It is used as the length of the base
segment, that is, Lb = Lavg . Note that the value of Lb is fixed
once it is determined. The object is then segmented uniformly
according to Lb. After that, the first �Lthd

Lb
� segments are kept

in cache, while the rest are evicted (see section IV-D). The
number of cached segments, n, is updated in the access log of
the object accordingly. This lazy segmentation scheme allows
better determination of Lb.

D. Differentiated Replacement Policy

The replacement policy is used to re-collect cache space by
evicting selected victims. First of all, a utility function (same
as in [1]) is defined below to help the victim selection process
by identifying the least valuable object as the victim.

F × Lsum

na
× min(1,

Tr−T1
na

Tc−Tr
)

nLb
, (15)

In the above equation, the caching utility value is proportional
to
(1) F , which estimates the average number of future accesses;
(2) Lsum

na
, which estimates the average duration of future

access;

(3) min(1,
Tr−T1

na

Tc−Tr
), which estimates the possibility of future

accesses3;
and inversely proportional to
(4) nLb , which represents the disk space required.

Corresponding to the different situations of admission, when
there is not enough space, the replacement policy selects the
victim with the smallest utility value from different lists in
the order as designated in section IV-A. Then partially cached
data of the victim is evicted as follows.

• If the victim is fully cached in the basic list, the object is
segmented as described in section IV-C. The first �Lthd

Lb
�

segments are kept and the remaining segments are evicted
right after the segmentation is completed. The object is
removed from the basic list and linked to the premium
list.

• If the victim is partially cached in the basic list, the
last cached segment of this object is evicted. After the
eviction, the object will be linked to the premium list if
its cached data length is less than or equal to its Lthd.
Note this object can be selected as victim again if no
sufficient space is found in this round.

• If the victim is in the premium list, the last cached
segment of this object is evicted. If no data of this object
is cached, it is removed from the premium list.

The utility value of the object is updated after each replace-
ment and this process repeats iteratively until the required
space is found.

The design of the differentiated replacement policy gives a
higher priority for reducing proxy jitter, reduces the erroneous
decision of the replacement and gives fair chances to the
replaced segments so that they can be cached back into the
proxy again by the aggressive admission policy if they become
popular again.

Note that after an object is fully evicted, the system still
keeps its access log. If not, once the object is occasionally
accessed again, it should be fully cached again. Since media
objects tend to have diminishing popularities as the time goes
on, if the system caches the object in full again, this results
in an inefficient use of the cache space. Our design enhances
the resource utilization by avoiding this kind of situation. By
setting a large enough time-out threshold, the proxy deletes
the access logs of unpopular objects eventually.

V. PERFORMANCE EVALUATION

A. Workload Summary

To evaluate the performance of the Hyper Proxy system,
we conduct extensive simulations based on several workloads.
Both synthetic workloads and a real workload extracted from
enterprise media server logs are considered. We designed
two synthetic workloads. These workloads assume a Zipf-like
distribution with a skew factor θ for the popularity of the

3The system compares the Tc − Tr , the time interval between now and
the most recent access, and the Tr−T1

na
, the average time interval between

accesses occurring in the past. If Tc − Tr > Tr−T1
na

, the possibility that
a new request arrives soon for this object is small. Otherwise, it is highly
possible that a request is coming soon.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

20 40 60 80 100
0

20

40

60

80

100

Cache Size (Percentage of the Total Object Size)

J
it
te

r
B

y
te

 R
a

ti
o

 (
%

)
Proxy−Hit
Proxy−Startup−Hit
Proxy−Jitter−Startup−Hit

20 40 60 80 100
0

20

40

60

80

100

Cache Size (Percentage of the Total Object Size)
D

e
la

y
e
d
 S

ta
rt

u
p
 R

a
ti
o
 (

%
)

Proxy−Hit
Proxy−Startup−Hit
Proxy−Jitter−Startup−Hit

20 40 60 80 100
0

20

40

60

80

100

Cache Size (Percentage of the Total Object Size)

B
y
te

 H
it
 R

a
ti
o
 (

%
)

Proxy−Hit
Proxy−Startup−Hit
Proxy−Jitter−Startup−Hit

Fig. 2. WEB: (a) Proxy Jitter Bytes, (b) Delayed Startup Ratio, and (c) Byte Hit Ratio

media objects and request inter arrival follows the Poisson
distribution with a mean interval λ.

The first synthetic workload simulates accesses to media
object in the Web environment in which the length of the
video varies from short ones to longer ones. We use WEB
as the name of this workload. The second simulates the Web
accesses where clients accesses to objects are incomplete, that
is, a started session terminates before the full media object
is delivered. We simulate this behavior by designing a partial
viewing workload based on the WEB workload. We use PART
as its name. In this workload, 80% of the sessions terminate
before 20% of the object is delivered.

For the real workload named as REAL, we use logs from
HP Corporate Media Solutions, covering the period from April
1 through April 10, 2001. There is a total of 403 objects, and
the unique object size accounts to 20 GB. There is a total
of 9000 requests during this period. Our analysis shows that
about 83% of the requests only view the objects for less than
10 minutes and more than 56% of the requests only view less
than 10% of their requested objects. About 10% of the requests
view the whole objects.

Table III lists some characteristics of these workloads.

Workload Num of Num of Size λ θ Range Duration
Name Request Object (GB) (minute) (day)

WEB 15188 400 51 4 0.47 2-120 1
PART 15188 400 51 4 0.47 2-120 1
REAL 9000 403 20 - - 6 - 131 10

TABLE III

THE WORKLOAD SUMMARY

B. Performance Results

In the simulation experiments, the streaming rate of ac-
cessed objects is set randomly in the range from half to four
times that of the link capacity between the proxy and the
server. We use the jitter byte ratio to evaluate the quality of the
continuous streaming service provided by the proxy system.
It is defined as the amount of data that is not prefetched in
time by the proxy normalized by the total bytes demanded by

the streaming sessions. Delayed prefetching causes potential
playback jitter at the client side. A good proxy system should
have small jitter byte ratio. The second metric we use is the
delayed startup ratio, which is the number of requests that are
served with a startup latency normalized by the total number
of requests. The last metric we use is the byte hit ratio, which
is the amount of data delivered to the client from the proxy
cache normalized by the total bytes the clients demand.

We evaluate these three metrics in three designs of a
segment-based proxy caching system. The Proxy-Hit repre-
sents the adaptive-lazy segmentation based proxy caching
system [1] with active prefetching. This scheme aims at
improving the byte hit ratio. The Proxy-Startup-Hit represents
the improved adaptive-lazy segmentation based proxy caching
system with active prefetching. This scheme is designed to re-
duce the delayed startup ratio subjective to improving the byte
hit ratio. The Proxy-Jitter-Startup-Hit represents our proposed
Hyper Proxy system in this paper, aiming at minimizing proxy
jitter subjective to minimizing the delayed startup ratio while
maintaining a high byte hit ratio.

For the WEB workload, figure 2(a) shows that Hyper Proxy
always provides the best continuous streaming service to the
client while Proxy-Hit system which aims at increasing byte
hit ratio, performs worst. Specifically, when cache size is 20%
of total object size, Hyper Proxy reduces proxy jitter by more
than 50%.

Figure 2(b) shows that Hyper Proxy achieves the lowest
delayed startup ratio. Proxy-Startup-Hit achieves results close
to Hyper Proxy. This is expected as we have analyzed in the
[14].

Figure 2(c) shows Hyper Proxy achieves a relatively low
byte hit ratio, which indicates a smaller reduction of network
traffic. This is the price to pay for less proxy jitter and the
smaller delayed startup ratio as shown in Figure 2(a) and (b).

Similar results are observed for the PART workload as
shown in figure 3. When cache size is 20% of total object
size, Hyper Proxy reduces proxy jitter by 50% by giving up
less than 5 percentage points in the byte hit ratio. Figure 3(b)

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

20 40 60 80 100
0

20

40

60

80

100

Cache Size (Percentage of the Total Object Size)

J
it
te

r
B

y
te

 R
a

ti
o

 (
%

)
Proxy−Hit
Proxy−Startup−Hit
Proxy−Jitter−Startup−Hit

20 40 60 80 100
0

20

40

60

80

100

Cache Size (Percentage of the Total Object Size)
D

e
la

y
e
d
 S

ta
rt

u
p
 R

a
ti
o
 (

%
)

Proxy−Hit
Proxy−Startup−Hit
Proxy−Jitter−Startup−Hit

20 40 60 80 100
0

20

40

60

80

100

Cache Size (Percentage of the Total Object Size)

B
y
te

 H
it
 R

a
ti
o
 (

%
)

Proxy−Hit
Proxy−Startup−Hit
Proxy−Jitter−Startup−Hit

Fig. 3. PART: (a) Jitter Byte Ratio, (b) Delayed Startup Ratio, and (c) Byte Hit Ratio

20 40 60 80 100
0

20

40

60

80

100

Cache Size (Percentage of the Total Object Size)

J
it
te

r
B

y
te

 R
a
ti
o
 (

%
)

Proxy−Hit
Proxy−Startup−Hit
Proxy−Jitter−Startup−Hit

20 40 60 80 100
0

20

40

60

80

100

Cache Size (Percentage of the Total Object Size)

D
e
la

y
e
d
 S

ta
rt

u
p
 R

a
ti
o
 (

%
)

Proxy−Hit
Proxy−Startup−Hit
Proxy−Jitter−Startup−Hit

20 40 60 80 100
0

20

40

60

80

100

Cache Size (Percentage of the Total Object Size)

B
y
te

 H
it
 R

a
ti
o
 (

%
)

Proxy−Hit
Proxy−Startup−Hit
Proxy−Jitter−Startup−Hit

Fig. 4. REAL: (a) Jitter Byte Ratio, (b) Delayed Startup Ratio, and (c) Byte Hit Ratio

shows that Proxy-Startup-Hit achieves the best performance in
reducing the delayed startup ratio. The result is expected since
this scheme is specifically designed to prioritize reducing the
delayed startup ratio. On the other hand, since Hyper Proxy
proactively prevents proxy jitter by keeping more segments,
more cache space is used for segments that may not be
requested due to early termination. This in turn makes Hyper
Proxy perform not as well in reducing the delayed startup
ratio.

In a more realistic setup, we use the REAL workload to
evaluate performance. As shown in Figure 4, Hyper Proxy
performs best in reducing proxy jitter and delayed startup. The
performance degradation in byte hit ratio is also acceptable.

VI. RELATED WORK

Proxy caching of streaming media has also been studied in
[4], [6], [9], [13], [23], [24]. In video staging [9], a portion
of bits from the video frames whose size is larger than a
predetermined threshold is cut off and prefetched to the proxy
to reduce the bandwidth on the server proxy channel. So some
frames are cut off into two parts: one is cached on the proxy
and the other remains on the server. In [23], the algorithm

attempts to select groups of consecutive frames by the selective
caching algorithm, while in [5], the algorithm may select
groups of non-consecutive frames for caching in the proxy.
The caching problem for the layer-encoded video is studied
in [4]. The cache replacement of streaming media is studied
in the [6], [24].

VII. CONCLUSION

Proxy has been successfully used for caching text-based
content. Using proxy to support media delivery is cost-
effective, but challenging due to the nature of large media
sizes and the low-latency and continuous streaming demand.
Most existing studies target at improving the byte hit ratio that
is commonly used in standard proxy caching. However, this is
not the major concern for streaming media delivery, because
it does not guarantee the continuous media delivery when the
to-be-viewed object segments are not cached in the proxy,
which causes proxy jitter. Our contributions in this paper are
as follows:

• We have presented an optimization model to guide de-
signs of highly effective media proxy caches and ensure
a high delivery quality to the clients, which aims at

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

minimizing proxy jitter subject to reducing the startup
latency and increasing the byte hit ratio.

• We have provided insights into the model by analyzing
two pairs of conflicting interests and trade-offs inherent
in this model.

• Guided by our optimization model, we have presented
an active prefetching method to avoid proxy jitter with a
low resource cost. Based on our analysis, we have further
restructured the adaptive-lazy segmentation based proxy
caching strategy. Since this strategy always achieves the
highest byte hit ratio for delivering streaming media, we
are able to minimize proxy jitter and the delayed startup
ratio while still keeping a reasonably high byte hit ratio.

• Coordinating our prefetching and proxy caching schemes,
we have proposed to build a new media proxy caching
system called Hyper Proxy. This system addresses the
interests from the perspectives of both clients and Internet
resource management with a high priority given to the
clients. We have shown that the Hyper Proxy system
minimizes the amount of proxy jitter with a low delayed
startup ratio and acceptable low network traffic compared
with other existing caching schemes.

Currently we are deploying the Hyper Proxy system in a real
testing environment, and making a strong effort to push this
system as a model of next generation proxy caching for high
quality and low cost streaming media delivery.

Acknowledgments: This work is supported by NSF grants
CCR-0098055 and ACI-0129883, and a grant from Hewlett-
Packard Laboratories. We thank the anonymous referees for
their critical and constructive comments to our work. We
appreciate Bill Bynum reading the paper and making sugges-
tions.

REFERENCES

[1] S. Chen, B. Shen, S. Wee, and X. Zhang, “Adaptive and lazy segmenta-
tion based proxy caching for streaming media delivery,” in Proceedings
of ACM NOSSDAV, Monterey, CA, June 2003.

[2] E. Bommaiah, K. Guo, M. Hofmann, and S. Paul, “Design and imple-
mentation of a caching system for streaming media over the internet,”
in Proceedings of IEEE Real Time Technology and Applications Sym-
posium, Washington, DC, May 2000.

[3] M. Y. Chiu and K. H. Yeung, “Partial video sequence caching scheme
for vod systems with heteroeneous clients,” in Proceedings of the 13th
International Conference on Data Engineering, Birmingham, United
Kingdom, April 1997.

[4] J. Kangasharju, F. Hartanto, M. Reisslein, and K. W. Ross, “Distributing
layered encoded video through caches,” in Proceedings of IEEE Infor-
com, Anchorage, AK, April 2001.

[5] Z. Miao and A. Ortega, “Scalable proxy caching of video under storage
constraints,” in IEEE Journal on Selected Areas in Communications,
September 2002.

[6] M. Reisslein, F. Hartanto, and K. W. Ross, “Interactive video streaming
with proxy servers,” in Proceedings of the First International Workshop
on Intelligent Multimedia Computing and Networking, Atlantic City, NJ,
February 2000.

[7] R. Rejaie, M. Handely, and D. Estrin, “Quality adaptation for congestion
controlled video playback over the internet,” in Proceedings of ACM
SIGCOMM, Cambridge, MA, September 1999.

[8] S. Sen, J. Rexford, and D. Towsley, “Proxy prefix caching for multimedia
streams,” in Proceedings of IEEE INFOCOM, New York City, NY,
March 1999.

[9] Z. Zhang, Y. Wang, D. Du, and D. Su, “Video staging: A proxy-server
based approach to end-to-end video delivery over wide-area networks,”
in IEEE Transactions on Networking, vol. 8, Aug. 2000, pp. 429–442.

[10] R. Rejaie, M. Handley, H. Yu, and D. Estrin, “Proxy caching mechanism
for multimedia playback streams in the internet,” in Proceedings of
International Web Caching Workshop, San Diego, CA, March 1999.

[11] R. Rejaie, M. H. H. Yu, and D. Estrin, “Multimedia proxy caching
mechanism for quality adaptive streaming applications in the internet,”
in Proceedings of IEEE INFOCOM, Tel-Aviv, Israel, March 2000.

[12] K. Wu, P. S. Yu, and J. Wolf, “Segment-based proxy caching of
multimedia streams,” in Proceedings of WWW, Hongkong, China, May
2001.

[13] Y. Chae, K. Guo, M. Buddhikot, S. Suri, and E. Zegura, “Silo, rainbow,
and caching token: Schemes for scalable fault tolerant stream caching,”
in IEEE Journal on Selected Areas in Communications, September 2002.

[14] S. Chen, B. Shen, S. Wee, and X. Zhang, “Investigating performance
insights of segment-based proxy caching of streaming media strategies,”
in Proceedings of ACM/SPIE Conference on Multimedia Computing and
Networking, San Jose, CA, January 2004.

[15] L. Cherkasova and M. Gupta, “Characterizing locality, evolution, and life
span of accesses in enterprise media server workloads,” in Proceedings
of ACM NOSSDAV, Miami, FL, May 2002.

[16] M. Chesire, A. Wolman, G. Voelker, and H. Levy, “Measurement
and analysis of a streaming media workload,” in Proceedings of the
3rd USENIX Symposium on Internet Technologies and Systems, San
Francisco, CA, March 2001.

[17] B. Wang, S. Sen, M. Adler, and D. Towsley, “Proxy-based distribution
of streaming video over unicast/multicast connections,” in Proceedings
of IEEE INFOCOM, New York City, NY, June 2002.

[18] J. I. Khan and Q. Tao, “Partial prefetch for faster surfing in composite
hypermedia,” in Proceedings of the 3rd USENIX Symposium on Internet
Technologies and Systems, San Francisco, CA, March 2001.

[19] J. Jung, D. Lee, and K. Chon, “Proactive web caching with cumula-
tive prefetching for large multimedia data,” in Proceedings of WWW,
Amsterdam, Netherland, May 2000.

[20] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson,
“Rtp: A transport protocol for real-time applications,”
http://www.ietf.org/rfc/rfc1889.txt, January 1996.

[21] H. Schulzrinne, A. Rao, and R. Lanphier, “Real time streaming protocol
(rtsp),” http://www.ietf.org/rfc/rfc2326.txt, April 1998.

[22] S. Chen, B. Shen, S. Wee, and X. Zhang, “Streaming flow analyses for
prefetching in segment-based proxy caching strategies to improve media
delivery quality,” in Proceedings of the 8th International Workshop
on Web Content Caching and Distribution, Hawthorne, NY, September
2003.

[23] W. Ma and H. Du, “Reducing bandwidth requirement for dilivering
video over wide area networks with proxy server,” in Proceedings of
International Conferences on Multimeida and Expo., New York City,
NY, July 2000.

[24] R. Tewari, A. D. H. Vin, and D. Sitaram, “Resource-based caching
for web servers,” in Proceedings ACM/SPIE Conference on Multimeida
Computing and Networking, San Jose, CA, January 1998.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

	INFOCOM 2004
	Return to Previous View

