
Low-Cost and Reliable Mutual Anonymity
Protocols in Peer-to-Peer Networks

Li Xiao, Member, IEEE, Zhichen Xu, Member, IEEE, and Xiaodong Zhang, Senior Member, IEEE

Abstract—We present several protocols to achieve mutual communication anonymity between an information requester and a

provider in a P2P information-sharing environment, such that neither the requester nor the provider can identify each other, and no

other peers can identify the two communicating parties with certainty. Most existing solutions achieve mutual anonymity in pure

P2P systems without any trusted central controls. Compared with two such representative ones, our protocols improve efficiency in two

different ways. First, utilizing trusted third parties and aiming at both reliability and low-cost, we propose a group of mutual anonymity

protocols. We show that with some limited central support, our protocols can accomplish the goals of anonymity, efficiency, and

reliability. Second, we propose a mutual anonymity protocol which relies solely on self-organizations among peers without any trusted

central controls. In this protocol, the returning path can be shorter than the requesting path. This protocol does not need to broadcast

the requested file back to the requester so that the bandwidth is saved and efficiency is improved. In addition, this protocol does not

need special nodes to keep indices of sharing files, thus eliminating the index maintenance overhead and the potential for

inconsistency between index records and peer file contents. We have evaluated our techniques in a browser-sharing environment. We

show that the average increase in response time caused by our protocols is negligible, and these protocols show advantages over

existing protocols in a P2P system.

Index Terms—Peer-to-peer (P2P) systems, mutual anonymity, communication protocols, Internet systems, overlay networks.

æ

1 INTRODUCTION

ONE important problem in peer-to-peer (P2P) systems is
to enforce the trust of the data stored in the system and

the security of the peers. In a P2P system, each peer can play
three different roles: as a publisher to produce documents, as
a provider (or a responder) to host and deliver documents
upon requests, as a requester (or an initiator) to request
documents. In some systems, a provider and a publisher
can be the same peer for the same document. In some other
systems, a provider and a publisher are different peers for
the same document for various reasons. For example, a
publisher can distribute its documents to other provider
peers in order to resist censorship, and documents can also
be cached in some nonproducer peers.

Depending on the circumstances, applications and users

of a system may require different levels of anonymity. It is

desirable, in practice, that the identity of a publisher be

hidden to resist censorship (publisher anonymity), or that

either a responder or an initiator be anonymous (responder

or initiator anonymity), or that both responder and initiator

be anonymous (mutual anonymity). In the most stringent

version, achieving mutual anonymity requires that neither

the initiator nor the responder can identify each other, and

no other peers can identify the two communicating parties

with certainty.

P2P systems can be classified into two classes: pure P2P
systems, where peers share data without a centralized
coordination, and hybrid P2P, where some operations are
intentionally centralized, such as indexing of peers’ files.
Which form the system takes makes a difference. For
instance, in a hybrid P2P, whether the indexing servers can
be trusted or not has a critical implication on how
anonymity is enforced.

Our goal is to achieve mutual anonymity between the
initiator and responder with high efficiency. We consider
two cases. In the first case, we assume the existence of
trusted index servers (e.g., Napster [12] and browser-aware
proxies [29]). In our work, instead of having both the
initiator and responder each prepare their own covert path,
we rely on the index server to prepare a covert path for both
of them, reducing operations and communication overhead.
We have proposed two new techniques: center-directing,
where encryption cost is independent of the length of the
covert path, and label-switching that eliminates potentially
excessive messages in center-directing (Section 3).

In the second case, we assume a pure P2P setting. We
propose an anonymity protocol called shortcut-responding
that can greatly reduce communication overhead while
preserving mutual anonymity (Section 4).

We analyze our proposed protocols in Section 5. We
present our empirical experience of the techniques in a
browser-sharing environment in Section 6. We discuss how
to select the protocols based on their merits and limits from
different aspects in Section 7. We conclude in Section 8.

2 RELATED WORK AND MOTIVATION TO

OUR WORK

The related work includes existing protocols for the three
types of anonymity. We have paid special attention to the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 9, SEPTEMBER 2003 829

. L. Xiao is with the Department of Computer Science and Engineering,
Michigan State University, East Lansing, MI 48824.
E-mail: lxiao@cse.msu.edu.

. Z. Xu is with Hewlett-Packard Laboratories, Hewlett-Packard Company,
Palo Alto, CA 94304. E-mail: zhichen@hpl.hp.com.

. X. Zhang is with the Department of Computer Science, College of William
and Mary, Williamsburg, VA 23187. E-mail: zhang@cs.wm.edu.

Manuscript received 12 Aug. 2002; accepted 15 May 2003.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 118637.

1045-9219/03/$17.00 ß 2003 IEEE Published by the IEEE Computer Society



work on mutual anonymity, which has motivated us to
develop new protocols.

2.1 Publisher and Sender Anonymity

Publisher Anonymity: In order to protect a publisher peer,
many systems provide a censorship resistance facility. In
Freenet [3], each node in the response path may cache the
reply locally, which can supply further requests and
achieve publisher anonymity. Publius [26] splits the
symmetric key used to encrypt and decrypt a document
into n shares using Shamir secret sharing and stores the n
shares on various peers. Any k of the n peers must be
available to reproduce the key. Instead of splitting keys,
FreeHaven [4] and [18] split a document into n shares and
store them in multiple peers. Any k of the n peers must be
available to reproduce the document. Tangler [25] and
Dagster [23] make newly published documents depend on
previously published documents. A group of files can be
published together and named in a host-independent
manner.

Initiator/Responder Anonymity: Most existing anonym-
ity techniques are for client/server models, which only hide
the identities of the initiator (clients) from the responder
(the server), but not vice versa. Anonymizer [9] and Lucent
Personalized Web Assistant (LPWA) [8] act as an anon-
ymizing proxy between a user and a server to generate an
alias for a user, which does not reveal the true identity of
the user. Many systems achieve sender anonymity by
having messages go through a number of middle nodes to
form a covert path. In Mix [2] and Onion [24], the sender
part determines the covert path, and a message is encrypted
in a layered manner starting from the last stop of the path.
Instead of having the initiator select the path, Crowds [14]
forms a covert path in such a way that the next node is
randomly selected by its previous node. Hordes [21]
applies, that is, a similar technique used in Crowd, but it
uses multicast services to anonymously route the reply to
the initiator. Freedom [7] and Tarzan [6] are similar to
Onion Routing, but they are implemented at IP layer and
transport layer rather than the application layer.

2.2 Existing Mutual Anonymity Protocols:
Their Merits and Limits

Our study targets on mutual anonymity between an
initiator and a responder. There are two most related and
recent papers aiming at achieving mutual anonymity: Peer-
to-Peer Personal Privacy Protocol (P 5) [20] and Anon-
ymous Peer-to-Peer File Sharing (APFS) [17].

Sherwood et al. [20] first propose to use a global
broadcast channel to achieve mutual anonymity, where all
participants in the anonymous communication send fixed
length packets onto this channel at a fixed rate. Noise
packets can be used to maintain a fixed communication
rate. Besides enforcing both initiator and responder
anonymity, this protocol pays special attention to eliminate
the possibility of determining the communication linkabil-
ity between two specific peer nodes by providing equal and
regular broadcast activities among the entire peer group.
The broadcast nature of this framework can limit the size of
the communication group. To address this limit, the authors
further propose the P 5 scheme that creates a hierarchy of
broadcast channels to make the system scalable. Different
levels of the hierarchy provide different levels of anonymity

at the cost of communication bandwidth and reliability. As
authors stated in this paper, P 5 will not provide high
bandwidth efficiency. But, P 5 allows individual peer to
trade off anonymity degree and communication efficiency.

In the APFS system, a coordinator node is set to organize
P2P operations. Although this node is not considered as a
highly centralized and trusted server, it should be on
service all the time, and it plays an important role to
coordinate peers for file sharing. APFS allows new peers to
join and leave the system periodically by sending a message
to the coordinator. Willing peers begin anonymously
announcing themselves as servers to the coordinator. After
contacting the coordinator, peers anonymously and peri-
odically send lists of files using alias names to those servers.
An initiator peer starts to request documents by anon-
ymously querying the coordinator for available servers. The
coordinator responds with a list of current servers. A peer
then anonymously sends queries to some servers. Upon
requests, these servers will send back N matches to the
initiator peer. The initiator sends the match request to a
path where the tail node is the last member. The tail node
then forwards the request to the responder and returns the
reply back to the initiator. APFS uses Onion as the base to
build their protocol. There are two advantages for APFS.
First, all the communications in the system are mutual
anonymous. Even the coordinator does not know the
physical identities of the peers. Second, the anonymous
protocols are designed for a pure P2P, where the trusted
centralized servers may not be available.

However, there are also several disadvantages associated
with APFS solely relying on volunteering. First, the suitability
of a volunteering peer needs to be taken into account, which
can significantly affect the performance of P2P systems. To do
so, the coordinator needs to examine each volunteering peer
before possibly assigning a task, such as peer indexing. The
background checking of peers has to be done anonymously,
increasing the communication overhead. Second, the number
of servers can be dynamically changed. In the worst scenario,
no qualified peers are available for a period of time, causing
the P2P system to be in a weak condition. Third, since any
peer can be a server, a malicious node can easily become a
server. Although the peer identities are hidden from a server,
a server has the power to provide wrong indexing informa-
tion to mislead the initiators. Finally, since no trusted servers
are available, the anonymous communications have to be
highly complicated.

Both P 5 and APFS provide unique solutions to achieve
mutual anonymity in pure P2P systems without any trusted
central controls. We believe that limited trusted and
centralized services in decentralized distributed systems
are desirable and necessary. In practice, trusted central
parties exist and effectively function, such as proxies and
firewalls in Internet and distributed systems. Utilizing these
trusted parties and aiming at both reliability and low cost,
we propose a group of mutual anonymity protocols. We
show that, with some limited central support, our protocols
can accomplish the goals of anonymity, efficiency, and
reliability. We have also proposed a mutual anonymity
protocol solely relying on self-organizations among peers
without any trusted central controls. In this protocol, the
returning path can be shorter than the requesting path.
Comparing with P 5, this protocol does not need to

830 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 9, SEPTEMBER 2003



broadcast the requested file back to the requester so that the
bandwidth is saved and efficiency is improved. Comparing
with APFS, this protocol does not need special nodes to
keep indices of sharing files, thus eliminating the index
maintenance overhead and the potential problem of
inconsistency between index records and peer file contents.

3 ANONYMITY WITH TRUSTED THIRD PARTIES

We present our techniques for achieving mutual anonymity
of the initiator and responder with the help of trusted index
servers that keeps (but not publicize) the whereabouts of
the contents that are stored in the peers. Each peer sends an
index of files they are willing to share with others peers to
selected index servers periodically, or when the percentage
of updated files reaches to a certain threshold. We use I to
represent the initiator, R to represent the responder, S to
represent the index server that I contacts, and p i
(i ¼ 1; 2; . . . ) to represent a peer. For conciseness of the
presentation, we assume there is only one index server.
Section 3.4 discusses how multiple index servers will be
involved in order to scale a P2P system.

A simple solution is to have an index server act as an
anonymizing proxy hiding the identities of I and R from
each other and other peers. But, this index server may
become a bottleneck making the system not scalable.
Instead, we have the index server randomly select several
peers to act as a middle node. These middle nodes form a
covert path for the peer that possesses the content to send
the content to the peer that requests the content.

We describe one intuitive protocol using mix, and two
new protocols, center-directing and label-switching, which are
advanced alternatives. In the rest of the paper, we use X !
Y : M to represent X sending a message M to Y . We use KX

to denote the public key of X and fMgK to represent
encrypting the message M with the key K.

3.1 A Mix-Based Protocol: An Intuitive Solution

The detail of the mix-based protocol is shown below:
Step 1: The initiator sends a request to S. The request is

encrypted with S’s public key.

I ! S : ffile IDgKS:

Step 2: S finds out that the file is possessed by R, it selects
a list of peers p 0; p1; . . . ; pk at random, and builds a mix
with R as the first member of the path, I as the last member,
and with p i in the middle. We call this path mix. mix is of
the form ðp0; ðp1 . . . ðI; fakemixÞKpk . . .ÞKp0

ÞKR. The item
fakemix is introduced to confuse the last node in the mix,
pk, so that the format of a message passing through the
middle nodes are the same. So, pk cannot be sure that she is
the last stop. In addition, it generates a DES key K. It then
sends a message to R. The message includes K encrypted
with R’s public key, ffile IDg encrypted with the DES key
K, K encrypted with I’s public key, and the mix.

S ! R : fKgKR; ffile IDgK; fKgKI;mix:

Step 3: R obtains K using its private key to decrypt
fKgKR; it uses K to decrypt the portion of the message
ffile IDgK and gets the file f based on the file ID; it uses
its private key to peel mix to obtain p0, and also the rest of

the path, mix0, i.e., ðp1 . . . ðI; fakemixÞKpk . . .ÞKp0
. It en-

crypts the file f with K and sends a message to p0:

R! p0 : ffgK; fKgKI;mix
0:

Step 4: pi decrypts mix0 using its private key to obtain the
address of the next member in the mix paths, and this also
produces the rest of the path, mix00. It then sends a message
to piþ1. For pk, pkþ1 is I.

pi ! piþ1 : ffgK; fKgKI;mix
00:

Step 5: I obtains K using its private key and uses K to
decrypt the encrypted file.

We omitted the details on how the initiator knows that
the content is destined to it. This must be done efficiently.
There are three alternatives: 1) to have S also encrypt
file ID with the I’s public key and have R send this along
with the content, 2) to encrypt a magic number and the DES
key with I’s public key, or 3) to encrypt file ID in fakemix
using the I’s public key. In the remainder of the paper, we
assume that our protocols choose one of the above
alternatives.

The anonymizing path is selected by the trusted index
server, and the mix routers are selected among the peers.
Having the index server perform a path selection, this
scheme becomes less vulnerable to traffic analysis since the
peers’ public keys need only be exposed to the index server.
Otherwise, an eavesdropper who knows the peers’ public
keys may reconstruct the path by applying the public keys
in a reverse order. Furthermore, the index server has the
opportunity to balance the load of the peers that act as mix
routers. In this protocol, only the path is encrypted with an
expensive public key encryption, and the content is
encrypted with a less expensive DES key. This arrangement
makes the scheme efficient. This scheme can be made more
efficient by encrypting the mix path using secret keys that
are shared between the index server and each of the peers.
The content is encrypted by a key that is generated by the
index server and is only known to I and R. This hides the
content from anybody except I and R.

To defend against traffic analysis, S can have the
responder pad the contents, and the middle nodes can
encrypt the DES-encrypted message pairwise so that a
message appears different along the path. These enhance-
ments can be done to all our protocols. Fig. 1 shows an
example with two middle nodes.

3.2 Center-Directing

Alternatively, S can be used to reduce the number of
encryption/decryption operations. We describe two new
protocols: center-directing and label-switching.

Instead of passing the mix through the whole covert path
in the mix-based protocol, the center-directing protocol has the
index server send each node in the covert path its next hop
individually. The basic idea of the center-directing protocol
is as follows: The index server S selects several peers to
form a covert path. It directs the content through the path
by sending each middle node pi a pair < labelðpiÞ; piþ1 >
that is encrypted with pi’s public key. The labels can be
generated such that labelðpiþ1Þ ¼ flabelðpiÞgKpjiþ1

. The labels
uniquely identify a message, and piþ1 is the next member in
the covert path. When the peer pi sees a message from a

XIAO ET AL.: LOW-COST AND RELIABLE MUTUAL ANONYMITY PROTOCOLS IN PEER-TO-PEER NETWORKS 831



peer labeled “l,” it will change the label to flgKpjiþ1
and

forward the message to piþ1. Each pi keeps a hash table to

synchronize between the message from the index server

and the message from its previous hop. The pjiþ1
is a

random generated node number. Using the random node’s

public key to encrypt the request label each time, we can

defend against traffic analysis in the sense that 1) labels for

the same request appear differently along the covert path,

and 2) the randomly generated node has no correlation with

the nodes in the covert path. This protocol takes advantage

of the fact that encryption cost is much lower than

decryption cost in public key encryption. In contrast to

the mix-based scheme, this protocol uses messages to set up

the path. Although this incurs additional cost in hashing,

setting up the path can be done in parallel. The big

difference lies in the size of items being encrypted and

decrypted. The server needs to encrypt k < label; pi > pairs.

Each peer decrypts once to reveal the next hop and encrypts

once to produce a label for the next hop. Therefore, the sizes

of items that need to be encrypted by public key encryption

are independent of the path length.
The details of the protocol are shown below:
Step 1: The initiator I sends a request to S.

I ! S : ffile IDgKS:

Step 2: S first generates k; that is, the number of middle
nodes in the covert path. S then generates a unique label for
the request, n, and the first middle node in a covert path, p0. S
also generates a DES key K. In addition, it randomly
generates another node number used to convert the request
label in nodeR, p j0. S then sends the following message toR:

S ! R : fKgKR; fn; file ID; p0; pj0
gK; fKgKI:

Step 3: S generates the next stop of p0, p1, and another

random node number pj1 . It converts the request label n to

fngKpj0
. S then sends a message to node p0:

S ! p0 : fngKpj0
; fp1; pj1gKp0

:

Step 4: R obtains K using its private key to decrypt

fKgKR; it uses K to decrypt the portion of the message

ffile IDgK and gets the file f based on the file ID; it

converts the request label n to fngKpj0
. It encrypts the file f

with K and sends a message to p0:

R! p0 : fngKpj0
; ffgK; fKgKI:

Step 5: S generates the next stop of pi (i > 0), piþ1, and
another random node number pjiþ1

. It converts the request
label f. . . fngKpj0

. . .gKpjiÿ1
to f. . . fngKpj0

. . .gKpji
. For pk,

pkþ1 is I. S then sends a message to node pi:

S ! pi : f. . . fngKpj0
. . .gKpji

; fpiþ1; pjiþ1
gKpi :

Step 6: pi first matches the request label coming from
the index server and the request label coming from last
stop, f. . . fngKpj0

. . .gKpji
, so that it finds the next stop for

the request, piþ1. It then converts the request label
f. . . fngKpj0

. . .gKpji
to f. . . fngKpj0

. . .gKpjiþ1
, and sends a

message to piþ1. For pk, pkþ1 is I.

pi ! piþ1 : f. . . fngKpj0
. . .gKpjiþ1

; ffgK; fKgKI:

Step 7: I obtains K using its private key and uses K to
decrypt the encrypted file.

Fig. 2 illustrates this protocol with two middle nodes.
Each middle node uses an encryption operation to compute
the label for setting up the path instead of using a
decryption operation.

3.3 Label-Switching

The label-switching protocol further reduces the messaging
overhead of center-directing by putting more states on the
peers. Rather than sending the middle nodes labels and
next hop addresses on-the-fly, the index server produces a
path table beforehand. The table is produced such that each
peer p i, as a destination, is associated with several path
options. The path is of the form px ÿ py ÿ � � � pi ðLÞ. This
table is broken into subtables and distributed to peers
(encrypted with their public keys). The subtable of p j
consists of a list of pairs of the form ðL; nexthopÞ. For every
appearance of pj in the path table, . . .ÿ pj ÿ pw ÿ . . . ðLÞ,
the pair ðL; pwÞ is added to pj’s subtable.

Table 1 shows an example path table with four options
for each peer. Table 2 shows some subtables derived from
Table 1. In this example, each path option has two middle
nodes. The number of middle nodes is not fixed in our

832 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 9, SEPTEMBER 2003

Fig. 1. An example of the mix-based protocol.



design. It has already been shown that variable path-length
strategies perform better than fix-length strategies [11].
Assuming that the index server needs to prepare a path
from node 5 to 0, it can select among four paths from entry
for node 0: 2-3-0(L8), 4-6-0(L3), 3-4-0(L4), and 1-7-0(L1).
Suppose L4 is picked. The message will route to node 3, 4,
and, finally, to 0, with each peer using their own subtables.

The detail of the protocol is shown below:
Step 1: The initiator I sends a request to S.

I ! S : ffile IDgKS:

Step 2: S randomly selects a path in the entry for I in the

path table (say, p0 ÿ p1 . . . pk ÿ I), and a keyK. Assuming that

this path has a label l. It sends the following message to R:

S ! R : fl; p0gK; fKgKR; fKgKI:

Here, p0 is the first middle node in the path.
Step 3: R sends a message (the label) to p0:

R! p0 : l:

A persistent connection will be established between R and
p0 if the connection does not already exist. This connection
is bound to the label l. Each pi sends a message to piþ1 that is
obtained from the subtable of pi.

pi ! piþ1 : l:

A persistent connection is set between pi and piþ1.
Step 4: A message is sent along the persistent connections

from R to I.

Rÿ l! I : ffgK; fKgKI:

We use ÿl! to represent the persistent connection
identified by the label l.

Step 5: I obtains K using its private key and uses K to
decrypt the encrypted file.

This protocol does not need the synchronization asso-
ciated with center-directing protocol; it does not need as
much encryption/decryption operations compared with the
mix-based protocol: The only encryption and decryption
occurs during the subtable distribution. The overhead
comes from the spaces for storing the path table and
subtables and the time spending on table look-ups. Even
though the path table kept in the trusted index may be a
target of attack, multiple paths for a given source-destina-
tion pair adds one additional level of defense.

To simplify our presentation, we have assumed that we
use a single label for the entire path. This protocol can be
improved for stronger anonymity by introducing a pair of
labels (like the center-directing protocol) for each hop rather
than using a single label for the entire path, so that a label
appears differently along the covert path. One concern
about this protocol is that the static path table may decrease
the anonymity degree of label-switching protocol. This
concern can be addressed by updating the path table
periodically during a light network load period so that the
efficiency of label-switching will not be compromised.

3.4 Multiple Trusted Index Servers

In order to scale a P2P system to a large size, we will use
multiple trusted index servers. Since multiple proxy servers
are always available in an Internet region, this arrangement
can be easily set up in practice. Besides scalability, the
arrangement of multiple index servers will improve the
reliability of a P2P system. As a peer node joins a P2P system,

XIAO ET AL.: LOW-COST AND RELIABLE MUTUAL ANONYMITY PROTOCOLS IN PEER-TO-PEER NETWORKS 833

TABLE 2
Subtables

Fig. 2. An example of the center-directing protocol.

TABLE 1
Path Table



it will register itself in multiple index servers. Servers may be
down sometimes, but unlikely at the same time. Thus, the
indexing service is fault tolerant and much more reliable than
the system with a single index server. However, use of
multiple index servers also raises a load balancing issue.
Without proper scheduling and redirections of peer requests,
the workloads among the index servers can be unbalanced,
generating some hot spot servers and leaving some others
idle or lightly loaded.

We will adapt our own load sharing schemes [28] to
make resource allocations in the P2P system. Each index
server node maintains a current load index of its own and/
or a global load index file that contains load status
information of other index server nodes. The load status
can be the number of registered peers, the average number
of handled requests, storage for index of files to be shared,
and so on. There are two alternatives to balance the
workloads among the indexing servers when a peer wants
to join the system.

. Index-server-based selections. When a peer node joins
the system and asks for an indexing service, it first
randomly selects an index server. The load sharing
system may periodically collect and distribute the
load information among all index server nodes.
Based on the load information of all index server
nodes, the selected server will then suggest a list of
lightly loaded index servers, including or excluding
itself, for the peer node to be registered. One
advantage of this approach is reliability. When a
peer node leaves the system, it will inform one of the
index nodes. This node will carry this message when
it broadcasts its load status to other index server
nodes. Since all index servers are trusted, a selection
of most lightly loaded servers is guaranteed. One
disadvantage of this approach is that the global load
statuses have to be updated frequently among all the
index servers to keep each node informed.

. Peer-node-based selections. When a peer node joins the
system and asks for an indexing service, it first
broadcasts its request to all the index servers. Each
index server will then return its status back to the
peer node. The peer node will select a list of index
servers to be the hosts, which are hopefully the most
lightly loaded. When a peer node leaves the system,
it will broadcast this status change message to all the
index server nodes. In contrast to the alternative of
index-server-based selections, this alternative does
not require updating the load statuses globally
among the index servers because a peer node will
collect them each time it needs them. However,
reliability is not guaranteed because peer nodes are
not trusted, and they may not follow the load
balancing principle when they select index server
nodes.

There are also two alternatives when a peer node
requests a file. The first alternative is straight forward.
The peer node simply sends the request to index servers
one by one. When it reaches the index server that has the
index of the requested file, the file will be anonymously
delivered to the peer node from a path arranged by the
index server. The second approach involves two steps. The
peer node first broadcasts a query message to all the index

servers. The index servers that have the indices of the
requested file will inform the peer node about their service
availability. The peer node will then send the request to the
index server that has responded earliest, for an anonymous
file delivery. If the index server does not deliver the file for
some reason, the peer node will try to send the request to
other index servers that responded later than the first one.
Although broadcast is not involved in the first alternative,
the search is not as objective as the second alternative. In
general, we have no strong reasons favoring one approach
over another. A detailed study of alternatives of multiple
index servers is beyond the scope of this paper.

4 ANONYMITY IN PURE P2P

We now describe a technique to achieve mutual anonymity
in a pure P2P setting without any trusted third party. We
call it shortcut-responding protocol. In this protocol, a peer
along the requesting path can elect itself to receive
document on behalf of the initiator, thereby shortening
the returning path.

We describe the details below:
Step 1: The initiator I randomly selects a list of peers,

r0; r1; . . . ; rkr and builds a one-time replyblockwith I as the last

member of the path and with ri in the middle. The remailer

replyblock is of the form ðrkr; ðrkrÿ1 . . . ðr0; ðI; fakemixÞ
Kr0
ÞKr1

. . .ÞKrkrÞ. The I also generates a one-time pair of
private key and public key (KI) associating with the request.

Then, I randomly selects a peer, p0, sends it the message:

I ! p0 : fr; replyblock;KIg;

where r encodes the request.
Step 2: A peer pi can elect itself to act as a relay of the

returning path with a probability pv. We call pv the shortcut

probability. If pi has not elected itself, the request remains as

fr; replyblock;KIg. If pi has self-elected, the replyblock and

the request will be left in this node and the request format is

changed to fr; relay : pi;KIg. It then decides whether to

select piþ1 or broadcast the request with probability pb. If pi
has decided to broadcast the message, it will mark the

message to avoid broadcasting it multiple times. Therefore,
for pi, the requests it can receive is one of the two formats:

format1 : fr; replyblock;KIg or format2 : fr; relay : pi;KIg.
Step 3: If pi cannot find the content in local storage, it will

save the request. We call pi as R if pi finds the content in

local storage. R encrypts the found file content using KI .
If R has the request format of format1, R contacts the

first node in the replyblock, rkr, then sends the encrypted file

through the replyblock to I.

R
replyblock
������! I : r; ffgKI:

If R has the request with the format2, it selects a list of

peers o0; o1; . . . ; oko at random and builds an Onion with o0

as the first member of the path, relay as the last member,

and with oi in the middle. The Onion is of the form

ðo0; ðo1 . . . ðoko; ðrelay; fakemixÞKokoÞKokoÿ1
. . .ÞKo0

Þ. The R

first sends the encrypted file through the Onion to the

relay. If the request has not been discarded in the relay, the

relay then sends the encrypted file through the replyblock to

834 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 9, SEPTEMBER 2003



I. It discards the request so that duplicated responses can be

dropped.

R
Onion
����! relay

replyblock
������! I : r; ffgKI:

Step 4: I uses her private key to decrypt the encrypted

file.

Fig. 3 illustrates the protocol with an example. Peer p3

elects itself as a relay to receive the content on behalf of I.
The peer that possesses the content R sends the response to
p 3 through the Onion. The peer p3 further sends the
response to I through the replyblock.

This protocol has several advantages:

1. The response path can be shorter than the requesting
path because a peer who receives the request and
has the content will send the content through an
Onion and a replyblock, instead of going through the
requesting path to the initiator.

2. Duplicated responses can be discarded earlier.
3. The protocol does not need special nodes to keep

indices of sharing files like APFS, thus eliminating
the index maintenance overhead, and the potential
problem of inconsistency between index records and
peer file contents.

4. The protocol does not need to broadcast the
requested file like P 5 while it still keeps mutual
anonymity, so the efficiency is improved compared
with P 5.

5. The protocol uses replyblock that is also used in
FreeHaven [4], where the responder contacts directly
to the replyblock so that the first stop in the replyblock
knows who the responder is. In contrast, shortcut-
responding protocol has the responder send the
requested file to a relay through an Onion, and then
has the relay send the file back to the initiator
through the replyblock so that nobody in the
requesting path and responding path can guess the
identity of initiator and responder with certainty.

The initiator and responder also cannot guess each other
with certainty. Here is a related question to ask. If a node
with a request of format1 finds the requested file, it then

contacts the replyblock and sends back the file. In this case,
can the first stop in the replyblock guess the one who
contacts her is the responder? The answer is no because the
first stop in the replyblock cannot distinguish whether the
one who contacts her is the responder or a relay. Here is
another proposed alternative. Upon receiving a request
with format1, if a peer node realizes that the requested file
is locally allocated, she will not send the file through the
replyblock because the first stop in the replyblock can guess
that the one who has just been connected is the responder.
Instead of immediately providing the file, this peer
forwards the request again. But, this particular request is
marked by her so that she will accepts a later broadcast
request. As soon as she receives this request again from a
broadcast, she sends the file back through the Onoin and
replyblock.

5 ANALYSIS

We analyze the degree of anonymity each protocol can
achieve and compare their costs in terms of numbers of
encryption/decryption operations.

5.1 Security Analysis

We analyze how the different protocols can defend against
attacks from the various parties in the P2P networks.
Because the situations for the initiator and the responder are
symmetric, we consider only the initiator’s anonymity
degrees that is defined as probabilities that different parties
guess the identity of the initiator.

The responder: To the responder, all other peers have
the same likelihood of being the initiator. The probability
that the responder correctly guess the identity of the
initiator is 1

nÿ1 (n is the total number of peers). Instead of
making a random guess, the responder can bet that the peer
to whom she sends the message is the initiator. She is only
able to make the right bet if there is no middle node
selected. We assume that the probability of existing k

middle nodes is pðkÞ, and the probability for the responder
to make the right bet is pð0Þ.

A middle node: We consider two cases: In the first case,
the middle node makes a random guess because the only

XIAO ET AL.: LOW-COST AND RELIABLE MUTUAL ANONYMITY PROTOCOLS IN PEER-TO-PEER NETWORKS 835

Fig. 3. An example of the shortcut-responding protocol.



thing she is sure about is that she is not the initiator. In this
case, the probability to make a correct guess is 1

nÿ1. In the
second case, the middle node bets that the peer to which it
sends the message is the initiator. If there are k middle
nodes, only one of the k middle nodes will make a correct
bet. The probability for a middle node to make the correct
bet is 1

nÿ2

Pnÿ2
k¼1

pðkÞ
k , and pðkÞ is the probability of existing

k middle nodes.
In both cases, the probability will become smaller if

multiple peers communicate simultaneously. For the pro-
tocols with the index server, even if a middle node can
figure out who is communicating with whom, it still cannot
figure out the content of the communication.

A local eavesdropper: An eavesdropper is an entity that
can monitor all local traffic. The worst case is when there is
only one pair communicating (or the messages being
communicated are so distinctive such that the eavesdropper
is able to figure out who is communicating with whom).
Even in this worst case, the eavesdropper still cannot figure
out the content without the cooperation either from the
responder or initiator (for the protocols with the index
server) or one of the middle nodes (for the shortcut-
responding protocol).

Cooperating Peers: We consider cases where at least two
middle nodes cooperate, and the responder (or the initiator)
can be a collaborator. Two things make it hard for
cooperating nodes to guess the identity of the initiator:
1) the middlemen do not know for sure how many
communications are proceeding simultaneously, and 2) the
format of a message passing through the middle nodes is
the same. If k collaborating peers were to make a random
guess, the probability for them to make the right guess is 1

nÿk
because all but the k peers can be the initiator. If the
collaborating peers were to make a bet, there are two
extreme cases. One extreme case is that all the k peers are
continuously connected right after the initiator. The prob-
ability for them to make a right bet in this case is 1

d0
, where

d0 is the number of links to the initiator, which have
incoming messages simultaneously. The other extreme case
is that all noncollaborating peers are distributed among the
collaborating peers and the last peer is a collaborating peer.
The probability in this case is 1

d0

Q
p2C

1
di

, where C is the set of
noncollaborating peers, di is the number of links to the
noncollaborating peer i, which have incoming messages
simultaneously. Thus, the probability for k collaborating
peers to correctly bet the identity of the initiator is
inbetween the above probabilities in two extreme cases.

For all protocols, we can add the following operations to
increase the anonymity degree by introducing more

confusions. The protocols prepare multiple covert paths
for each request. The responder splits the requested file in
multiple parts. The parts of the file can be sent back to the
initiator through different covert paths. The different parts
of the file can be easily combined, based on sequence
numbers given by the responder. The Shamir algorithm [19]
can also be borrowed to split and combine files, with which
a file can be split into n parts and any k parts of them can
reproduce the original file.

5.2 Cost of the Different Protocols

In Table 3, we summarize and compare the costs of the
protocols in terms of numbers of encryption/decryption
operations.

For the center-directing protocol, the time spent on RSA
for setting up the anonymizing paths can be less than that of
mix-based protocol for two reasons. First, RSA encryption is
much faster than RSA decryption. Center-directing uses
more encryption than decryption operations. Second, some
steps are parallelizable. For the example in Fig. 2, Steps 3
and 4, and Steps 5 and 6. The messages transferred in Steps 3
and 5 are smaller than those in Steps 4 and 6, so Steps 3 and
5 may be finished before Steps 4 and 6.

6 PERFORMANCE EVALUATION

We estimate the additional overhead incurred in the
protocols for achieving mutual communication anonymity.
Our testbed is the browser-sharing environment where
clients share cached Web contents [31]. The clients are the
peers, and the proxy server is the index server. The proxy
maintains an index of all files that are possibly cached in its
clients’ browser caches. If a user request misses both in the
client’s local cache and in the proxy cache, the proxy will
search the index file in an attempt to find the file in another
client’s browser cache. If the file is found in a client’s cache,
the proxy can then instruct this browser to forward the file
to the requesting client. Our metric is the additional
response time for each request hit in a remote browser
cache compared with the response time of a request hit in
the local browser cache. The increment comes from two
major sources: time spent on transferring the requested data
from the remote cache to the local cache and time spent on
the protocols.1

We use trace-driven simulations and the Boeing traces [1]
for the evaluation. We selected two days’ traces (March 4 and

836 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 9, SEPTEMBER 2003

TABLE 3
Comparison of Protocols with k Middle Nodes in Each Covert Path

1. We have neglected the costs for building and looking up the hash
tables because the hashing cost is insignificant comparing with the other
costs.



March 5, 1999). There are 3,996 and 3,659 clients involved in
these two days’ traces, representing the total numbers of
requests of 219,951 and 184,476, respectively. The total
requested file sizes for the two traces are 7.54 and 7.00 Gbytes.

The results show that the average increment of the
response time caused by the protocols is trivial. We present
detailed performance results in the sections that follow.

6.1 Data Transfer Time through Peer Nodes

We estimate the data transfer time through peer nodes
based on a 100 Mbps Ethernet in our simulation. The bus
contention is handled as follows: If multiple clients request
bus service simultaneously, the bus will transfer documents
one by one in FIFO order distinguished by each request’s
arrival time. Our experiments based on the ping facility
show that the startup time of data communications among
the clients in our local area network is less than 0.01 second.
Setting 0.01 second as the network connection time, Table 4
presents the intranetwork data transfer time for each trace.
We can see that the amounts of data transfer times and the
bus contention times spent for communications among
clients on both traces are very low.

6.2 Overhead of DES and RSA

The source programs of DES and RSA are obtained from
[15]. The machine we used for the experiments is a PC with
a 1,000 MHz Pentium III CPU and 128 Mbytes of memory.
We used a large number of cached files in Microsoft’s IE5
browsers as the input files for the tests. We ran each test
10 times. The average of 10 measurements is used.

The running times of DES are proportional to the sizes of
the input files. Our measurement results show that DES’s
speed is 43.3 Mbps. The ratio of the RSA’s running time to
the input file size is not linear. RSA can encrypt/decrypt at
a speed of 543/45.4 Kbps with a 512-bit value, 384/
24.8 Kbps with a 768-bit value, and 275/14.6 Kbps with a
1024-bit value. It should be noted that the decryption speed
of RSA is 12-19 times slower than the encryption speed.
These measured results and the results in Tables 3 and 4 are
used in our simulations to calculate the overheads of DES
and RSA.

6.3 Additional Storage

The label-switching protocol requires additional storage to
keep the path table in the index server and subtables in the
peers. We allocate two bytes for each peer identification and
two bytes for each path identification. The two bytes can
represent up to 65,536 different identifications. For each
entry of destination described in Fig. 1, 26 bytes are
required in the index server. For the trace with 3,996 peers,
the total storage for the path table is 26*3996, which equals
to 101 Kbytes. There are a total of 3996*4 paths, and four

bytes are needed for each entry of a path in a subtable (see
Fig. 2). The storage needed for each peer is less than
3996*4*4, which equals to 62Kbytes. These storage require-
ments are sufficiently small for the path table and subtables
to be held in memory for quick accesses.

6.4 Comparisons of Protocols

We have shown the data transfer times and the costs of DES
and RSA operations. Here, we compare the accumulated
overheads of the protocols. Fig. 4 compares the total
increased response times and their breakdowns for the
protocols using the “Boeing March 4 trace” and “Boeing
March 5 trace,” with two and five clients acting as middle
nodes.

The performance results in Fig. 4 show that center-
directing and label-switching protocols generate very low
overhead, while the other two have relatively higher
overhead. The label-switching protocol shows its best
performance. It is not desirable if the response time of a
request hit in a remote browser cache is larger than that of
the same request to the server. This is not a concern because
our experiments show that the average response time
increment is less than 8.4 ms when we use five middle
nodes for both traces. The two protocols with lower
overhead only increase the response time to about 2.7 ms
when five middle nodes are used.

The time spent on RSA for the mix-based protocol
increases as the number of middle nodes increases. In
contrast, the times spent on DES and RSA for the center-
directing and label-switching protocols are independent of
the number of middle nodes. The number of RSA
operations of center-directing protocol is the highest (see
Table 3). However, most of them are low-cost encryption
operations for small messages (such as a request, labels,
node IDs) which are parallelizable. Both center-directing
and label-switching protocols show very good scalability.

Compared with the other three protocols, the time spent

on RSA is considerably high for the shortcut-responding

protocol. This is because we use a public key to encrypt the

response content that is usually much larger than a message

like a request, a label, or a path. The efficiency can be

improved if we encrypt the response content with DES keys

that are encrypted using public keys in a pair-wise fashion.

The traffic analysis can be defended, but the content will be

exposed to all middle nodes in a covert path.2 The RSA cost

is high, but it is a constant. So, the shortcut-responding

protocol scales well.

XIAO ET AL.: LOW-COST AND RELIABLE MUTUAL ANONYMITY PROTOCOLS IN PEER-TO-PEER NETWORKS 837

TABLE 4
Latency

2. In all of our protocols, the response content is only visible to the
initiator and responder, but is not to any other nodes.



The data transfer time increases proportionally to the
increase of the number of middle nodes. The transfer time
of label-switching is lower than that of other protocols
because it uses a persistent channel for continuous data
transfers between the the same pairs of sending and
receiving nodes. The data transfer time is still a dominant
portion of the total overhead. We should limit the number
of middle nodes to balance the two basic goals: achieving
mutual anonymity and quick response time. Guan et al. [11]
show that the anonymity degree may not always mono-
tonically increase as the length of communication path
increases.

7 DISCUSSIONS OF THE PROPOSED PROTOCOLS

We have analyzed a mix-based scheme and several new
protocols along with our empirical experience. We now
discuss how to select the protocols based on their merits
and limits under different conditions.

How to select protocols by considering both efficiency
and anonymity degree. The shortcut-responding protocol is
designed for pure P2P systems, while mix-based, center-
directing, and label-switching protocols are designed for
hybrid P2P systems to achieve mutual anonymity. For a
pure P2P system, the shortcut-responding protocol can be a
good candidate, and its cost can be controlled by properly
selecting the number of middle nodes in covert paths.

For a system with a trusted third party, such as a proxy
and a firewall, this party can be utilized to provide some
centralized support. With such a limited support, both
reliability and efficiency of mutual anonymity protocols can
be significantly improved.

If storage space is not a concern, the label-switching
protocol is the best choice in terms of efficiency. In fact, the
storage requirement of this protocol can be acceptable for
systems of moderate size (thousands of nodes). The other
advantages of this protocol are: It uses a very small number
of encryption/decryption operations, and it does not need
to keep all private keys in the third party, which can be
vulnerable if the third party is attacked. Although the third
party keeps a path table, there are multiple options for each
destination, and the path table can be updated periodically.

Therefore, even if the path table is exposed, it can still be
very hard for an attacker to figure out which path is used
for a specific data transfer.

If storage space is limited, the center-directing protocol is
a good candidate. The mix-based protocol can be used if the
RSA costs are tolerable.

Unlike the mix-based protocol, the cipher costs of center-

directing and label-switching protocols are independent of

the path length. In the case that a large number of middle

nodes are required to enforce strong anonymity, center-

directing and label-switching are the best choices.
What if a node in a covert path is down? All covert-path

based protocols can have this problem. The center-directing
protocol could handle this case very well. Since the trusted
index server dynamically generates the next node in a
covert path, it is easy for the index server to generate
another node when it finds that the node it just generated is
down.

APFS, shortcut-responding, and mix-based protocols
share the same concern for this problem. APFS and the
shortcut-responding protocol use Onion as the base. A
selected Onion passes through a whole covert path.

In the mix-based protocol, the trusted index server
generates a mix that also needs to pass through the whole
covert path. When a node in the covert path is down, the
communication path needs to be recovered. One solution
for this is to let the initiator send the request again when it
cannot get response within a certain period of time. Another
covert path will be selected, in which all middle nodes are
alive, hopefully.

In the shortcut-responding protocol, if the relay cannot get
response within a certain period of time, it will send back a
message of “NO RESPONSE.” When the initiator receives a
message of “NO RESPONSE,” it means that theOnion part is
down and the replyblock part works. If the initiator cannot get
anything within a certain period of time, she cannot judge
which path is down (maybe both are down). The request has
to be sent again. Because the replyblock and Onion are one-
time paths, hopefully all the selected nodes for the new
request to form these paths are alive.

838 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 9, SEPTEMBER 2003

Fig. 4. Breakdown of data transfer and protocol overhead with two and five middle nodes for Boeing March 4 trace (a) and Boeing March 5 Trace (b).

MBðkÞ represent mix-based protocol with k middle nodes. Similarly, CD, LS, and SR represent center-directing, label-switching, and shortcut-

responding, respectively.



In APFS, for some initial requests, such as a request to
volunteer to be a server, a request to ask for servers, or a
request to update index, the requests will be resent if they
cannot get response within a certain period of time. For an
initiator who already gets N matches for its request, there
are also two covert paths between the initiator and
responder. One is a path between the responder to its tail
node and another one is a path between the tail node and
initiator. Because the communications are two-directional,
the initiator cannot judge which path is down if she cannot
get response, even with the help of the tail node. So, the
initiator has to send the same match request or another
match request again. But, the initiator will not need to start
from the very beginning to request volunteer servers. APFS
is more advanced than the shortcut-responding protocol in
the sense that it will not sacrifice too much efficiency when
a node in a covert path is down. But, APFS still cannot
compete with the center-directing protocol because only
one covert path needs to be handled in center-directing
protocol.

Label-switching protocol generates a path-table in a
trusted index server beforehand, and peers keep relevant
portions of the path table as subtables. Although the path
table and subtables are updated periodically for security
reasons, the protocol has to trade off efficiency if a middle
node is down. One solution for this is to let the initiator
send the request again with a note to the trusted index
server that its first request for the same file has not been
responded to. When the initiator cannot get a response
within a certain period of time, the index server will select a
different covert path in the path table. Hopefully, all middle
nodes in this covert path are alive.

What if a file cannot be found as it is supposed to be? All
index-based protocols, such as mix-based, center-directing,
label-switching, and APFS, can have this problem. The
index servers keep an index of files that peers are willing to
share. The indices are updated by the peers periodically. It
is possible that the file has already been replaced in a peer,
but the index still shows its existence.

When this happens in the mix-based, center-directing,
and label-switching protocols, the responder simply in-
forms the trusted index server that she cannot find the file.
The index server then will contact another peer who has the
file or send back a message of “NO FILE FOUND” to the
initiator. Another alternative is that the responder sends the
message of “NO FILE FOUND” to the initiator through the
covert path as usual. Then, the initiator sends the request
again to the index server with a note that the responder
cannot find the file.

In APFS, the responder replies a message of “NO FILE
FOUND” to initiator. Since the initiator was responded
N matches for her request, she will just try to get the file
from another match if she cannot get the file from the first
match.

Comprehensively considering all factors, the center-
directing protocol is the best with some limited support of
central control. If efficiency has a high priority over
reliability, the label-switching and shortcut-responding proto-
cols work well for a system with a trusted third party, and a
system without any central controls, respectively.

8 CONCLUSION

Providing a reliable and efficient anonymity protection

among peers is highly desirable in order to build a scalable

and secured P2P systems. In this paper, we have presented

several protocols to achieve mutual anonymity in a P2P file-

sharing environment. Our first group protocols take

advantage of the existence of trusted third parties to

improve efficiency and reliability, and use them to prepare

the covert paths for anonymous communications. The other

proposed protocol, shortcut-responding, combines both

broadcast and self-organizing covert path techniques to

achieve mutual anonymity in pure P2P systems without

any trusted central controls. After several hop-to-hop

requests, this protocol broadcasts the request that is

normally a small message. It then sends back the requested

file back to the initiator through a dynamically created

covert path instead of broadcasting, achieving both com-

munication anonymity and efficiency.

The protocols utilizing trusted third parties may have

three potential limits. First, these trusted third parties may

become single points of failure. This potential problem can

be addressed by our proposed methods of multiple index

servers. In addition, we can enforce anonymous commu-

nications between any peer to the trusted servers, hiding

their identities and locations.

Second, one may have a concern about scalability of

P2P system with the involvement of trusted parties. Specifi-

cally, we may not have enough trusted parties to handle the

increasingly growing Internet user community. We believe

this is not a necessary concern. The client/server model will

continue to play its important roles and continue to coexist

with the P2P model. Thus, the number of trusted servers will

proportionally increase as the number of peers increases.
Finally, A P2P system with the involvement of trusted

parties may not be completely open and free, but may put
some restrictions to peers. For example, a peer has the
freedom to join and leave a pure P2P system anytime.
Although a peer still has this freedom in our system, she
needs to do registration to a predefined index server(s). In
fact, we view the involvement of the trusted parties for this
respect positively. Researchers in the distributed system
community have made a long-term effort to attempt to
build trustworthy systems out of untrusted peers. We
believe that this principle applies to P2P systems.

The performance and robustness of a P2P system to a great

extent depend on the capacity of trusted servers and the

suitability of peers to act as middle nodes. A strong

P2P system should be self-organizing and adaptive to

dynamic application demands and changing of network

conditions. When a peer is used for some centralized function

(e.g., index servers), some reputation system must be used to

regulate their use. We attempt to follow these principles in

designing our protocols.
We are looking into combining different approaches to

further and synergistically achieve the goal for both strong
anonymity and high communication efficiency, as well as to
adapt to application needs and network conditions.

XIAO ET AL.: LOW-COST AND RELIABLE MUTUAL ANONYMITY PROTOCOLS IN PEER-TO-PEER NETWORKS 839



ACKNOWLEDGMENTS

This work was partially completed while Li Xiao was a

research intern at HP Labs in the Summer of 2001. This

work is supported in part by the US National Science

Foundation under grants CCR-9812187, EIA-9977030, and

CCR-0098055, and by a USENIX Research Scholarship. The

work is a part of an independent research project sponsored

by the US National Science Foundation for its program

directors and visiting scientists. The authors would like to

thank Artur Andrzejak, Bill Bynum, Amy Dalal, Yong

Guan, Brian Levine, Clay Shields, Wenting Tang, and Yong

Yan for their valuable feedback. They would also like to

thank Ludmila Cherkasova and John Sontag for their

support at HP Labs. The comments from the anonymous

referees are helpful and constructive.

REFERENCES

[1] Boeing log files, ftp://researchsmp2.cc.vt.edu/pub/boeing, 2003.
[2] D. Chaum, “Untraceable Electronic Mail Return Addresses, and

Digital Pseudonyms,” Comm. ACM, vol. 24, no. 2, pp. 84-88, Feb.
1981.

[3] I. Clarke, O. Sandberg, B. Wiley, and T.W. Hong, “Freenet: A
Distributed Anonymous Information Storage and Retrieval
System: Design Privacy Enhancing Technologies,” Proc. Workshop
Design Issues in Anonymity and Unobservability, pp. 46-66, July 2000.

[4] R. Dingledine, M.J. Freedman, and D. Molnar, “The Free Haven
Project: Distributed Anonymous Storage Service,” Proc. Workshop
Design Issues in Anonymity and Unobservability, pp. 67-95, July 2000.

[5] P. Druschel and A. Rowstron, “PAST: A Large-Scale, Persistent
P2P Storage Utility,” Proc. Eighth Workshop Hot Topics in Operating
Systems, May 2001.

[6] M.J. Freedman, E. Sit, J. Cates, and R. Morris, “Introducing
Tarzan, a Peer-to-Peer Anonymizing Network Layer,” Proc. First
Int’l Workshop Peer-to-Peer Systems, Mar. 2002.

[7] http://www.freedom.net, 2003.
[8] E. Gabber, P. Gibbons, D. Kristol, Y. Matias, and A. Mayer,

“Consistent, yet Anonymous, Web Access with LPWA,” Comm.
ACM, vol. 42, no. 2, pp. 42-47, Feb. 1999.

[9] E. Gabber, P. Gibbons, Y. Matias, and A. Mayer, “How to Make
Personalized Web Browsing Simple, Secure, and Anonymous,”
Proc. Conf. Financial Cryptography, pp. 17-31, Feb. 1997.

[10] Gnutella, http://gnutella.wego.com, 2001.
[11] Y. Guan, X. Fu, R. Bettati, and W. Zhao, “An Optimal Strategy for

Anonymous Communication Protocols,” Proc. 22nd Int’l Conf.
Distributed Computing Systems, pp. 257-266, July 2002.

[12] Napster, http://www.napster.com, 2003.
[13] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A

Scalable Content-Addressable Network,” Proc. ACM SIGCOMM,
pp. 161-172, Aug. 2001.

[14] M.K. Reiter and A.D. Rubin, “Crowds: Anonymity for Web
Transactions,” ACM Trans. Information and System Security, vol. 1,
no. 1, pp. 66-92, Nov. 1998.

[15] RSAREF20, http://tirnanog.ls.fi.upm.es/Servicios/Software/ap_
crypt/disk3/rsaref20.zip, 1994.

[16] S. Saroiu, P.K. Gummadi, and S.D. Gribble, “A Measurement
Study of Peer-to-Peer File Sharing Systems,” Proc. Multimedia
Computing and Networking, Jan. 2002.

[17] V. Scarlata, B.N. Levine, and C. Shields, “Responder Anonymity
and Anonymous Peer-to-Peer File Sharing,” Proc. Ninth Int’l Conf.
Network Protocols, pp. 272-280, Nov. 2001.

[18] A. Serjantov, “Anonymizing Censorship Resistant Systems,” Proc.
First Int’l Workshop Peer-to-Peer Systems, Mar. 2002.

[19] A. Shamir, “How to Share a Secret,” Comm. ACM, vol. 22, no. 11,
pp. 612-613, Nov. 1979.

[20] R. Sherwood, B. Bhattacharjee, and A. Srinivasan, “P 5: A Protocol
for Scalable Anonymous Communication,” Proc. IEEE Symp.
Security and Privacy, May 2002.

[21] C. Shields and B.N. Levine, “A Protocol for Anonymous
Communication over the Internet,” Proc. Seventh ACM Conf.
Computer and Comm. Security, pp. 33-42, Nov. 2000.

[22] I. Stoica, R. Morris, D. Karger, M.F. Kasshoek, and H. Balakrish-
nan, “Chord: A Scalable Peer-to-Peer Lookup Service for Internet
Applications,” Proc. ACM SIGCOMM, pp. 149-160, Aug. 2001.

[23] A.B. Stubblefield and D.S. Wallach, “Dagster: Censorship-Resis-
tant Publishing without Replication,” Technical Report TR01-380,
Dept. of Computer Science, Rice Univ., July 2001.

[24] P.F. Syverson, D.M. Goldschlag, and M.G. Reed, “Anonymous
Connections and Onion Routing,” Proc. 1997 IEEE Symp. Security
and Privacy, pp. 44-53, 1997.

[25] M. Waldman and D. Mazi, “Tangler: A Censorship-Resistant
Publishing System Based on Document Entanglements,” Proc.
Eighth ACM Conf. Computer and Comm. Security, pp. 126-135, 2001.

[26] M. Waldman, A.D. Rubin, and L.F. Cranor, “Publius: A Robust,
Tamper-Evident, Censorship-Resistant Web-Publishing System,”
Proc. Ninth USENIX Security Symp., pp. 59-72, Aug. 2000.

[27] M. Wright, M. Adler, B.N. Levine, and C. Shields, “An Analysis of
the Degradation of Anonymous Protocols,” Proc. Ninth Ann. Symp.
Network and Distributed System Security, Feb. 2002.

[28] L. Xiao, S. Chen, and X. Zhang, “Dynamic Cluster Resource
Allocations for Jobs with Known and Unknown Memory
Demands,” IEEE Trans. Parallel and Distributed Systems, vol. 13,
no. 3, pp. 223-240, Mar. 2002.

[29] L. Xiao, X. Zhang, and Z. Xu, “A Reliable and Scalable Peer-to-
Peer Web Document Sharing System,” Proc. Int’l Parallel and
Distributed Processing Symp., Apr. 2002.

Li Xiao received the BS and MS degrees in
computer science from Northwestern Polytech-
nic University, China, and the PhD degree in
computer science from the College of William
and Mary in 2002. She is an assistant professor
of computer science and engineering at Michi-
gan State University. She was a recipient of a
USENIX Fellowship for her PhD dissertation
research from 2001 to 2002. Her research
interests are in the areas of distributed and

Internet systems, system resource management, and design and
implementation of experimental algorithms. She is a member of the
ACM and the IEEE.

Zhichen Xu received the PhD degree in
computer sciences from the University of Wis-
consin, Madison, and the BS degree in computer
sciences from Fudan University, Shanghai,
China. He is a research scientist at Hewlett-
Packard Laboratories working on network and
storage system-related projects. Besides his
current efforts, his other research interests
include program safety, software environment,
and parallel and distributed systems. He is a

member of the IEEE.

Xiaodong Zhang received the BS degree in
electrical engineering from Beijing Polytechnic
University in 1982, and the MS and PhD degrees
in computer science from the University of
Colorado at Boulder in 1985 and 1989, respec-
tively. He is the Lettie Pate Evans Professor of
computer science and the department chair at
the College of William and Mary. He was the
program director of advanced computational
research at the US National Science Foundation

from 2001 to 2003. He is a past editorial board member of IEEE
Transactions on Parallel and Distributed Systems, and currently serves
as an associate editor of IEEE Micro. His research interests are in the
areas of parallel and distributed computing and systems, and computer
architecture. He is a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at http://computer.org/publications/dlib.

840 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 9, SEPTEMBER 2003


