
58

The successful pursuit of high per-
formance on computer systems has produced
the negative by-product of high power dissi-
pation. Circuit-level techniques alone can no
longer keep power dissipation under a rea-
sonable level. Researchers have made efforts
to reduce power dissipation at the architec-
tural level by producing such schemes as
reducing on-chip cache power consump-
tion—a major power consumer in micro-
processors.1 For example, experts believe that
the processor power consumed by on-chip
caches will increase from the 15 percent in
Compaq’s Alpha 21264 to 26 percent in
future Alpha 21464 processors.2

A set-associative cache is commonly used in
modern computer systems for its ability to
reduce cache conflict misses. However, a con-
ventional set-associative cache implementa-
tion is not power-efficient. As Figure 1a shows,
a conventional n-way set-associative cache
probes all n blocks (both tag and data portions)
in a set but, at most, will only really use one
block. The percentage of wasted energy will
increase as cache associativity n increases.
High-associativity caches already exist in some
commercial processors. For example, the Intel
Pentium 4 processor exploits four-way L1
caches and an eight-way L2 cache.

An effective approach to reduce power con-
sumption in set associative caches is lowering
the number of memory cells involved in an

access. One method divides each data RAM
into multiple sub-banks and only activates
words at the required offset from all cache
ways.3 Another alternative is to selectively dis-
able a subset of cache ways during execution
periods with modest cache activity,4 or to
dynamically resize both the number of sets
and ways in caches.5 The phased cache first
compares all the tags with the accessing
address, then probes only the desired data
way.6 Way-prediction is another effective
approach that speculatively selects a way to
access before making a normal cache access.

Figures 1b and 1c illustrate the access pat-
terns for phased and way-prediction n-way set-
associative caches. Compared with the
conventional implementation, the phased cache
only probes one data subarray instead of n data
subarrays (each way comprises a tag subarray
and a data subarray). However, the sequential
accesses of tag and data will increase the cache
access latency. The way-prediction cache first
accesses the tag and data subarrays of the pre-
dicted way. If the prediction is not correct, it
then probes the rest of tag and data subarrays
simultaneously. An access in a phased cache con-
sumes more energy and has longer latency than
a correctly predicted access in way-prediction
cache, but consumes less energy than a mispre-
dicted access. Hence, when the prediction accu-
racy is high, the way-prediction cache is more
energy-efficient than the phased cache.7

Zhichun Zhu
Xiaodong Zhang

College of

William and Mary

AN ACCESS-MODE PREDICTION TECHNIQUE BASED ON CACHE HIT AND MISS

SPECULATION FOR CACHE DESIGN ACHIEVES MINIMAL ENERGY CONSUMPTION.

USING THIS METHOD, CACHE ACCESSES CAN BE ADAPTIVELY SWITCHED

BETWEEN THE WAY-PREDICTION AND THE PHASED ACCESSING MODES.

0272-1732/02/$17.00 2002 IEEE

ACCESS-MODE PREDICTIONS FOR
LOW-POWER CACHE DESIGN

The way-prediction hit rate is bounded by
the cache hit rate, which is highly application
dependent. Figure 2 shows the hit rates for all
the SPEC2000 benchmark programs on a 64-
Kbyte data cache and a 4-Mbyte L2 cache.
Most applications have L1 data cache hit rates
as high as 95 percent with a few exceptions.
(The art benchmark is one exception; its hit

rate is only 65 percent.) The distribution of
L2 cache hit rates is even more diverse than
that of L1 cache hit rates. Fourteen of the 26
programs have L2 cache hit rates higher than
95 percent; five programs have L2 cache hit
rates below 70 percent.

Based on these observations, we can mini-
mize the energy consumption of a cache access

59MARCH–APRIL 2002

Access all n
tags and n data

Access all
n tags

Access one data

(a) (b)

(c)

Access the set

Access the set Access the set

Yes

NoPrediction
correct?

Access all the
remaining ways (n −1
tags and n −1 data)

Way
prediction

Access the predicted
way (one tag and one data)

Figure 1. Access patterns for a conventional n-way set-associative cache (a), a phased n-way set-associative cache (b), and a
way-prediction n-way set-associative cache (c).

0

50

60

70

80

90

100

gz
ip vp

r
gc

c
m

cf

cr
af

ty

pa
rs

er eo
n

pe
rlb

m
k

ga
p

vo
rte

x
bz

ip2 tw
olf

wup
wise

sw
im

m
gr

id
ap

plu
m

es
a

ga
lge

l
ar

t

eq
ua

ke

fa
ce

re
c

am
m

p
luc

as

fm
a3

d

six
tra

ck
ap

si

H
it

ra
te

 (
%

)

L1 data cache hit rate
Unified L2 cache hit rate

Figure 2. Hit rates for SPEC2000 benchmarks on an eight-way 64-Kbyte data cache with a 64-byte block size and an eight-
way 4-Mbyte unified L2 cache with a 128-byte block size.

by using the way-prediction mode to handle
a cache hit and by using the phased mode to
handle a cache miss. Motivated by this rela-
tionship between a cache access mode and its
energy consumption, and by the application
dependent cache-hit patterns, we propose an
access-mode prediction technique based on
cache hit/miss prediction.8,9 Our approach for
low-power cache design combines the ener-
gy-efficient merits of both phased and way-
prediction cache structures. In the case of
predicted cache hits, the way-prediction
scheme determines the desired way and probes
that way only. In the case of predicted misses,
the phased scheme accesses all tags first, then
probes only the appropriate way. We call this
an access-mode-prediction (AMP) cache.

Since we target low-power cache design, the
access-mode predictor should only add a small
amount of overhead on both latency and
energy consumption. We derive a simple pre-
dictor from existing branch prediction tech-
niques; this predictor uses a global-access
history register and a global pattern history
table to obtain high prediction accuracy.

We also optimize the way-prediction tech-
nique for energy reduction purposes. We find
that the multicolumn-based way-prediction is
highly effective for energy reduction in high-
associativity caches. Previous studies have shown
that way-prediction based on most-recently-
used (MRU) policy can effectively reduce the
energy consumption of set-associative caches.
Our experimental results indicate that for four-,
eight-, and sixteen-way caches, multicolumn-
based way-prediction can reduce the energy
consumption by 7 percent, 17 percent, and 40
percent on average, compared with MRU-based
way-prediction. In addition, the multicolumn-
based way-prediction is a nearly optimal tech-
nique, which can correctly predict the locations
of 98 percent of cache hits on average. Com-
pared with the already optimized four-way L1
and eight-way L2 multicolumn caches, the
access-mode prediction technique can further
reduce the energy consumption and energy-
delay product by 9 percent on average (up to
46 percent). Compared with the four-way L1
and eight-way L2 phased caches, this prediction
technique can also reduce the energy con-
sumption by 20 percent on average (up to 27
percent) and reduce the energy-delay product
by 25 percent on average (up to 35 percent).

Experimental environment
We use Cacti 2.0 to estimate the timing

and power consumption of different imple-
mentations of set-associative caches.10 For
AMP caches, we estimate the energy con-
sumption and access latency of first hits, non-
first hits, misses, and write backs in both
way-prediction and phased-access modes.
The estimation methodology we used is sim-
ilar to that described by Powell et al.11 We
assume that the AMP, multicolumn, and
phased caches all have the same array organi-
zation as the conventional set-associative
cache. To estimate the energy consumption
of each cache structure, we assume that only
the part of a cache being accessed consumes
energy. For example, for a first-hit load, one
tag subarray, one data subarray, and the out-
put driver consume the energy. The access-
latency estimation depends on whether the
tag and data portion are accessed concur-
rently. For example, the access latency for a
first-hit load is equivalent to the maximum
value between the tag subarray access time
and the data subarray access time, plus the
data output times.

We use the SimpleScalar tool to collect the
program execution statistics.12 We modified
the cache part of the simulator to evaluate the
behavior of different way-prediction and
mode-prediction approaches.

The simulated 1-GHz eight-issue processor
has separate 64-Kbyte instruction and data
caches with block sizes of 64 bytes, and a uni-
fied 4-Mbyte L2 cache with a block size of 128
bytes. This configuration is similar to those
used in high-end workstations, such as the
Alpha 21264 and Sun Microsystems’ Ultra-
Sparc III. The associativity of L1 and L2 caches
ranges from four to 16. L1 and L2 caches have
four and two sub-banks in each data RAM,
respectively.3 We assume the use of 0.18-
micron technology and use the precompiled
Alpha version of SPEC2000 binaries as the
workload. Our experiments used the reference
input data files, and we fast-forward the first
four billion instructions, then collect detailed
statistics on the next one billion instructions.

Access-mode predictions
The effectiveness of our scheme mainly

depends on the accuracy of predicting cache
hits or misses.

60

CACHE DESIGN

IEEE MICRO

Strategy and energy consumption
Our motivation for using

access-mode predictions in
low-power cache design
comes from the observation
that neither way-prediction
nor phased caches are energy
efficient for both cache miss-
es and hits. We use a simpli-
fied timing and energy model
to quantify this observation.
For the different types of
caches in our experiments, we
estimated the latency and
energy consumption based
on the Cacti timing and
power consumption model.10

Let Etag and Edata be the
energy consumed by a tag
subarray and a data subarray
upon a reference. For a cor-
rectly predicted hit in the
way-prediction cache, the
energy consumed is Etag +
Edata, compared with n × Etag

+ Edata in the phased cache,
where n is the cache’s associa-
tivity. On the other hand, a
miss in the way-prediction
cache will consume (n + 1) ×
Etag + (n + 1) × Edata, in comparison with (n +
1) × Etag + Edata in the phased cache. Regard-
ing the access latency, a correctly predicted hit
in the way-prediction cache takes one time
unit, compared with two time units in the
phased cache. Our objective is to pursue the
lowest possible energy consumption and
latency for both cache hits and misses.

The predictive phased cache first probes all
the tag subarrays and the predicted data
subarray.13 This approach reduces the energy
consumption of nonfirst hits in the way-pre-
diction cache at the price of increasing ener-
gy consumption for both first hits and cache
misses. Powell et al. proposed a scheme that
exploits direct-mapping accesses for the pre-
dicted nonconflicting accesses and way pre-
diction for those predicted conflicting
accesses.11 This approach reduces the energy
consumption for cache hits but does not opti-
mize the consumption for cache misses.

Figure 3 presents the access sequence con-
trolled by access-mode predictions. Upon a

reference, the access-mode predictor makes a
decision based on the cache access history. If
the predictor indicates that the way-predic-
tion mode should be used, the way-prediction
scheme will handle the following access
sequence. Otherwise, the phased-access
scheme will handle the sequence.

For an AMP cache with perfect access-
mode prediction and way prediction, the
energy consumption is the lower bound of
energy consumption for the set-associative
cache. The accuracy of access-mode and way-
prediction predictors determines mispredic-
tion overhead.

Predictors
Yoaz et al. propose using cache hit/miss pre-

diction to improve load instruction schedul-
ing.9 To reduce the memory bandwidth
requirement, Tyson et al. use miss prediction
to dynamically mark which load instruction is
cacheable and which is nonallocatable.8

Technically, nearly all branch prediction tech-

61MARCH–APRIL 2002

Access all
n tags

Access one data

Access the set

Yes

Yes

No

No

Prediction
correct?

Use way
prediction?

Access all the
remaining ways (n−1
tags and n−1 data)

Way
prediction

Access mode
prediction

Access the predicted
way (one tag and one data)

Figure 3. Access pattern of n-way access-mode prediction cache.

niques might be adapted. However, to reduce
cache power consumption, the access-mode
predictor must be simple. Thus we only present
variants with low resource requirements.

Saturating counter. This prediction has the sim-
plest implementation based on the two-bit sat-
urating up/down counter.14 Each set associates
with a two-bit counter that is incremented for
each hit and decremented for each miss. Each
cache (instruction, data, or L2) has its own
access-mode predictor; its reference address
acts as the index to the prediction table.

Two-level adaptive predictor. Another alternative
technique comes from the two-level adaptive
branch predictor.15 We implement both global
adaptive two-level branch prediction using a
global pattern-history table (GAg) and per-
address two-level adaptive branch prediction
using a global pattern-history table (PAg). In
the GAg-derived implementation, a global k-
bit access-history register records the results of
the most recent k accesses. If the access is a hit,
the register records a 1; otherwise, it records a 0.
The global access-history register is the index to
a global pattern-history table, which contains
2k entries. Each entry is a two-bit saturating
counter. In the PAg-based implementation,
each set has its own access history register. All
access-history registers index a single pattern
history table. In our experiments, we set the
number of entries in the global pattern-history
table for both GAg and PAg predictors to the
number of sets in the corresponding cache.

(M, N) correlation predictor. In this scheme,
based on the approach proposed by Pan, So,
and Rahmeh, an M-bit shift register stores the

hit/miss history for the most recent M access-
es.16 Each set has 2M entries, which the M-bit
register indexes. Each entry is an N-bit counter.
We apply a (2, 2) predictor in our experiments.

gshare predictor. McFarling originally proposed
the global share (gshare) predictor.17 The
exclusive-OR of the global access-history with
the current reference’s set number provides
the indexes for the global pattern-history
table. The number of table entries equals the
number of sets in the cache for our experi-
ments.

Accuracy
Table 1 compares the misprediction rates of

the five policies we consider here on a system
with eight-way 64-Kbyte instruction/data
caches and a 4-Mbyte L2 cache. The table lists
values averaged over all 26 SPEC2000 pro-
grams. Two-level adaptive predictor PAg
obtains the lowest misprediction rates—below
4 percent on instruction, data, and L2 caches.
However, the PAg version also occupies more
area than other predictors. The GAg predictor
has the second lowest misprediction rates—
below 6 percent on both L1 and L2 caches—
and requires the smallest additional area.

Overhead
We use the GAg predictor in our remain-

ing experiments for several reasons. The pre-
diction accuracy of GAg is only slightly lower
than that of PAg. However, the GAg predic-
tor requires much less additional chip area for
recording access history than the PAg predic-
tor. The area overhead of GAg predictors for
instruction and data caches is only 0.05 per-
cent, and only 0.02 percent for the L2 cache.

62

CACHE DESIGN

IEEE MICRO

Table 1. Comparison of misprediction rates for access-mode predictors. The separate 64-Kbyte

instruction cache and data cache are eight-way with a 64-byte block size.

The unified L2 cache is eight-way with a 128-byte block size.

 Misprediction rate (%)

Access-mode L1 instruction L1 data Unified L2 L1 instruction L1 data Unified

predictor cache (Bytes) cache (Bytes) cache (Kbytes) cache cache L2 cache

Saturating counter 256 256 8 0.11 5.68 14.44
GAg ~256 ~256 ~8 0.12 4.97 5.51
PAg ~1K ~1K ~56 0.13 3.94 3.83
(2, 2) ~1K ~1K ~32 0.11 5.27 13.43
gshare ~256 ~256 ~8 0.12 6.01 15.57

More importantly, unlike other predictors, the
GAg predictor does not require the next cache
reference’s address to perform mode predic-
tion. Thus, when a cache reference comes, the
GAg predictor has already determined which
access mode to perform, a decision based on
the access history. The timing overhead intro-
duced by the GAg predictor is trivial. Regard-
ing energy consumption, by using mode
predictors, our simulation results indicate that
the overall overhead of instruction, data, and
L2 caches is under 0.8 percent for all the
benchmark programs.

Multicolumn-based way prediction
The effectiveness of the AMP cache on

energy reduction depends not only on access-
mode-predictor accuracy, but also on the
underlying way-prediction technique.

Multicolumn cache
Researchers originally proposed way-pre-

diction caches for reducing the average access
latency of set-associative caches.18 Some pre-
diction strategies can predict the way con-
taining the desired data and read data from
that way first. Way-prediction techniques can
provide power savings in set-associative
caches.7 If the first way-prediction is correct—
we call this a first hit—a cache read only
probes the desired way. In this case, the power
consumption is close to that in a direct-
mapped cache.

However, if the prediction is not correct,
the way-prediction cache will consume more
energy than a conventional implementation
because of the additional operations to main-
tain the prediction mechanism. Thus, the
accuracy of the prediction technique, mea-
sured by the first-hit rate, is crucial to reduc-
ing power consumption.

Previous studies have shown that an MRU-
based way-prediction cache is more power effi-
cient than other techniques.7,19 (The MRU
cache maintains an MRU list that marks the
most recently used—or accessed—block for
each set. For any reference mapping into the
set, the search always begins from the MRU
location.) For low-associativity caches, such as
two-way or four-way caches, the MRU tech-
nique works well in predicting the desired way.
However, as the cache associativity increases,
the MRU structure might potentially decrease

the first-hit rate. In an MRU cache, the num-
ber of search entries is equivalent to the num-
ber of sets. Doubling the cache associativity
for a fixed cache size and a fixed block size
halves the number of search entries in the
MRU cache. Normally, this causes a decrease
in way-prediction accuracy. For example, our
experiments used the SPECint2000 program
vpr. As the associativity of a 64-Kbyte, L1,
MRU data cache increases from four to eight
and then to 16, this cache’s first-hit rate drops
from 90.3 to 85.4, then to 80.8 percent.

The multicolumn cache addresses this
MRU-cache limitation.18 A major location is
the location on which a reference can be
directly mapped. We use major location to
guide way prediction. For an n-way set asso-
ciative cache, a reference’s major location is
determined by the low-order, or the least sig-
nificant, log n bits of its tag.

As the associativity increases, the first-hit rate
does not change much in the multicolumn
cache. The number of search entries in the mul-
ticolumn cache equals the product of the num-
ber of sets and the cache associativity. Thus, as
the associativity increases for fixed cache and
block sizes, the number of search entries in the
multicolumn cache remains the same. Again
using vpr as an example, as the associativity of
a 64-Kbyte L1 multicolumn data cache increas-
es from four to eight, then to 16, the first-hit
rate remains the same (93.4 percent).

Power considerations
In the original design of multicolumn caches,

a swapping mechanism ensures that the MRU
block always resides at the major location after
a reference (though other blocks might replace
it later). From a power consumption point of
view, swapping is an expensive operation
because two cache ways are involved in each
swapping operation. So the power consump-
tion of swapping approximately equals the cost
of two accesses to a single way.

To eliminate swapping, we propose a
power-efficient variation for the multicol-
umn cache. The cache maintains an index
entry for each major location in a set to
record its MRU information.

Figures 4a and 4b (next page) show multi-
column-cache implementations with and
without swapping, and the access sequences
for two references on a four-way, set-associa-

63MARCH–APRIL 2002

tive cache with four sets. For a reference, we
only present tag and set portions. Thus, the
first reference (000101) maps to set (01) with
tag (0001), and its major location is way 1.
The multicolumn cache with swapping begins
a search at the major location. The multicol-
umn cache without swapping first retrieves
the major location’s MRU information, which
points to way 1 in the figure, then begins the
search from way 1. In either case in the figure,
the predicted way does not contain the desired
block, so the cache probes all remaining ways
on the second attempt. This reference is a
cache miss; the least-recently-used (LRU)
block at way 2 is replaced. The swapping
implementation places the new block
(000101) at its major-location way 1, and
swaps the block originally at way 1 (110101)
to way 2. The implementation without swap-
ping updates the MRU information of major
location 1 by pointing to way 2, where the
new block resides. By recording MRU infor-
mation for each major location, the MRU
block need not always reside at its major loca-
tion, avoiding the energy-consuming swap-
ping operations. The second reference
(101101) is a first hit in both cases; hence,
requiring no swappings and leaving the MRU
information unchanged.

Tradeoffs
There are several performance and energy

tradeoffs in the implementations of multicol-
umn caches. For the original design, the search
always begins from a reference’s major loca-
tion, which is determined by a simple bit
selection on the reference address. Thus,
determining a search order neither lengthens
cache access time nor consumes additional
energy. However, maintaining this way-pre-
diction mechanism occasionally requires the
swapping operation, which consumes energy
and can delay subsequent references.

On the other hand, the implementation
without swapping avoids the energy-con-
suming operation but uses additional cache
area for recording MRU information. It also
consumes additional energy for retrieving
MRU information and could increase cache
access time. Since this implementation uses
the reference address to index the MRU infor-
mation table, MRU information retrieval
might lengthen cache access time. However,
we can apply the same arguments for using an
MRU cache to using a multicolumn cache. If
the reference address is available earlier, the
cache access could begin at an earlier pipeline
stage. In addition, overhead for fetching MRU
information could be tolerated for L2 caches.

64

CACHE DESIGN

IEEE MICRO

1101

Tag Data

Way 0

Tag Data

Way 1

Tag Data

Way 2

Tag Data

Way 3

Way 0 Way 1 Way 2 Way 3

Set

0

1

2

3

Reference 1

000101

0000 0111 1011

0000 0001 1011
0

1

2

3

tag
0001

Major
location 01

1st 2nd
00 01 10 11

00 10 10 11

Most recently
used info

Set

1101

0000 0001 1101 1011

Way 0 Way 1 Way 2 Way 3Set

0

1

2

3

Reference 2

101101 Tag
1011

major
location 11

1st
00 10 10 11

0
Major locations

1 2 3

0
Major locations

1 2 3

0
Major locations

1 2 3

Replaced

2nd2nd

Updated

1101

Tag Data

Way 3

Tag Data

Way 2

Tag Data

Way 1

Tag Data

Way 0

Set

0

1

2

3

Reference 1

000101
Least

recently
used

0000 0111 1011

0000 0001 1101 1011

Way 0 Way 1 Way 2 Way 3Set

0

1

2

3

Tag
0001

Major
location 01

Swap

1st 2nd

0000 0001 1101 1011

Way 0 Way 1 Way 2 Way 3Set

0

1

2

3

Reference 2

101101
Tag
1011

Major
location 11

1st

2nd2nd

Replaced

Least
recently

used

Figure 4. Way-prediction strategies for a multicolumn cache with (a) and without (b) swapping.

(a) (b)

Regarding the area, the overhead of recording
the MRU information is log (associativity) ÷
(block size × 8). Because cache block size in a
modern computer system is normally at least
32 bytes, this overhead is trivial. The energy
consumption overhead for accessing the small
MRU table is also trivial.

We evaluate the frequency of swapping oper-
ations in eight-way multicolumn caches under
our default system configuration. For all the
SPEC2000 benchmarks, on average, only 0.2
percent of references to the instruction cache
involve swapping operations, while 3.8 and 12
percent of references to the data and L2 caches
involve them. A reference to an L1 instruction
cache has a low probability of involving a swap-
ping operation. This makes it more feasible to
directly use major location to guide the search
in the latency-sensitive L1 cache, despite the
need for swapping operations.

On the other hand, the possibility that a
reference to the L2 cache will require swap-
ping is as high as 12 percent, which would
consume about 20 percent more energy than
in the implementation without swapping. In

this case, it is more feasible to apply the mul-
ticolumn implementation without swapping
and overlap the fetch of MRU information
with the accesses to L1 caches.

Experimental results
In our experiments, we use the multicol-

umn cache with swapping for instruction and
data caches, which are latency-sensitive and
prone to relatively few swapping operations.
We apply the implementation without swap-
ping for the less latency-sensitive L2 cache
because references to it will likely involve
many swapping operations.

Multicolumn and MRU cache comparison
As stated previously, the first-hit rate is crucial

to reducing power consumption in way-pre-
diction caches. Figure 5 shows the first-hit rates
for multicolumn and MRU caches as cache
associativity increases. Due to space limitations,
we only present the average first-hit rates of all
the SPEC2000 programs and the first-hit rates
of two representative benchmarks: vpr (an inte-
ger program) and facerec (a floating-point pro-

65MARCH–APRIL 2002

0

20

40

60

80

100
A

ve
ra

ge vp
r

fa
ce

re
c

A
ve

ra
ge vp

r

fa
ce

re
c

A
ve

ra
ge vp

r

fa
ce

re
c

A
ve

ra
ge vp

r

fa
ce

re
c

A
ve

ra
ge vp

r

fa
ce

re
c

A
ve

ra
ge vp

r

fa
ce

re
c

A
ve

ra
ge vp

r

fa
ce

re
c

A
ve

ra
ge vp

r

fa
ce

re
c

A
ve

ra
ge vp

r

fa
ce

re
c

Four way Eight way 16 way Four way Eight way 16 way Four way Eight way 16 way

L1 instruction cache L1 data cache Unified L2 cache

H
it

ra
te

 (
%

)
Overall hit rate Multicolumn first-hit rate Most-recently-used first-hit rate

Figure 5. First-hit rates for multicolumn and most-recently-used caches.

gram). First-hit rates for MRU caches decrease
as the cache associativity increases. In contrast,
the first-hit rates of multicolumn caches remain
almost unchanged. The first-hit rates of multi-
column caches are very close to the overall cache
hit rates—which are the upper bounds of first-
hit rates—at different cache levels and for dif-
ferent cache organizations. In all cases, the
average first-hit rates for multicolumn caches
are at least 98 percent of the average overall
cache-hit rates. On the other hand, the first-hit
rates for MRU caches are noticeably different
from the overall cache-hit rates. For example,
the 16-way L2 cache’s MRU-based way-pre-
diction has a first-hit rate that is only 69 per-
cent of the average overall hit rate.

In terms of first-hit rates, the multicolumn-
based way-prediction is a nearly optimal way-
prediction technique. However, high first-hit
rate is not our final target. Figure 6 illustrates
the effectiveness of multicolumn-based way-
prediction in reducing cache energy con-
sumption. Compared with MRU-based
way-prediction, the multicolumn-based tech-

nique can reduce the overall energy con-
sumption of four-way instruction, data, and
L2 caches by 0.1 percent to 39.6 percent (6.8
percent on average). As cache associativity
increases to eight, the energy reduction is 0.4
percent to 50.3 percent (16.6 percent on aver-
age). For 16-way caches, the energy reduction
of multicolumn caches is even more promis-
ing, with a reduction of 5.1 percent to 67.3
percent (40.0 percent on average).

AMP-cache energy reduction
We considered energy reduction across all

the caches in the implementation (instruction,
data, and L2), and then also looked at only
data and L2 caches. This is useful because
phased instruction cache consistently con-
sumes more energy than both multicolumn
and AMP instruction caches. By studying just
data and L2 caches alone, we can make fair
comparisons between different schemes.

Instruction, data, and L2 caches. Figure 7 com-
pares the energy consumption of multicol-

66

CACHE DESIGN

IEEE MICRO

0

10

20

30

40

50

60

70

80

gz
ip vp

r
gc

c
m

cf

cr
af

ty

pa
rs

er eo
n

pe
rlb

m
k

ga
p

vo
rte

x
bz

ip2 tw
olf

wup
wise

sw
im

m
gr

id
ap

plu
m

es
a

ga
lge

l
ar

t

eq
ua

ke

fa
ce

re
c

am
m

p
luc

as

fm
a3

d

six
tra

ck
ap

si

E
ne

rg
y

re
du

ct
io

n:
 m

ul
tic

ol
um

n
vs

. m
os

t-
re

ce
nt

ly
 u

se
d

(%
)

16 way
Eight way
Four way
16-way average
Eight-way average
Four-way average

Figure 6. Energy reduction of multicolumn caches compared with most-recently-used caches.

umn, phased, and AMP caches. (The AMP
cache uses the GAg-based access-mode pre-
diction and the multicolumn-based way-pre-
diction). We have measured the energy
consumed by four-way instruction and data
caches, and eight-way L2 caches. We normal-
ized all the values with respect to the energy
consumed by the multicolumn caches.

The results show that the relative energy con-
sumption of the multicolumn and phased
caches is application-dependent. From among
the 26 benchmark programs, phased caches
consume less energy than multicolumn caches
for six programs. Compared with multicolumn
caches, phased caches might consume up to 37
percent more energy or up to 40 percent less
energy, depending on the program behavior.
On average, phased caches consume 16.7 per-
cent more energy than multicolumn caches.

For all the programs, the AMP caches con-
sume less energy than multicolumn caches.
The energy reduction is 8.6 percent on aver-
age and up to 46.2 percent. Compared with
phased caches, the AMP caches consume less
energy for all the programs but one (mcf).
This exception is because of the relatively high
misprediction rates on data and L2 caches for
this program. For mcf, the AMP caches con-

sume 31.1 percent more energy than phased
caches. For other programs, the access-mode
prediction technique can reduce the energy
consumption of phased caches by 10.6 per-
cent to 27.1 percent. For all the programs, the
average energy reduction of AMP caches is 20
percent, compared with phased caches.

Further looking into the decomposition of
energy consumed by instruction, data, and L2
caches, we find that phased instruction caches
consistently consume more energy than both
multicolumn and AMP instruction caches. This
is because of the high first-hit rates of multicol-
umn and AMP instruction caches. Compared
with these two caches, the phased cache con-
sumes more energy for first hits. The percent-
age of energy consumed by phased instruction
caches is application dependent, ranging from
26.4 percent (for art) to 82 percent (for fma3d).

Data and L2 caches alone. Figure 8 (next page)
compares energy consumption per instruction
for only data and L2 caches, across the three
different cache implementations. For 17 of
the 26 programs, the multicolumn data and
L2 caches consume less energy—up to 26.6
percent less—than the phased data and L2
caches. For the other nine programs, the

67MARCH–APRIL 2002

0.00

0.40

0.60

0.80

1.00

1.20

1.40

1.60

gz
ip vp

r
gc

c
m

cf

cr
af

ty

pa
rs

er eo
n

pe
rlb

m
k

ga
p

vo
rte

x
bz

ip2 tw
olf

wup
wise

sw
im

m
gr

id
ap

plu
m

es
a

ga
lge

l
ar

t

eq
ua

ke

fa
ce

re
c

am
m

p
luc

as

fm
a3

d

six
tra

ck
ap

si

N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

Multicolumn
Phased
Access-mode prediction

Figure 7. Energy consumption of multicolumn, phased, and AMP caches. The system has four-way 64-Kbyte instruction and
data caches, and an eight-way 4-Mbyte L2 cache.

phased implementation consumes less ener-
gy—by up to 63.4 percent less—than the
multicolumn implementation. On average for
all 26 benchmark programs, the energy con-
sumption of multicolumn and phased imple-
mentations was comparable.

For all 26 programs, data and L2 caches
based on AMP consume less energy than
those based on the multicolumn technique by
up to 60.2 percent; the average is 14.4 per-
cent. For 22 programs, the AMP caches
reduced energy consumption compared to the
phased implementation by 6.1 percent to 26.7
percent. For the remaining four programs, the
phased implementation consumes less ener-
gy than the AMP caches by 5.5 percent to
39.7 percent. On average, the data and L2
caches based on AMP consumed 10.7 percent
less energy than those phased caches.

The multicolumn cache consumes less
energy for applications with high hit rates,
while the phased cache consumes less energy
for applications with low hit rates. Hit rate is
highly application-dependent, especially for

the data and L2 caches. So neither the multi-
column cache nor the phased cache worked
well for saving energy across a wide range of
applications. In contrast, the AMP cache
always consumes the lowest possible energy
for both hits and misses. It consumes less ener-
gy than both the multicolumn and the phased
caches for a wide range of applications.

AMP caches energy efficiency
Regarding access latency, a correctly pre-

dicted hit in the multicolumn cache or in the
AMP cache has shorter latency than in a
phased cache. Table 2 presents the access
latencies for a way-prediction hit, a way-pre-
diction miss, and a phased access; we esti-
mated these latencies by using the Cacti
model. Using these values, we set the cache
access latency in our experiments as follows.
For instruction and data caches, a way-pre-
diction hit takes one cycle; a way-prediction
miss or a phased access takes two cycles. For
the L2 cache, a way-prediction hit takes six
cycles; a way-prediction miss or a phased

68

CACHE DESIGN

IEEE MICRO

4.47 3.41

0.00

0.50

1.00

1.50

2.00

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rt

ex

bz
ip

2

tw
ol

f

w
up

w
is

e

sw
im

m
gr

id

ap
pl

u

m
es

a

ga
lg

el ar
t

eq
ua

ke

fa
ce

re
c

am
m

p

lu
ca

s

fm
a3

d

si
xt

ra
ck

ap
si

E
ne

rg
y

co
ns

um
pt

io
n:

 d
at

a
pl

us
 L

2
(n

J)

Multicolumn
Phased
Access-mode prediction

Figure 8. Energy consumed by data and L2 caches.

access takes 12 cycles.
We were concerned that AMP caches might

not efficiently handle access sequences with
varied latencies because varied latencies might
cause access contention to caches. Instead, we
found that way-prediction caches, such as
MRU caches, also had challenges in handling
variable access latencies. Thus, in dealing with
variable access latencies, AMP caches don’t
introduce any more complexity than do way-
prediction caches.

This reasoning also extends to solving con-
flicts upon accessing the data array. The mix-
ture of phased accesses with way-prediction
hits does not introduce any more complexity
than the mixture of way-prediction misses
with way-prediction hits.

Figure 9 compares the performance and
energy-delay product of the AMP cache with
that of the multicolumn and phased caches.

Compared with the multicolumn cache,
the AMP cache might mispredict some way-

prediction hits and perform phased accesses.
This only slightly increases the average cache-
access latency and degrades the overall per-
formance. Among the 26 programs, the AMP
and multicolumn caches have the same cycles
per instruction for seven programs. The max-
imum CPI increase is 1 percent; the average
CPI increase is only 0.1 percent. This indi-
cates that the access-mode predictor only
mispredicts a very small percentage of way-
prediction hits as phased accesses. The AMP

69MARCH–APRIL 2002

Table 2. Access latencies for a way-prediction hit and miss, and

phased access. These values are for 64-Kbyte four-way L1 and 4-

Mbyte eight-way L2 caches.

 L1 instruction or data caches L2 cache

Access types Time (ns) No. of cycles Time (ns) No. of cycles

Way-prediction hit 0.90 1 5.85 6
Way-prediction miss 1.61 2 11.39 12
Phased access 1.88 2 10.77 12

−10

0

10

20

30

40

50

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rt

ex

bz
ip

2

tw
ol

f

w
up

w
is

e

sw
im

m
gr

id

ap
pl

u

m
es

a

ga
lg

el ar
t

eq
ua

ke

fa
ce

re
c

am
m

p

lu
ca

s

fm
a3

d

si
xt

ra
ck

ap
si

A
ve

ra
ge

−30

−20

−10

0

10

20

30

40

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rt

ex

bz
ip

2

tw
ol

f

w
up

w
is

e

sw
im

m
gr

id

ap
pl

u

m
es

a

ga
lg

el
e

ar
t

eq
ua

k

fa
ce

re
c

am
m

p

lu
ca

s

fm
a3

d

si
xt

ra
ck

ap
si

A
ve

ra
ge

(a)

(b)

Cycles-per-instruction reduction (%)
Energy-delay reduction (%)

Figure 9. Reductions in cycles per instruction and energy-delay product for the AMP cache when compared with the multi-
column (a) and phased (b) caches.

cache obtains almost the same performance
as the multicolumn cache.

Way-prediction hits have shorter latencies
than those of phased accesses. Thus, the aver-
age access latency in the AMP cache is short-
er than that of the phased cache. Compared
with the phased cache, the CPI reduction of
the AMP cache ranges from 0.4 to 14.9 per-
cent and is 6.1 percent on average.

The AMP cache reduces the multicolumn
cache’s energy-delay product by 8.5 percent
on average (up to 46.2 percent). The AMP
cache’s energy-delay product is 24.8 percent
less on average (up to 35.3 percent) than that
of the phased cache.

With a simple access-mode prediction
based on cache hit and miss prediction,

the AMP cache can effectively reduce energy
consumption for a wide range of applications
under systems with moderate- to high-asso-
ciativity caches. The AMP cache can exploit
the same mechanism used in the way-predic-
tion cache to handle the varied latencies from
different access modes and way-prediction hits
and misses. The additional overhead of access-
mode predictor and multicolumn-based way-
prediction is negligible in terms of cache area,
access latency, and energy consumption. We
are using cache access information to adjust
processor issue rates for low-power chip
design. MICRO

Acknowledgment
We thank the anonymous referees for their

constructive comments on our work. This
work is part of an independent research pro-
ject sponsored by the National Science Foun-
dation for its program directors and visiting
scientists.

References
1. D.M. Brooks et al., “Power-Aware Micro-

architecture: Design and Modeling Chal-
lenges for Next-Generation Microprocessors,
IEEE Micro, vol. 20, no. 6, Nov.-Dec. 2000,
pp. 26-44.

2. K. Wilcox and S. Manne, “Alpha Processors:
A History of Power Issues and a Look to the
Future,” Cool Chips Tutorial: An Industrial
Perspective on Low Power Processor
Design, 32nd Ann. Int’l Symp. Microarchi-
tecture, 1999; http://huron.cs.ucdavis.edu/

micro32/presentations/cool_chips.pdf.
3. C.L. Su and A.M. Despain, “Cache Design

Trade-offs for Power and Performance Opti-
mization: A Case Study,” Proc. 1995 Int’l
Symp. Low Power Design, IEEE CS Press,
Los Alamitos, Calif., 1995. pp. 63-68.

4. D.H. Albonesi, “Selective Cache Ways: On-
Demand Cache Resource Allocation, Proc.
32nd Ann. ACM/IEEE Int’l Symp. Microar-
chitecture (Micro-32) IEEE CS Press, Los
Alamitos, Calif., 1999, pp. 248-259.

5. S.H. Yang et al., “Exploiting Choices in
Resizable Cache Design to Optimize Deep-
Submicron Processor Energy-Delay,” Proc.
8th Int’l Symp. High-Performance Computer
Architecture (HPCA 01), IEEE CS Press, Los
Alamitos, Calif., 2001, pp. 151-161.

6. A. Hasegawa et al., “SH3: High Code Den-
sity, Low-Power,” IEEE Micro, vol. 15, no.
6, Dec. 1995, pp. 11-19.

7. K. Inoue, T. Ishihara, and K. Murakami,
“Way-Predicting Set-Associative Cache for
High Performance and Low Energy Con-
sumption,” Proc. Int’l Symp. Low Power
Electronics and Design, IEEE CS Press, Los
Alamitos, Calif., 1999. .pp. 273-275.

8. G. Tyson et al. “A Modified Approach to
Data Cache Management,” Proc. 28th Ann.
Int’l Symp. Microarchitecture (Micro-28),
IEEE CS Press, Los Alamitos, Calif., 1995,
pp. 93-103.

9. A. Yoaz et al., “Speculation Techniques for
Improving Load Related Instruction Sched-
uling,” Proc. 26th Ann. Int’l Symp. Comput-
er Architecture (ISCA 99), IEEE CS Press,
Los Alamitos, Calif., 1999, pp. 42-53.

10. G. Reinman and N. Jouppi, An Integrated
Cache Timing and Power Model, tech.
report, Compaq Western Research Lab, Palo
Alto, Calif., 1999.

11. M.D. Powell et al., “Reducing Set-Associa-
tive Cache Energy via Way-Prediction and
Selective Direct-Mapping,” Proc. 34th Ann.
Int’l Symp. Microarchitecture (Micro-34),
IEEE CS Press, Los Alamitos, Calif., 2001
pp. 54-65.

12. D.C. Burger and T.M. Austin, The Sim-
plescalar Tool Set, Version 2.0, tech. report
CS-TR-1997-1342, Dept. of Computer Sci-
ence, Univ. of Wisconsin, Madison, 1997.

13. M. Huang et al, “L1 Data Cache Decomosi-
tion for Energy Efficiency,” Proc. ACM/IEEE
Int’l Symp. Low Power Electronics and

70

CACHE DESIGN

IEEE MICRO

Design, IEEE CS Press, Los Alamitos, Calif.,
2001, pp. 10-13.

14. J.E. Smith, “A Study of Branch Prediction
Strategies,” Proc. 8th Ann. Int’l Symp. Com-
puter Architecture (ISCA 81), IEEE CS Press,
Los Alamitos, Calif., 1981, pp. 135-148.

15. T.Y. Yeh and Y.N. Patt, “Alternative Imple-
mentations of Two-Level Adaptive Branch
Prediction,” 19th Ann. Int’l Symp. Computer
Architecture (ISCA 92), IEEE CS Press, Los
Alamitos, Calif., 1992. pp. 124-134.

16. S.T. Pan, K. So, and J.T. Rahmeh, “Improv-
ing the Accuracy of Dynamic Branch Predic-
tion Using Branch Correlation,” Proc. 5th
Int’l Conf. Architectural Support for Pro-
gramming Languages and Operating Sys-
tems (ASPLOS-V), IEEE CS Press, Los
Alamitos, Calif., 1992, pp. 76-84.

17. S. McFarling, Combining Branch Predictors,
tech. report TN-36, Digital Equipment Corp.,
Western Research Lab, Palo Alto, Calif., 1993.

18. C. Zhang, X. Zhang, and Y. Yan, “Two Fast
and High-Associativity Cache Schemes,”
IEEE Micro, vol. 17, no. 5, Sept.-Oct. 1997,
pp. 40-49.

19. H. Kim et al., “Multiple Access Caches:
Energy Implications,” Proc. IEEE Computer
Soc. Ann. Workshop VLSI (WVLSI), 2000,
pp. 53-58.

Zhichun Zhu is a PhD candidate in comput-
er science at the College of William and Mary.
Her research interests include computer archi-
tecture, power-aware designs, and perfor-
mance evaluation. Zhu has a BS in computer
science from Huazhong University of Science
and Technology, China. She is a student
member of the IEEE and ACM.

Xiaodong Zhang is a professor of computer sci-
ence at the College of William and Mary. He is
also the program director of the Advanced Com-
putational Research Program at the US Nation-
al Science Foundation, Arlington, Virginia. His
research interests include parallel and distributed
systems, computer system performance evalua-
tion, computer architecture, and scientific com-
puting. Zhang has a BS in electrical engineering
from Beijing Polytechnic University, China, and
an MS and a PhD in computer science from the
University of Colorado at Boulder. He serves on
the editorial board of IEEE Micro and is a senior
member of the IEEE.

Direct questions and comments about this
article to Xiaodong Zhang, Dept. of Comput-
er Science, College of William and Mary,
Williamsburg, Va. 23187-8795; zhang@cs.
wm.edu.

71MARCH–APRIL 2002

Let your e-mail address
show your professional
commitment.
An IEEE Computer Society e-mail alias

forwards e-mail to you, even if you change

companies or ISPs.

you@computer.org

The email address
of computing professionals

