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A Popularity-Based
Prediction Model for
Web Prefetching

A
challenging problem for Internet comput-
ing is how to reduce Web access latencies.
With the increase in both server and client
types, the number of unique file objects
cached in client browsers continues to

multiply, and Web access behavior is becoming
more erratic. Approaches that rely solely on
caching offer limited performance improvement1

because it is difficult for caching to handle the large
number of increasingly diverse files.

A promising solution to Web access latencies is
to combine caching with Web prefetching—obtain-
ing the Web data a client is expected to need on the
basis of data about that client’s past surfing activ-
ity. Prefetching adds efficiency because it actively
preloads the data for two kinds of clients. For group
clients, it preloads commonly shared data objects.
For individual clients, it loads each of their popular
objects. A study shows that the performance
improvement with caching and prefetching can be
twice that of caching alone.2

An important prefetching task is to build an effec-
tive prediction model and data structure for stor-
ing highly selective historical information. The
prediction by partial match (PPM) model,3 for
example, which is widely used for Web prefetching,
makes prefetching decisions by reviewing the URLs
that clients on a particular server have accessed over
some period. The model structures these URLs in a
Markov predictor tree that the server dynamically
maintains. (A Markov tree is an m-order context
tree that uses m preceding symbols to determine the
probability of the next one.) 

For a Web server that supports millions of Web
pages, however, this kind of prefetching takes too
much memory, or storage space. Some variations
of the PPM model attempt to avoid this overhead by
having the servers collect access information for
specified documents in near real time,4 but they sac-
rifice prediction accuracy because there is less his-
torical information.

We propose a variation of the PPM model that
builds common surfing patterns and regularities
into the Markov predictor tree. The model assigns
long branches to popular URLs—ones that clients
access frequently—and shorter branches to less
popular URLs. The server dynamically updates the
tree with a maximum height for each branch type.
Because the root nodes are the most popular
URLs—not all URLs, as in the standard PPM
model—our model effectively uses the space allo-
cated for storing nodes. It also performs two opti-
mizations: It directly links a root node to duplicated
popular nodes in a surfing path to give popular
URLs more consideration, and it goes back to the
completed tree to remove less popular branches.

Because the tree in our model has varied branch
lengths, it effectively negotiates the tradeoff between
predictive accuracy and memory. By limiting the
number of less popular documents (short branches),
the tree uses less memory, yet it preserves accuracy
because it includes the access information that is
most likely to result in a prediction hit.

To verify our model’s memory efficiency, predic-
tive accuracy, and general performance, we con-
ducted trace-driven simulations using the data set
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from 92 days of requests to  the 1998 World Cup
site. Our simulations demonstrate that the tree
structure with variable heights in different branches
improves prediction accuracy in both long and
short branches while keeping the storage require-
ment low. The “Simulation Environment” sidebar
describes more about our server and evaluation
method. 

A study comparing our model’s performance
with the standard PPM model and the longest
repeating sequences (LRS) PPM model5 demon-
strates that our model not only is significantly more
space efficient, but also provides the most accurate
predictions.

SURFING PATTERNS
We observed several popularity patterns during

trace analysis. A URL’s popularity is the number of
times users access it in a given period. To calculate
the popularities for all the URLs in the trace file,
we used relative popularity—the individual URL’s
popularity divided by the highest popularity in the

trace. Thus, if URL A had the highest number of
accesses, its RP would be 100 percent. If URL B
had 10 percent of URL A’s accesses, its RP would
be 10 percent. 

We further ranked URL popularity by four
grades: 

• grade 3, 10 percent < RP ≤ 100 percent; 
• grade 2, 1 percent < RP ≤ 10 percent; 
• grade 1, 0.1 percent < RP ≤ 1 percent; and
• grade 0, RP ≤ 0.1 percent.

We characterized each client’s surfing behavior
as an access session—the sequence of Web URLs
that the client continuously visited. If a client was
idle for more than 10 minutes, the next request
from that client started a new session. 

Each access session is composed of the steps the
client takes to complete the session, and each step
has a sequence number, starting with step 0, the
first URL visited in the session. The total number of
steps determines the session length, the number of
steps per session varies, and each trace file consists
of numerous access sessions.

Thus, a trace file with P sessions is a two-dimen-
sional array RP (i,j), where index i represents the
ith session in the trace (i = 1, ..., m), and index j rep-
resents the jth step in the session (j = 1, ... ). We
sorted sessions by length, which decreased as the
index increased.

Our trace analysis revealed two important recur-
ring patterns, or regularities. All the evaluation days
exhibited these regularities to some degree, but for
illustration, we randomly chose results from 13
July, the 79th day.

Distribution of popularity grades
To examine the relationship between URL pop-

ularity and access session, we first divided each
trace into four session groups, which differed in the
popularity grade of their starting URLs (grades 3,
2, 1, and 0, respectively). 

The first regularity we observed is that most
URLs in a server are not popular files, but most
clients start an access session from a popular URL.
Figure 1 shows these popularity patterns.

These results offer both good and bad news for
building prefetching models. The good news is that
paying special attention to popular URLs that are
only a small percentage of total URLs can be effec-
tive. The bad news is that the accumulated number
of accesses to less popular URLs can be large, so
focusing on only a small percentage of them in
prefetching could result in low hit rates.

Simulation Environment

Our simulation environment consisted of traces, a simulated server in
which different PPM models make prefetching decisions, and multiple
clients that send requests to the server and receive requested and prefetched
data from the server.

The traces, the WorldCup98 data set (available from Lawrence Berke-
ley National Laboratory, http://ita.ee.lbl.gov), consisted of all the requests
made to the 1998 World Cup Web site between 26 April 1998 and 26
July 1998, which represents 92 days of access. During this time, the site
received 1,352,804,107 requests. The access events were recorded in 
1-second intervals. 

The simulated server dynamically maintained and updated three PPM
models—a standard model, the longest repeating sequence PPM model,
and our popularity-based model—according to these traces. The server
assumed that both proxies and browsers were connected to it. The pre-
dictor in the simulator assumes that if an address (or IP) sends more
than 1,000 requests per day, it is a proxy; otherwise, it is a browser. The
predictor assumes that the proxy has a disk cache of 16 Gbytes and that
a browser has a cache of 10 Mbytes. The proxy and user clients use a
standard least recently used cache replacement alogorithm.

User identification provides useful information for constructing the
prediction structure. Unfortunately, obtaining the HTTP log files that
identify users was difficult. Some logs have unique user IDs for clients—
for example, HTTP cookies—but this type of log file is not available in
the public domain. Thus, we used IP addresses, which may represent
proxy servers. We recognize that using IP addresses could introduce some
inaccuracy in our simulation, but we do not believe it affects our evalu-
ation of the different prediction models.

Finally, in practice, an HTML document can contain embedded image
files. Thus, when a client accessed an HTML file and then accessed an
image file within the next 10 seconds, we considered the image file to be
embedded in the HTML file. We recorded these embedded files as a part
of the HTML files.



Popularity and session length
We then plotted the changing curves using the

number of access sessions as a function of session
length. Figure 2 shows the results for day 79’s
traces. Fully 86 percent of the access sessions
started from popular URLs, moved to less popular
URLs, and exited from the least popular ones. Only
1.3 percent of the sessions started from less popu-
lar URLs, remained in the same type of URLs, and
exited from the least popular ones. 

Thus, the second regularity we observed is that
most URL sessions start with a popular URL, move
to less popular URLs, and exit from the least pop-
ular ones. The least sessions start from less popu-
lar URLs, remain in less popular URLs, and exit
from the least popular ones.

Our data analysis consistently shows that the
starting URLs determined the number of access ses-

sions for a given length. In Figure 2a, 628,232 ses-
sions started with URLs of grade 3 popularity. As
session length increased, the remaining sessions
decreased proportionally. For example, 13,293 of
the remaining sessions had length 9. In contrast,
the remaining sessions with length 9 for sessions
starting with URLs of grades 2, 1, and 0 popular-
ity were 4,757, 1,237, and 1,740.

Figure 2b shows that the average popularity
grade always decreased as the session length
increased. For example, the average popularity of
the access sessions starting from URLs of grades 3
and 2 popularity decreased proportionally as ses-
sion length increased. When the session length
increased from 0 to 9, the average popularity grade
of the URLs decreased from 3 to 1.24 and from 2
to 1.1. For access sessions starting from URLs of
grades 1 and 0 popularity, the average popularity
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Figure 1. Popularity patterns in Web access sessions during day 79 of the WorldCup98 data set. (a) The percentage of
URLs of each grade and (b) the percentage of starting URLs in all sessions for each popularity grade. Fewer than one
percent of URLs are of grade 3 popularity (10 percent < RP ≤ 100 percent). In contrast, less popular URLs dominate,
with grade 0 URLs representing about 95 percent of the total URLs in that day’s traces. Results for this day were fairly
consistent with the rest of the evaluation period.
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changed only slightly as session length increased.
Thus, we can infer that clients starting with less
popular URLs tend to surf among URLs with the
same popularity grade.

THREE PREDICTION MODELS
To evaluate our popularity-based PPM model

against other PPM models, we built three PPM mod-
els, shown in Figure 3, into the server as the basis for
its prefetching decisions. The server dynamically
maintained and updated the PPM models according
to traces over the 92-day evaluation period.

Standard model
The first model is the standard PPM model, which

Figure 3a shows for three access sequences:
{ABCA′B′C′}, {ABC}, and {A′B′C′}. The standard
PPM model uses multiple Markov models to store
historical URL paths. Each Markov model partially
represents a client session. The model structure is a
tree, and each branch is a Markov model with mul-
tiple URL predictors. Variable orders in each branch
can make predictions. 

Node 0 represents the root of the forest. When
a client accesses URL A, the server builds a new
tree with root A and sets the access counter to 1.
When B comes, it creates another tree with root B.
Because B follows A in the same session, the server
must generate another node for B as a child node
of A. The process completes until the server has
scanned all the URLs accessed in the three ses-
sions.

Several prefetching prototypes and systems6-8 use
this standard model, which follows three main
structural rules:

• It uses any URL for a root node and records
every subsequent URL in the tree rooted by the
first URL.

• Every node represents an accessed URL in the
server. A counter records the number of times
the URL occurs in the path from the root node.
For example, the notation A/2 indicates that
URL A was accessed twice.

• Every path from every root node to a leaf node
represents the URL sequence for at least one
client.

The advantage of the standard PPM model is
that it is not very complex and is thus easy to build.
Because the tree records every accessed URL, how-
ever, it takes up too much space in the server.
Entropy analysis and empirical studies have shown
that as the prediction order in each branch
increases, so does the space that stores the PPM
model’s predictors, and prediction accuracy im-
proves.5

Some variations of the standard model attempt to
fix the tree height (put a ceiling on the number of
accessed URLs that can become nodes). This saves
storage, but the tree no longer matches common
surfing patterns. Also, prediction accuracy can be
low with a short tree, and even a small height
increase can rapidly increase the storage require-
ment. 

For our performance comparison, we used a
standard PPM model with a maximum branch
height of 7. In practice, the branches in a standard
PPM model should have a fixed height, but our
experiments show that prediction accuracy will
degrade if the branches are too short. We also fixed
the height at 7 to make the tree height in the stan-
dard model equal to that in our model to provide
a more reasonable basis for comparison.

LRS model
The other representative approach to building a

PPM model is the LRS PPM model, which keeps
the longest repeating subsequences and stores only
long branches with frequently accessed URL pre-
dictors.5 A longest sequence is a frequently repeat-
ing sequence in which at least one occurrence of
one subsequence belongs to an independent access
session. Thus, a longest sequence covers many inde-
pendent access sessions. As in the standard model,
the tree height is not fixed. A sequence of URLs that
a client accesses more than once is considered a
repeated sequence. Figure 3b shows the predictor
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tree structure of the LRS PPM model for the three
access sequences. The server builds the tree the
same way as in Figure 3a, but it then scans each
branch to identify and eliminate nonrepeating
sequences, such as {A′/1, B′/1 and C′/1}.

Relative to the standard PPM model, the LRS
PPM model offers a lower storage requirement and
higher prediction accuracy. Clients access most
objects in Web servers infrequently, so keeping only
frequently accessed paths does not noticeably affect
overall performance, but it does significantly reduce
the storage requirement. The high prediction accu-
racy comes from the model’s use of high-order
Markov models in a limited number of branches.

The LRS PPM model also has limitations.
Because the tree keeps only a small number of fre-
quently accessed branches, it ignores prefetching
for many less frequently accessed URLs, so overall
prefetching hit rates can be low. Also, to find the
longest matching sequence, the server must have
all the previous URLs of the current session, which
means the server must maintain sessions and
update them. This process can be expensive.

For our performance comparison, we used the
original LRS design.5 If clients accessed a URL
sequence more than once, we considered it to be
frequently repeating. 

Popularity-based model
The third approach is our model, which uses only

the most popular URLs as root nodes. Figure 3c
shows the tree structure for the three access
sequences, where URLs A and A′ have grade 
3 popularity, URLs B and B′ have grade 2 
popularity, and URLs C and C′ have grade 
1 popularity. In this example, the maximum 
branch height is 4. The server creates a root node
only for the starting node and when it detects URLs
with grade 3 popularity. Thus, for A it creates a
root node, but for B, it creates only a child node of
A. It does the same for C. When it detects A′, it 
generates another root node and a child node of C.
It also links child node A′ to root node A.

Our popularity-based model builds surfing reg-
ularities into the standard PPM model’s Markov
predictor tree using four rules:

• Rule 1. Set the maximum height initially for
branches starting from the most popular
URLs. The heights of other branches starting
from less popular URLs decrease proportion-
ally. Adjust the proportional differences among
different branches to adapt to access pattern
changes.

• Rule 2. Set the initial maximum height
by considering the available memory
space for the PPM model and access ses-
sion lengths. The session length reflects
the demand for data prefetching. If the
lengths of most access sessions are short,
building long branches may not be nec-
essary. The maximum height is a mod-
erate number in practice. Our experi-
ments show that more than 95 percent
of the access sessions have nine or fewer URLs
(or clicks). This is consistent with the results
reported elsewhere9 for a trace file of
3,247,054 Web page requests from 23,692
AOL users on 5 December 1997.

• Rule 3. In most case, add each URL in a
sequence only once to the tree. Create a spe-
cial link between the heading URL and a dupli-
cated node of this URL only if a URL not
immediately following the heading URL has a
popularity grade higher than the heading
URL’s grade or has the highest or second high-
est grade. If this popular node leads to a
sequence of URLs, add the sequence to that
root or build a new tree rooted by the node.
This approach gives popular URLs more con-
siderations for prefetching, aiming at increas-
ing prediction accuracy and access hit ratios. 

• Rule 4. Periodically build the model on the
basis of log files for a previous time interval to
predict the surfing patterns in the coming time
interval. The interval can be a day, a week, or
a month. Dynamically build or adjust the
model as each URL request arrives. 

Our model also makes space optimizations to
the completed tree. The first is based on the rela-
tive access probability of nodes (URLs) that are
not root nodes, which is the ratio between the
number of accesses to a URL and the number of
accesses to its parent URL. The server examines
each nonroot node, and if the node’s relative
access probability is less than a certain percent-
age (predetermined), it removes the node and the
branches to its children nodes and all the con-
nected nodes of younger generations. It also
removes each node representing a URL that clients
accessed only once.

For our performance comparison, we set the
maximum branch height to 7 for grade 3 URLs, to
5 for grade 2 URLs, to 3 for grade 1 URLs, and to
1 for grade 0 URLs. We  had the server cut each
branch with a 5 percent or lower relative access
probability.
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COMPARATIVE PERFORMANCE
All the PPM models use a longest matching

method, which matches as many previous URLs as
possible to make a prediction. If the model does not
find a prefix match, it will not make a prediction.
We set a document selection threshold between 0.1
and 0.9, which meant that the server would prefetch
only documents with a relative access probability
equal to or greater than the threshold.

We used three performance metrics: 

• The hit ratio is the number of requests that hit
in a browser or proxy cache as related to the
total number of requests. 

• The traffic increment is the ratio between the
total number of transferred bytes and the total
number of bytes that clients find useful minus
1. The traffic increment is 0 percent if clients
find every transferred byte useful. 

• Space is the required memory allocation mea-
sured by the number of nodes available to
build a PPM model in the Web server.

The maximum size of prefetched files affects both
hit ratios and the traffic increment. A large value
lets the server prefetch more data, which helps the
hit ratios but may increase traffic. We set the max-
imum prefetched file size to 20 Kbytes for all three
models in all experiments. We also selected day 46
from the WorldCup98 traces, which was one of the
busiest days of the evaluation period. We used the
day 45 traces as the training data to build the tree
structures for the three models.

Hit ratios
Figure 4 shows the changes in the hit ratios using

the day 45 traces versus the threshold used for pre-
dicting access on day 46. The threshold 0.3, for
example, contains the hit ratios (vertical bars) when
the server prefetches documents with an access
probability of 0.3 or higher.

As the figure shows, the hit ratios were consis-
tently higher with our popularity-based PPM model
than with the standard PPM and LRS PPM models
when the threshold is equal to or less than 0.6. This
was generally true of the entire evaluation period
(not just day 45). For example, with a 0.3 thresh-
old, the hit ratio of our model is 81 percent—78
percent higher than the LRS PPM or the standard
PPM model. With a larger threshold, however, the
hit ratio of our model was the lowest because at the
higher thresholds, unpopular files (files that clients
have accessed only once) become dominant and
available for prefetching. Thus, the standard PPM
model achieves almost the same hit ratio at thresh-
olds of 0.6 to 0.9. The access probability of unpop-
ular files is 1.0 when clients access two unpopular
files continuously. 

Both the LRS PPM model and our model use
space optimization to keep popular files, which
means that the server will never prefetch unpopular
files. However, our model’s hit ratio decreases faster
than the LRS PPM model’s hit ratio because the LRS
PPM model uses all URLs as roots, whereas our
model uses only popular URLs as root nodes.

Because our model deletes URLs that clients sel-
dom access, it has more flexibility than the other
models. This is important when the server load and
network conditions dynamically determine how
aggressive prefetching can be.10

Traffic overhead
Figure 5 compares the traffic increment for the

three PPM models for predictions of day 46 when
the threshold varies from 0.1 to 0.9. 

The three models have similar traffic increases
when the threshold is less than 0.6. With a 0.2
threshold, for example, traffic increases 10.7, 9.9,
and 10.9 percent. With a larger threshold, however,
the traffic increase with the LRS PPM model and
our model goes down rapidly and closes to 0 with
a 0.9 threshold. Overall, the standard PPM model
consumes more network bandwidth than the other
models. Considering the hit ratios of the three mod-
els, our model is the most cost-effective.

Space overhead
Figure 6 compares the number of URLs (nodes)

that each model stored for predictions about day
46 access. We used the varied number of clients in
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the day 45 traces to build the prediction model for
day 46 prefetching.

The number of nodes that the standard PPM
model stores dramatically increases as the number
of clients used for prediction increases. The nodes
required for the LRS PPM model increases pro-
portionally and quickly with more clients, while
the space requirement for our model increases at a
much slower pace. With 800 clients for prediction,
for example, the LRS PPM stores 71 percent more
nodes than our popularity-based model. Using
1,600, 3,200, 6,400, 12,800, and 25,600 clients
for predictions, the LRS PPM model stores 1.9, 4.4,
8.7, 15.7, and 26.8 times more nodes than our
model.

We see two main reasons for this quick increase.
First, the LRS PPM model has many node dupli-
cations because it cuts and pastes each tree branch
into multiple subbranches starting from different
URLs. Second, as the clients increase, the number
of the longest repeating sequences also propor-
tionally increases, but the number of occurrences
of subsequences that are also independent
sequences decreases. In contrast, the popularity
patterns do not change significantly as the client
files increase, so our model only moderately
increases the number of nodes in the tree struc-
ture.

A popularity-based prefetching technique is an
effective Web management approach be-
cause Internet storage has become increas-

ingly large and disorganized. Popularity infor-
mation makes searching and prefetching highly
objective and efficient. Our simulation and data
analysis revealed two important popularity-
related surfing regularities. By building these reg-
ularities into the PPM model, Web prefetching can
have both high prediction accuracy and a low
space requirement.

Our current work is to refine the model to
address dynamic content. We are developing coor-
dinated prefetching techniques within a Web server
and between a proxy and a Web server to enable
the global use of popularity information. �
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