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AbstractÐUsing off-the-shelf commodity workstations and PCs to build a cluster for parallel computing has become a common

practice. The cost-effectiveness of a cluster computing platform for a given budget and for certain types of applications is mainly

determined by its memory hierarchy and the interconnection network configurations of the cluster. Finding such a cost-effective

solution from exhaustive simulations would be highly time-consuming and predictions from measurements on existing clusters would

be impractical. We present an analytical model for evaluating the performance impact of memory hierarchies and networks on cluster

computing. The model covers the memory hierarchy of a single SMP, a cluster of workstations/PCs, or a cluster of SMPs by changing

various architectural parameters. Network variations covering both bus and switch networks are also included in the analysis. Different

types of applications are characterized by parameterized workloads with different computation and communication requirements. The

model has been validated by simulations and measurements. The workloads used for experiments are both scientific applications and

commercial workloads. Our study shows that the depth of the memory hierarchy is the most sensitive factor affecting the execution

time for many types of workloads. However, the interconnection network cost of a tightly coupled system with a short depth in memory

hierarchy, such as an SMP, is significantly more expensive than a normal cluster network connecting independent computer nodes.

Thus, the essential issue to be considered is the trade-off between the depth of the memory hierarchy and the system cost. Based on

analyses and case studies, we present our quantitative recommendations for building cost-effective clusters for different workloads.

Index TermsÐClusters, cost model, memory hierarchy, performance evaluation, SMP, workstations.
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1 INTRODUCTION

WITH the rapid development and advancement of
commodity processors and networking technology,

parallel computing platforms are shifting from expensive
customer-designed MPPs (such as CRAYs and CM-5s) to
cheap and commodity-designed symmetric multiprocessors
(SMPs) and clusters of workstations, personal computers
(PCs), and even of SMPs. Using off-the-shelf hardware and
software to construct a parallel system provides a large
range of scalability from ªdesktop-to-teraflopº [13]. Com-
pared with simply buying an expensive MPP box, the
cluster approach gives users flexibility in constructing,
upgrading, and scaling a parallel system. However, the
flexibility also provides multiple system configuration
options for a given budget and a given type of workload,
raising performance optimization issues which need
addressing. We believe the following two questions are
fundamental to cluster computing: First, what is an optimal
or a nearly optimal cluster platform for cost-effective
parallel computing under a given budget and a given type
of workload? Second, what is a cost-effective way to
upgrade or scale an existing cluster platform for a given
budget increase and a given type of workload? There are no

existing optimization solutions to help users construct
clusters in a cost-effective way. Solutions from exhaustive
simulations would be highly time-consuming; and predic-
tions based on measurements from existing clusters would
be impractical.

In this paper, we present an analytical model to address
the two above questions. The model covers the platforms of
a single SMP, a cluster of workstations/PCs, or a cluster of
SMPs by changing various architectural parameters. Net-
work models covering two representative networks are also
included in the analysis. Different types of applications are
characterized by parameterizing workloads with different
computation and communication requirements. The model
is based on a prediction of the average execution time per
instruction for an application. It is derived from the
application's locality property and the memory hierarchy
of a targeted parallel cluster platform. Using the model, we
can quickly determine a nearly optimal platform for a given
budget and for a given workload. The model can also be
used to guide how to upgrade an existing system in a cost-
effective way for a given budget increase. We have also
made efforts to simplify the model for practical usage.

The analytical model is verified by simulations and
measurements. We verify the accuracy of the model by
constructing a set of simulators to simulate different types
of clusters and by comparing the modeling results with the
simulations. The comparison indicates that, for a single
SMP, the modeling results are fairly close to the simulation
results (the difference is below 5 percent). For clusters of
workstations and clusters of SMPs, after properly adjusting
the access rates to remote memory modules, we are able to
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obtain modeling results fairly close to the simulation results

(less than 10 percent) as well. The adjustment is necessary to

compensate for the shared memory coherence overhead,

which is an important part of system activities, but difficult

to model. Our modeling results are acceptable for perfor-

mance prediction and evaluation of parallel computing on

clusters. In addition, compared with measured TPC-C

commercial workload execution results on SMPs, the error

rates of our modeling results are also below 5 percent.
Finally, we present several case studies which use the

model to effectively build a cluster and upgrade an existing

cluster for different parallel computing applications. By

using the cost model to choose a parallel computing

platform, we find that an optimal choice mainly depends

on the type of workloads to be run on the selected platform.

The performance of some applications is sensitive to the

total number of processors in the system, while the

performance of others is more dependent on the speed of

the interconnection networks. The cost model provides a

quick and simple way to determine an optimal or a nearly

optimal solution without conducting a time-consuming

exhaustive simulation.
The paper is organized as follows: Section 2 presents a

general memory hierarchical model of a cluster architecture

and the parallel programming model and program char-

acterization method we have used for this performance

study. We discuss our analytical model and its variations of

memory hierarchies and of networks in Section 3. We

present the model verification results by simulations using

scientific applications in Section 4 and verification results

by measurements using TPC-C commercial workload in

Section 5. Several case studies using the model are given in

Section 6. Finally, we summarize the paper and discuss our

current and future work in Section 7.

2 CHARACTERIZING MEMORY HIERARCHY AND

PARALLEL APPLICATIONS

We are considering three types of clusters: a single SMP,

multiple workstations or PCs, and multiple SMPs. There are

five memory access levels for a processor in the hierarchy of

a cluster covering the three types:

1. accesses to its own cache,
2. accesses to its own memory or the shared-memory

associated with all the processors in an SMP,
3. accesses to a remote memory module associated

with another machine in the cluster,
4. accesses to its own disk, and
5. accesses to a remote disk associated with another

machine in the cluster (see Fig. 1).

Fig. 1 also shows different interconnection networks in a

cluster. For an SMP system, a processor may access the

memory modules of other processors (at the same level)

with the same latency through Network 1 (usually a

memory bus inside an SMP). For a cluster of workstations,

the access to a remote memory module goes through

Network 2 with a much higher latency than the access to the

local memory. Network 2 is the cluster network. Two

representative types are bus-based and switch-based net-

works. Remote disks can also be shared through Network 3,

which in most cases uses the same physical networks used

for Network 2.
We consider the single-program multiple-data (SPMD)

programming model and bulky synchronous scientific

applications [7], [8], [14], [19]. Each process independently

executes a task defined as a loop and it synchronizes with

other parallel processes through the barrier at the end of the

loop. We also consider the on-line transaction processing

(OLTP) workload in our study. Different from scientific

applications, there is no execution order constraint among

transactions running on different processors. For example,

TPC-C workloads have no barrier operations [1].
A shared-memory implementation has been shown to be

a promising and desirable paradigm for exploiting parallel

execution. We adopt this paradigm for the bulky synchro-

nous structure and OLTP workloads. The shared-memory is

supported by hardware in SMPs. For clusters of work-

stations or clusters of SMPs, some work [18], [21], [29] has

been done on the emulation of shared-memory. We assume
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there is a software layer for programmers which emulates
the shared-memory in the cluster.

Our execution model of cluster computing is mainly
based on the probabilities of references to different levels of
the memory hierarchy in Fig. 1. The probability is
determined based on stack distance curves taken directly
from an address stream [6].

The work in [15] uses the same approach for evaluating
the performance of memory hierarchies of uniprocessor
systems. In general, the stack distance of datum A at one
position of the address stream is the number of unique data
items between this reference and the next reference to A.
The distribution of stack distances can be expressed as a
cumulative probability function, denoted P �x�, which
represents the probability of references within a given stack
distance of x. This fits an LRU-managed and fully
associative cache hit rate well if x is considered as the
cache size. The probability density function, denoted p�x�,
describes the frequency of references at stack distance x.
Similar to other related work [15], [20], [22], we model P �x�
in the form of

P �x� � 1ÿ 1

�x=� � 1��ÿ1
; �2:1�

thus, p�x� in the form of

p�x� � �
�ÿ1��ÿ 1�
�x� ��� ; �2:2�

where � > 1 and � > 1 are workload parameters to
characterize the locality of a program. The program locality
improves with the decrease of � or the increase of �. The
memory modules at different levels in a hierarchy of the
cluster can be viewed as caches of different sizes and access
speeds. Thus, the stack distance model discussed above is
suitable for our performance evaluation of the cluster
memory hierarchy.

In addition to locality information expressed in terms of
� and �, we use another parameter, 
 to represent the ratio
between the number of instructions which incur memory
references (M) and the number of total instructions in an
application (m�M), where m is the number of instructions
which do not incur any memory reference. Parameter 

reflects the memory access variations of application
programs. The larger 
 is, the more significantly the
memory accesses affect the application's performance.
Parameters �, �, and 
 may be obtained through address
stream analysis and instruction counting in the execution of
a program on a target cluster or through a simulated
execution of application programs.

Detailed descriptions about memory hierarchy and
program characteristics can be found in [9].

3 A COST MODEL AND MEMORY ACCESS TIME

PREDICTIONS

3.1 A Cost Model

We assume that parallel tasks are evenly distributed among
all processors. Based on Amdahl's Law, the average
execution time of an application on a parallel system is
modeled as the sum of the computation time without

network communication (instructions without memory
accesses) and the computation time with network commu-
nication (instructions with memory accesses):

E�App� � m

nN

1

S
� M

nN

1

S
� Tmem

� �
� 1

nN

m�M
S

�MTmem

� �
;

�3:3�

where App represents an application program, m is the
number of instructions without memory accesses, M is the
number of instructions with memory accesses, n is the
number of processors in a machine, N is the number of
machines in the cluster, S is the processor speed as the
number of instructions executed per second, and Tmem is the

average memory access time per reference in the cluster.
The total number of instructions in the program is m�M.
Consequently, we have the average execution time per
instruction:

E�Instr� � E�App�
m�M �

1

nN

1

S
� 
Tmem

� �
; �3:4�

where Instr represents a program instruction and 
 � M
m�M .

The average memory access time per reference, Tmem, is a
key factor affecting the execution performance. We adopt
the same model as the one used in [5], [15], and [26] in
computing the average memory access time:

Tmem �
Xk
i

Piti

� t1 � t2
Z 1
s1

p�x�dx� t3
Z 1
s2

p�x�dx� � � � �

tk

Z 1
skÿ1

p�x�dx;

�3:5�

where Pi and ti are the access probability and the average
access time, respectively, to the memory hierarchy at the ith
level, i � 1; . . . ; k. Simultaneous accesses to the same level
of the memory hierarchy from several processors cause
contention and make the average access time to that level
significantly higher than that without contention. The
average access time varies due to variations of network

architectures and of the number of simultaneous accesses.
Table 1 lists all notations used in the model and their

descriptions in three different groups: architecture para-
meters, program parameters, and budget/cost parameters.
In the group of architecture parameters, all the parameters
except ti (i � 1; . . . ; k) and Tmem are known for a given
platform and are architecture dependent. In the group of

program parameters, �i and Pi (i � 1; . . . ; k) are modeled
based on the program dependent parameters �, �, and 
.
The budget/cost parameters are user-specified and case
dependent.

For given architecture and program parameters, the
execution performance in (3.3) and (3.4) can be determined
if the average memory access time Tmem is known. There-

fore, Tmem is the key variable to be modeled in this study.
The cost of a cluster is the sum of the cluster machine

cost and the cluster network cost. It can be expressed as:
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Ccluster � NCmachine�n� �NCnet; �3:6�
where N is the number of machines, Cmachine�n� is the cost
of a machine with n processors, and Cnet is the network cost
to connect one machine in the cluster. We assume that the
cluster is a homogeneous platform consisting of identical
machines, either SMPs or uniprocessor workstations.

One major goal in our study is to determine n, N , and the
types of networks of the cluster by minimizing the average
execution time per instruction in (3.4), for a given budget B
and the other given architecture, program, and budget/cost
parameters. This optimization problem forms our cost
model and is expressed as:

minimize E�Instr�
subject to Ccluster � B:

�
�3:7�

Another goal in our study is a variation of the above
optimization problem, which is to determine an optimal
way to scale or upgrade an existing cluster system for a
given budget increase. The problem can be defined as
follows: For a given existing cluster with all the given
architecture parameters, a budget increase B0, and new
architecture and cost parameters for upgrading, we
determine a new cluster configuration by minimizing the
execution time per instruction in (3.4).

Because our target solution variables are integer types in
(3.6) and (3.7), this is a typical integer programming
problem. Fortunately, in the real world, the problem

domain is not very large because n is a small number for

an SMP and N is also not a large number for a cluster,

especially as the power of each machine has rapidly

increased. We can determine these integer variables by

enumerating solutions and choosing the best as the optimal

solution. The quality of our predicted solutions is deter-

mined by the correctness and the accuracy of the model in

predicting the average memory access time, Tmem, for each

of these three cluster platforms. We will discuss the models

of Tmem in detail in the following subsections.

3.2 A Memory Access Time Model for SMPs

A single SMP (N � 1, and n > 1) is a special cluster

platform not requiring a cluster network. Each processor

has its own cache and shares the main memory with other

processors through a memory bus. The memory hierarchy

consists of three levels: a local cache, the shared memory,

and disks. Since the cache is dedicated to each processor,

the access time to it from its own processor (t1) can be

considered as a constant and equals the cache access time

without contention (�1). The average access time to the

memory (t2) is determined by two types of accesses to it:

accesses to ordinary variables and accesses to variables

used for barriers (we call them the barrier variables and

hereafter define that the access to a barrier is finished when

and only when all the accesses reach the barrier). The access

to barriers incurs extra time because of the synchronization
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with other processes. We model the average memory access

time t2 as:

t2 � Pot2�o� � Pbt2�b�; �3:8�
where Po and Pb are the access probabilities to ordinary and

barrier variables, respectively, and t2�o� and t2�b� are the

average access times to the two types of variables,

respectively. Assume the access rate to the memory for

ordinary variables from a processor is �2�o�. (Without

losing generality, we assume the access rates from different

processors are identical.) The access time to the memory

without contention is a constant (�2). Since each processor

executes one process at a time, the system can be viewed as

n terminals (processors) submitting requests to one server

(the shared memory). The utilization of the memory can be

calculated as

U � 1ÿ 1

n!��2�o��2�n �
1Pn

k�0
1

k!��2�o��2�k
: �3:9�

According to the flow balance principle, the throughput of

the memory and the throughput of processors have the

following relationship:

U � 1

�2
� �nÿQ� � �2�o�; �3:10�

where Q is the average number of requests at the memory

waiting or receiving service. Using Little's Law, we

calculate the average memory access time as

t2�o� � Q

U=�2
: �3:11�

Combining (3.9), (3.10), and (3.11), we obtain the average

memory access time as

t2�o� � n�2

1ÿ 1
n!��2�o��2�n � 1Pn

k�0
1

k!��2�o��2�k

ÿ 1

�2�o� : �3:12�

A barrier is used to achieve synchronization among

processes for scientific applications. The average time to go

through a barrier is derived as follows: We denote the

barrier time in process i as Xi and X as the barrier cycle

time of the whole system. Then we have

X � maxfX1; X2; . . . ; Xng:
Using Order Statistics [17], [24], we have the expectation ofX:

E�X� � 1

�2�b�
Xn
i�1

1

i
;

where �2�b� is the access rate to a barrier in the shared

memory. Consequently, the average waiting time for a

barrier is:

t2�b� � E�X� ÿ 1

�2�b� :

Then, the average access time to barrier variables is

expressed as

t2�b� �
0 if n � 1

1
�2�b� �12� � � � � 1

n� if n > 1:

�
�3:13�

Furthermore, the probabilities and access rates of the two

types hold the following relationships:

Po � �2�o�
�2�o� � �2�b� ;

and

Pb � �2�b�
�2�o� � �2�b� :

Substituting (3.12), (3.13), and the above expressions of Po

and Pb into (3.8) for n > 1, we obtain the average access time

to the shared-memory as follows:

t2 � 1

�2�o� � �2�b�

n�2�o��2

1ÿ 1
n!��2�o��2�n � 1Pn

k�0
1

k!��2�o��2�k

ÿ 1� 1

2
� � � � � 1

n

0B@
1CA: �3:14�

A uniprocessor system is a special case of an SMP. If we

substitute n � 1 into (3.14), we obtain a model identical to

the one proposed in [15] for a uniprocessor system.
Similarly, if n processors share disks through an I/O bus,

the average access time for the disks is

t3 � n�3

1ÿ 1
n!��3�3�n � 1Pn

k�0
1

k!��3�3�k

ÿ 1

�3
; �3:15�

where �3 is the access rate to disks, �3 is the access time to a

disk without contention, and we assume that all barrier

operations are performed in the main memory.
Substituting (3.14) and (3.15) into (3.5), we obtain the

average memory access time Tmem for an SMP as follows:

Tmem � t1 � t2
Z 1
s1

p�x�dx� t3
Z 1
s2

p�x�dx

� �1 � 1

�2�o� � �2�b�
Z 1
s1

p�x�dx

n�2�o��2

1ÿ 1
n!��2�o��2�n � 1Pn

k�0
1

k!��2�o��2�k

ÿ 1� 1

2
� � � � � 1

n

0B@
1CA

� n�3

1ÿ 1
n!��3�3�n � 1Pn

k�0
1

k!��3�3�k

ÿ 1

�3

0B@
1CAZ 1

s2

p�x�dx:

In a parallel program, �2�o� � �2�b�. Then,

�2 � �2�o� � �2�b� � �2�o�:
Considering this approximation, we further simplifyTmem as:
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Tmem � �1 � 1


S

n�2�2

1ÿ 1
n!��2�2�n � 1Pn

k�0
1

k!��2�2�k

� n�3�3

1ÿ 1
n!��3�3�n � 1Pn

k�0
1

k!��3�3�k

0B@
ÿ2� 1

2
� � � � � 1

n

�
;

�3:16�
where

�2 � M

m�M
Z 1
s1

p�x�dx� S � 
S
Z 1
s1

p�x�dx

and

�3 � M

m�M
Z 1
s2

p�x�dx� S � 
S
Z 1
s2

p�x�dx:

For given p�x� and 
 characterizing a class of parallel
programs and, for given n, S, s1, s2, �1, �2, and �3

characterizing an SMP, we can determine the average
access time Tmem in an SMP using (3.16).

3.3 A Memory Access Time Model for a Cluster of
Workstations

A cluster of workstations is considered a parallel system
with N > 1 and n � 1, whose memory hierarchy is
composed of four levels: the cache, the local memory
module, (N ÿ 1) remote memory modules, and disks. The
interconnection network of workstations is either bus-based
(e.g., an Ethernet) or switch-based (e.g., an ATM network).
In addition, we assume that the cluster is a homogeneous
system where each workstation has an identical architec-
ture. Considering the four levels of the memory hierarchy,
we model the average memory access time (Tmem) of the
cluster of workstations as follows:

Tmem � t1 � t2
Z 1
s1

p�x�dx� t3
Z 1
s2

p�x�dx

� t4
Z 1
s0

3

p�x�dx:
�3:17�

The variables are listed in Table 1. Variable s03 represents the
total size of the shared-memory from each workstation
point of view, which is the sum of its own local memory
size (s2) and the total size of all the local memory modules
of other workstations (�N ÿ 1�s2):

s03 � s2 � s3 � s2 � �N ÿ 1�s2 � Ns2: �3:18�
We will discuss models for two representative types of

interconnection networks, bus-based and switch-based
networks, in the rest of the subsection.

3.3.1 Bus-Based Clusters

The behavior of remote memory accesses from a work-
station in a bus-based cluster is similar to that of memory
accesses in an SMP except that the contention occurs in the
cluster bus rather than in the memory bus. The average
access time varies as access rates and the number of
simultaneous accesses vary. In such a system, the cache

access time from its own processor in each workstation is
identical and constant (t1 � �1). Because the number of disk
accesses by local and remote workstations is small in
comparison with the number of memory accesses and
because the probability of simultaneous accesses by several
workstations to a disk is even lower, we also assume the
average disk access time is a constant (t4 � �4) in order to
simplify the discussion.

The memory is accessed by two sources: the local
processor (at rate �2), and remote processors (at rate �3).
Because of the symmetric features of parallel systems and
application programs, the memory is accessed by remote
processors at the rate of

�3

N ÿ 1
�N ÿ 1� � �3:

However, parallel applications with �2 � �3 are practically
meaningful in a bus-based cluster. Thus, we deemphasize
the effect of the remote accesses in the model, and consider
the average memory access time to the memory as �2. Then,
Tmem can be rewritten as:

Tmem � �1 � �2

Z 1
s1

p�x�dx� t3
Z 1
s2

p�x�dx� �4

Z 1
s0

3

p�x�dx:

Defining the service time in the bus for one remote
memory access as �bus, a derivation similar to that of the
average memory access time of SMPs in (3.14) gives the
average response time of the bus as follows:

1

�3�o� � �3�b�

N�3�o��bus
1ÿ 1

N!��3�o��bus�N �
1PN

k�0
1

k!��3�o��bus�k

ÿ 1� 1

2
� � � � � 1

N

0B@
1CA:

The average access time to a remote memory module is
approximated as the response time of the bus plus the local
memory access time:

t3 � 1

�3�o� � �3�b�

N�3�o��bus
1ÿ 1

N!��3�o��bus�N �
1PN

k�0
1

k!��3�o��bus�k

ÿ 1� 1

2
� � � � � 1

N

0B@
1CA� �2:

Considering �3�o� � �3�b� � �3 � �3�o� (�3�o� � �3�b�),
we have the following average memory access time model
of a bus-based workstation cluster:

Tmem � �1 � 1


S

��2 � �3��2 � �4�4 � N�3�bus

1ÿ 1
N!��3�bus�N �

1PN

k�0
1

k!��3�bus�k

0B@
ÿ1� 1

2
� � � � � 1

N

�
;

�3:19�
where
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�2 � 
S
Z 1
s1

p�x�dx;

�3 � 
S
Z 1
s2

p�x�dx;

and

�4 � 
S
Z 1
s0

3

p�x�dx:

3.3.2 Switch-Based Clusters

A major difference between a switch-based cluster and a

bus-based cluster is the point of contention: The contention

occurs in each switch port in the switch-based cluster and it

occurs in the bus in the bus-based cluster. A typical switch

contention occurs when two workstations simultaneously

access the local memory of another workstation. Messages

can be passed simultaneously as long as there is no message

contention at switch ports. This major difference is reflected

in the different models of t3 between the two clusters. We

assume that the remote memory accesses from one work-

station are uniformly distributed among all other work-

stations. A workstation accesses remote memory modules at

the rate of �3 and its average access rate to the memory of

any other workstations is �3

Nÿ1 . There are N ÿ 1 other

workstations. Defining the switch service time as �switch,

we have

t3 � 1

�3�o� � �3�b�

�N ÿ 1��3�o��switch
1ÿ �Nÿ1�Nÿ1

�Nÿ1�!��3�o��switch�Nÿ1 � 1PNÿ1

k�0

�Nÿ1�k
k!��3�o��switch�k

0BB@
ÿ�N ÿ 1� � 1

2
� � � � � 1

N

�
� �2:

Considering the assumptions of �3�o� � �3�b� � �3 � �3�o�
(�3�o� � �3�b�), we have the average memory access time

for the switch-based cluster as follows:

Tmem � �1 � 1


S

��2 � �3��2 � �4�4 � �N ÿ 1��3�switch

1ÿ �Nÿ1�Nÿ1

�Nÿ1�!��3�switch�Nÿ1 � 1PNÿ1

k�0

�Nÿ1�k
k!��3�switch�k

0BB@
ÿ�N ÿ 1� � 1

2
� � � � � 1

N

�
;

�3:20�
where

�2 � 
S
Z 1
s1

p�x�dx;

�3 � 
S
Z 1
s2

p�x�dx;

and

�4 � 
S
Z 1
s0

3

p�x�dx;

3.4 A Memory Access Time Model for a Cluster of
SMPs

Our target cluster of SMPs is homogeneous, where all SMPs
in the cluster are identical. In such a platform, the memory
hierarchy consists of the local cache, the shared memory
module in each SMP, remote shared memory modules in
other SMPs, and disks. Similar to a cluster of workstations,
SMPs may be connected by either a bus-based network or a
switch-based network. Considering the memory hierarchy,
we model the average memory access time as

Tmem � t1 � t2
Z 1
s1

p�x�dx� t3
Z 1
s2

p�x�dx� t4
Z 1
s0

3

p�x�dx:

�3:21�
The access time to the local cache is a constant (t1 � �1).

However, access times to higher levels, t2, t3, and t4 will
vary due to the contention occurring in the memory bus in
each SMP and in the cluster network. Only remote memory
access (t3) is dependent on the type of a cluster network and
the access time to the local shared-memory (t2) and the
access time to the local disk (t4) are independent of the
cluster network. In the next two subsections, we discuss the
models of t2 and t4 and, then, t3, first using a bus-based
cluster network and then a switch-based one.

The access time to the local memory (t2) is determined by
the contention occurring in the memory bus. Two types of
memory requests compete for the memory bus. One is
requests from local processors inside an SMP and the other
is those from remote processors in other SMPs. Assuming
that the accesses from one processor to remote memory
modules of other SMPs are uniformly distributed, we
compute the average access rate to the memory bus from a
local SMP and from remote SMPs as

n�2 � �N ÿ 1�n�3

N ÿ 1
� n��2 � �3�:

Because �2 � �3 in practice, the average access time can be
approximated as:

t2 � n�2

1ÿ 1
n!��2�2�n � 1Pn

k�0
1

k!��2�2�k

ÿ 1

�2
: �3:22�

Since disk accesses are rare compared with the cache and
memory accesses, we simplify the computation of the
average disk access time, t4, by assuming that each SMP
machine owns and only accesses its disks through its I/O
bus. So, t4 can be derived as

t4 � n�4

1ÿ 1
n!��4�4�n � 1Pn

k�0
1

k!��4�4�k

ÿ 1

�4
: �3:23�

The second-level shared-memory space from each SMP's
point of view consists of its own local shared-memory
module and N ÿ 1 other shared-memory modules. Thus,
the total second-level shared-memory size is defined as
s03 � Ns2.
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3.4.1 Bus-Based Clusters

The access to a remote shared-memory module is per-
formed through a sequential access to the cluster bus and
then to the memory bus of the remote SMP. Thus, the
average access time to the remote shared-memory is the
sum of the average access time of the cluster bus and the
average access time to a remote memory bus. A total of
n�N processors access the cluster bus at the rate of �3. We
have the average response time at the bus as

nN�bus

1ÿ 1
�nN�!��3�bus�nN �

1PnN

k�0
1

k!��3�bus�k

ÿ 1

�3
:

Since the cluster is symmetric, the average access time
from any processor to a remote memory bus equals the
average local shared-memory access time (t2). Using (3.22)
and a derivation similar to (3.14), we obtain t3 as follows:

t3 � n�2

1ÿ 1
n!��2�2�n � 1Pn

k�0
1

k!��2�2�k

ÿ 1

�2

� nN�bus

1ÿ 1
�nN�!��3�bus�nN �

1PnN

k�0
1

k!��3�bus�k

ÿ 1

�3

� 1

�3

1

2
� � � � � 1

nN

� �
:

�3:24�

Combining (3.22), (3.23), (3.24), we obtain the average
memory access time of a bus-based cluster of SMPs as
follows:

Tmem � �1 � 1


S

n�2

1ÿ 1
n!��2�2�n � 1Pn

k�0
1

k!��2�2�k

ÿ 1

�2

0B@
1CA��2 � �3�

0B@
� nN�bus

1ÿ 1
�nN�!��3�bus�nN �

1PnN

k�0
1

k!��3�bus�k

ÿ 1

�3

0B@
1CA�3

� n�4

1ÿ 1
n!��4�4�n � 1Pn

k�0
1

k!��4�4�k

ÿ 1

�4

0B@
1CA�4 � 1

2
� � � � � 1

nN

1CA;
�3:25�

where

�2 � 
S
Z 1
s1

p�x�dx;

�3 � 
S
Z 1
s2

p�x�dx;

and

�4 � 
S
Z 1
s0

3

p�x�dx:

3.4.2 Switch-Based Clusters

In a switch-based cluster, we assume the communication
load is uniformly distributed among all SMPs. Thus, the
average access rate from a processor to a remote switch port
is �3

Nÿ1 . By considering the contention in switch ports,

assuming the average service time of a switch-based cluster
as �switch, and applying the model, we obtain the average
access time to the switch network:

n�N ÿ 1��switch
1ÿ �Nÿ1�n�Nÿ1�

�n�Nÿ1��!��3�switch�n�Nÿ1� � 1Pn�Nÿ1�
k�0

�Nÿ1�k
k!��3�switch�k

ÿN ÿ 1

�3
:

Combining t2 and the above formula of the average switch
network access time, we have

t3 � n�2

1ÿ 1
n!��2�2�n � 1Pn

k�0
1

k!��2�2�k

ÿ 1

�2

� n�N ÿ 1��switch
1ÿ �Nÿ1�n�Nÿ1�

�n�Nÿ1��!��3�switch�n�Nÿ1� � 1Pn�Nÿ1�
k�0

�Nÿ1�k
k!��3�switch�k

ÿN ÿ 1

�3
� 1

�3

1

2
� � � � � 1

nN

� �
:

�3:26�

Combining (3.22), (3.23), (3.26), we obtain the average
memory access time for a switch-based cluster of SMPs as
follows:

Tmem � �1 � 1


S

n�2

1ÿ 1
n!��2�2�n � 1Pn

k�0
1

k!��2�2�k

ÿ 1

�2

0B@
1CA��2 � �3�

0B@

� n�N ÿ 1��switch
1ÿ �Nÿ1�n�Nÿ1�

�n�Nÿ1��!��3�switch�n�Nÿ1� � 1Pn�Nÿ1�
k�0

�Nÿ1�k
k!��3�switch�k

ÿN ÿ 1

�3

0BBB@
1CCCA�3

� n�4

1ÿ 1
n!��4�4�n � 1Pn

k�0
1

k!��4�4�k

ÿ 1

�4

0B@
1CA�4 � 1

2
� � � � � 1

nN

1CA;
�3:27�

where

�2 � 
S
Z 1
s1

p�x�dx;

�3 � 
S
Z 1
s2

p�x�dx;

and

�4 � 
S
Z 1
s0

3

p�x�dx:

3.5 Summary

In summary, for given architectural and application
program parameters in these three types of cluster plat-
forms, the average memory access time, Tmem, can be
modeled and predicted. Consequently, the average execu-
tion time per instruction, E�Instr�, is determined. By
enumerating all practically possible ns (the numbers of
processors in each machine), Ns (the number of machines in
the cluster), and types of networks, we can determine an
optimal cluster platform using the aid of numerical
calculations for a given budget and for a given class of
parallel applications.
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The cost models can also be used for system upgrading
purposes. The model variations can be handled by includ-
ing the budget increase, the parameters of the existing
system, and the architectural parameters that may be
changed in the upgrade. Similarly, using the models, we
enumerate all practically possible changing parameters,
such as the new switch networks, and additional numbers
of workstations or SMPs. We then determine an optimal
upgrading plan of an existing cluster system for a given
budget increase.

4 MODEL VERIFICATION BY SIMULATIONS

We verify the accuracy of the model in this section by
comparing the model results with the simulation results.

4.1 Simulators

We used MINT [25] (Mips INTerpretor) as our simulation
tool since our interest is primarily in the memory
hierarchies of clusters. MINT provides a program-driven
simulation environment that emulates multiprocessing
execution environments and generates memory reference
events which drive a memory system simulator, called the
Back-end. We developed five memory hierarchal system
simulators, which correspond to the five parallel platforms,
to serve as the back-ends of MINT. The simulators were run
on an SGI workstation. By varying the configuration
parameters, such as the sizes of each level of memory
hierarchy, we obtained the simulated execution time for a
given application.

The simulated memory hierarchy of parallel systems is
the one discussed in Section 2. For an SMP, we assume that

a snooping-based protocol is used to maintain the cache

coherence. In detail, the cache line size is 64 bytes, the cache

is two-way set-associative, and the replacement policy is

least-recently-used (LRU). The write invalidation protocol is

used as the cache coherence protocol. Two- and four-

processor SMPs are simulated because these configurations

are used by most SMPs available in the market. Disks are

employed as the backup storage.
For a cluster of workstations, a directory-based protocol

is employed. The block size is 256 bytes. Each block of the

memory has three states: shared, uncached, and exclusive.

The states are identical to those in the snooping protocol.

The state transition and the transactions are also similar to

the snooping protocol, with explicit invalidate and write-

back requests replacing the write misses that are formerly

broadcast on the bus.
In a cluster of SMPs, the shared memory consists of two

parts, the local memory shared by multiple processors of an

SMP and the remote memory of other SMPs. To maintain

the cache coherence in such a system, we applied a hybrid

protocol. A directory-based protocol is used to maintain

coherence between SMPs and a snooping protocol is

employed to keep the caches in an SMP coherent. We

extend the directory in each node (SMP) to include the

processor id. The directory entries are shared by the two

protocols.
The principal architecture parameters we used in the

simulators are given in Table 2. They are represented in the

unit of cycles, and are consistent with the values given in

[10], [11], and [16].
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4.2 Applications

We used three SPLASH-2 computational kernels [27] and
one edge detection program as our applications. They are
FFT, LU, Radix, and EDGE. We selected them as our
benchmarks because the SPLASH-2's three kernels are
representative components of a variety of computations in
scientific and engineering computing and EDGE is a real-
world application which detects edges from an image map.

. The FFT kernel is a complex 1D six-step FFT
algorithm. The data consist of some complex data
points to be transformed and another set of data
points used as the roots of unity. Both sets of data
are partitioned into submatrices so that each
processor is assigned a contiguous subset of data
which are allocated in its local memory.

. The LU kernel factors a dense matrix into the
product of a lower triangular and an upper
triangular matrices. The dense matrix is divided
into blocks and the blocks are assigned to processors
using a 2D scatter decomposition to exploit temporal
and spatial locality.

. The Radix sort kernel sorts integers based on a
method proposed by [2]. The algorithm is iterative,
performing one iteration for each radix r digit of the
keys.

. Edge detection (EDGE): The edge detection program
we used is based on Bergholm's edge focusing
algorithm [3]. (Its parallel version is presented in
[28].) This program combines high positional accu-
racy with good noise reduction. The algorithm
iterates over four steps: 1) blurring, 2) registering,
3) matching, and 4) repeating or halting. A basic
operation in the edge focusing algorithm is image
blurring. Let f�i; j� denote the gray level image and
g�i; j� the blurred imageÐthen the blurred image is
computed from the discrete convolution:

g�i; j� � 1

2��2

Xbw2c
x�ÿdw2e

Xbw2c
y�ÿdw2e

Gauss�iÿ x; jÿ y; ��f�x; y�;

where

Gauss�i; j; �� � eÿ�i2�j2�=2�2

is the Gaussian operator and w is the size of the
convolution window. Usually, the size of a Gaussian
window, w, is determined by the blurring scale:
w � d8�e.

We began the edge focusing process with an
initial �0 of 3.8 and reduced � by 0.5 at each iteration
for a total of eight iterations. The algorithm is
parallelized by partitioning the image in rows
among multiple processors. A barrier is performed
after each iteration.

Using the MINT-based simulator, we first collected the
memory access traces on one processor for the four
applications. The traces were analyzed to present each
program's temporal locality and to produce the stack
distance curves. Using the standard least squares techni-
ques, we fit (2.1) and (2.2) to the data and determined the
values of � and � for the applications.

We first collected the values of � and � of the four
applications on a one-processor system. As we know from
the discussion on parallel program structures in Section 2,
when an application program is symmetrically distributed
and run on n processors, its maximum stack distance
reduces approximately by a factor of n and the cumulative
access probability at the corresponding reduced distance
remains almost unchanged. Thus, if the cumulative prob-
ability function for an application running on a one-
processor system is

P �x� � 1ÿ 1

�x=� � 1��ÿ1
;

then the cumulative probability function for the same
application running on an n-processor system can be
approximated by

P �x� � 1ÿ 1

�nx=� � 1��ÿ1
:

We use the above revised formula as the approximation in
the following model computation when there is more than
one processor in the system. The parameter values of the
four applications are listed in Table 3.

4.3 Analysis

4.3.1 SMPs

Bus-based SMPs with two or four processors are the most
popular in the market. Due to the speed gap increase
between the CPU execution and memory access, the
maximal number of processors of SMPs is getting smaller.
The cache sizes for them are usually 256 or 512 Kbytes and
the main memory sizes are 64 or 128 Mbytes.1 We selected
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these commonly used SMP configurations to verify the
accuracy of the model. Table 4 lists these configurations.

Table 5 presents the modeling and simulated average
execution time per instructions (E�Instr�) in nanoseconds
and the differences between them in percentage compared
with the simulated results. The results show that the
differences between the simulated results and modeling
results are very small (less than 5 percent), which means
that the model is very accurate when modeling the SMPs.
The difference comes from the approximation of the
probability function P �x� in comparison with the actual
reference probabilities.

The overhead of cache coherence is another factor. We do
not take into account the effect of cache coherence activities
in the modeling. Modeling this process accurately is very
difficult and will make the model too complicated to be
used. In the simulation, we evaluated the memory bus
traffic caused by the cache coherence protocol. It is
6.3 percent, 4.7 percent, 7.2 percent, and 2.1 percent of the
total traffic on the bus for applications FFT, LU, Radix, and
EDGE, respectively. This indicates that it affects perfor-
mance slightly. That is the reason why the modeling results
are still close to the simulated ones even though we do not
model the memory bus traffic caused by the cache
coherence activities.

4.3.2 Clusters of Workstations

The programming model of our cluster of workstations is
based on a shared-memory system supported by a software
distributed shared-memory layer. The memory accesses to
the global shared-memory at different levels are nonuni-
form. For example, from a workstation viewpoint, the
access latency to its local memory module is lower than the

latency to a remote memory module although both memory
memory modules belong to the global shared-memory.

We selected the five cluster configurations (C7 to C11)
listed in Table 6. We predicted the execution times using the
model and measured the execution times by the simula-
tions. However, our experiments show that the modeling
and simulation results are not as close as those on SMPs.
The differences are up to 16.3 percent (this comes from the
FFT, others are around 12 percent or less). After further
investigation, we found that timing differences are caused
by shared-memory coherence overheads. Our model does
not include the coherence operations and the overhead. The
coherence overhead is determined by two factors: 1) locality
and data sharing patterns of application workloads and
2) the interconnection network speed between processors
and the shared-memory of the cluster. The workstation
cluster configurations (C7 to C11) are much more loosely
coupled than the SMP configurations and cause higher
coherence overhead. This is the reason why the modeling
results for clusters of workstations are not as accurate as
those for SMPs.

In order to compensate for the coherence overhead and
to make the model more accurate for those applications
with active coherence activities on clusters of workstations,
a proper adjustment of the model is required. To retain the
simplicity of our models, there are two ways to address this
problem. The first one is to increase the average memory
access time accordingly. The second one is to increase the
average memory access rate. We have used the second
approach.

Our modeling description indicates that we do not
consider data sharing effects on locality. For example, even
though the distance between two consecutive accesses to a
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datum, D, is less than the cache size, the second access may
still miss D if D is shared and modified by another
processor between those two accesses. It needs an extra
access to the low level memory hierarchy.

How many data accesses are shared data accesses is an
important factor. We define a shared data access rate to
quantify it:

number of shared data accesses

total number of data accesses
� 100%:

Since not all shared data accesses need extra memory
accesses, this rate may be used as an upper bound reference
for the increase of average access rate to include the
coherence overhead.

Through access trace analysis, we found that FFT has the
highest shared data access rate. It ranges from 7.5 percent
for two processors to 13.9 percent for eight processors. This
is consistent with the results reported in [27]. By averaging
several access rates and comparing the execution results, we
found that we could obtain reasonably accurate modeling
results by adjusting the average memory access rate by a
factor of 12.4 percent. This adjustment makes the differ-
ences between modeling and simulation results less than
9 percent. Table 7 lists the execution results with such
adjustments.

4.3.3 Clusters of SMPs

We used SMPs with two CPUs and four CPUs to build the
cluster. The network varies from a traditional 10M bus,
through a 100M bus to a 155M ATM. Table 8 lists the
platforms we used in the verification.

In a way similar to the arrangement to the cluster of
workstations, we adjusted the access rates to the remote
memory in order to compensate for the overhead caused by
coherence activities, which is not modeled in our formulas.

We still adjusted the rate by a factor of 12.4 percent for each
application. Table 9 presents the comparisons. The differ-
ence is within the range of 8 percent for all applications.

In summary, through verifications, we find that results of
our model are reasonably close to the results from the
simulation. The prediction accuracy is acceptable. We have
also shown that coherence overhead is not negligible for
applications having large data sharing. The advantages of
using the modeling approach are obvious because the cost
to do simulations is significantly higher than that of
modeling. For example, the modeling computation for each
of the cluster configurations took less than one second with
a small memory allocation. In contrast, it usually took more
than 20 minutes to conduct one simulation on a high-end
workstation, let alone the time spent on developing the
simulators.

5 MODEL VERIFICATION BY MEASUREMENTS

To further verify our model, we have also compared the
modeling results with measurement results of commercial
workload on SMPs. One important usage of SMP systems is
the execution of commercial workloads, which represent
one of the most rapidly growing market segments. In
comparison with scientific, numeric-intensive, and engi-
neering applications, commercial workloads contain more
sophisticated system software activities. We have used our
analytical model to study the SMP architectural impacts on
performance of commercial workloads. We use the TPC
Benchmark C (TPC-C) [23], a standard commercial work-
load benchmark, as the workload. Different from scientific
applications, the TPC-C workload contains no barrier
operations [1]. Thus, when applying the model on the
TPC-C workload, we remove the items due to barrier
operations �12� � � � � 1

n� in (3.16). We have evaluated the
accuracy of the model using the published performance
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results of TPC-C workload measured by hardware counters
on a Pentium Pro-based SMP server.

Using the modeling average execution time per instruc-
tion of the workload, E�Instr�, and other SMP and TPC-C
workload dependent parameters, we can further determine
following important performance measures:

. Cycles Per Instruction (CPI): CPI � E�Instr� � CR,

. execution time per transaction:

E�Tran� � E�Instr� � I;
and

. total number of transactions completed per minute
(tpmC): tpmC � n

E�Tran� ,

where CR is the CPU clock rate, I is the average number of
instructions per transaction, and n is the number of
processors in the SMP.

A group of computer professionals from the University
of California at Berkeley and Informix Software, Inc.
recently evaluated different architectural effects of a
4-processor Pentium Pro-based SMP on a TPC-C-like
workload operated by an Informix database [12]. Their
approach is purely experimental by using hardware
counters and the measured results are considered accurate.
Using their measured workload locality data and the
Pentium Pro-based SMP architectural parameters, we have
validated our model and found the modeling results are
fairly close to the measured results of execution time and
CPI. Based on the model parameter notations in Table 1, we
collect both the workload and SMP parameter values from
[12] to be used in our model, and list them in Table 10.

The Pentium Pro-based SMP has four 200 MHz
processors where a process is limited to 2 GB of user space
in the shared-memory. The average CPU execution time per
instruction is 0.97 cycles. There are four levels in the
memory hierarchy: L1 cache (on-chip) of 8 KB instructions
and 8 KB data, 1 MB unified L2 cache (external cache), 4 GB
of 4-way interleaved shared memory, and 90 Quantum 4.55

GB Ultra SCSI-3 disks. The access times to the L1 cache and

L2 cache are three cycles and seven cycles, respectively. The

access time to the shared memory without contention is

58 cycles. The average access time to the shared-memory

with contention (t3) will be predicted by our model, as will

the average memory access time per instruction of the SMP,

Tmem. The I/O activity was not measured for these

experiments. Thus, we are unable to model the average

access time per instruction to the disks, t4.
The workload access probabilities to different levels

provided by the experiments are 14.1 percent to the L2

cache and 0.7 percent to the shared-memory. The

TPC-C-like workload does not change the structure of the

workload program itself, but only changes the way of

submitting transactions by using two client machines to

simulate thousands of remote terminal emulators, generat-

ing requests with no think time between requests. Since the

average number of instructions per transaction, I, of the

TPC-C and the TPC-C-like are the same, we collected the

measurement results of I � 625; 000 from [1].
In the Pentium Pro, there are three parallel decoders to

translate the macro-instructions into triadic �ops. In each

cycle, multiple �ops can be executed. The access time to the

L1 cache is likely to be overlapped with other operations

not only by the parallel decoders, but also by other pipeline

hardware support, such as stream buffers. Both experi-

ments in [4] and [12] show the strong effectiveness of the

overlapping on the Pentium Pro processor. Considering this

architectural effect, we make t1 fully overlapped with

average CPU execution time per instruction 1=S in our

model.
Applying the given P2 and P3 characterizing the locality

of the TPC-C-like workload and the givens S, n, s1, s2, s3, �1,

�2, and �3, characterizing the Pentium Pro-based SMP, we

use our model to quantitatively determine the following

four variables: E�Instr�, t3, �3, and Tmem. Table 11 gives

comparisons between our modeling results and the
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measured results on CPI, and average access time to the

shared-memory.
The comparisons between the modeling and measured

results show that our model is accurate for evaluating the

memory hierarchy effects on the commercial workload.

Compared with the measurement approach, this modeling

approach has two limits. First, some complex hardware

operations, such as branch prediction behavior and �ops

retirement behavior, are difficult to model. Second, a

commercial workload involves many operating system

activities which are dynamic and also difficult to model.

For more precise and detailed performance information, the

models need support from simulation. Dynamic workload

and system effects can be obtained through simulation

experiments. The combination of analytical and experi-

mental results provides a cost-effective and reliable

performance evaluation for computer systems.

6 APPLICATION: CASE STUDIES

In this section, we give three case studies on how to use the

cost model to guide the design of a nearly optimal parallel

platform for a specific kind of workloads (applications). The

first case is for a small budget ($5,000) request, which can

only financially cover a cluster of workstations, considering

the current market prices for SMPs. In the second case, we

consider a budget as high as $20,000. This budget provides

the designer with more choices for the configuration, while

making the decision harder without the support of any

analysis tools. The third case study illustrates how to use

the cost model to upgrade an existing system when

additional budget funds are available.
Tables 12, 13,2 and 143 list the prices of workstations,

SMPs, and networks. They are estimated prices. The actual

prices may change by the time this paper is published.

Fortunately, the accuracy of the prices is not critical here.

We are only using these as examples to show how to use the

cost model to design a nearly optimal cluster for an

application.
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TABLE 11
Comparison between the Modeling and Measured Performance Results of the TPC-C-Like Workload

on the Pentium Pro-Based SMP

2. This price is an estimated price, which is derived from the street price
of September 1996.

3. The ATM price is based on FORE's FORERunnerLE155 switch and
adaptor prices released in January 1998.

TABLE 10
The Measured Locality Data and the Pentium Pro-Based SMP Paramaters

2 This is calculated based on the clock rate of 200 MHz and CPU execution time per instruction of 0.97 cycles.



6.1 Case Study 1: $5,000 budget

Based on the prices of computers and networks, we
enumerate all possible clusters of workstation platforms
as shown in Tables 15 and 16. Since FFT and Radix require
the number of processors to be the power of 2, the possible
configurations for FFT/Radix are different from those for
LU/EDGE. There are five types of configurations, named
D1 to D5 for LU and EDGE. Table 15 gives those
configurations and the execution time per instruction,
measured in nanoseconds when running LU and EDGE
on each platform. Similarly, Table 16 lists those for FFT and
Radix.

For these applications, the performance, denoted by � �
1/(execution time), is different on different platforms.
Specifically, we have:

FFT : ��D7� > ��D8� > ��D6� > ��D10� > ��D9�;

LU : ��D3� > ��D1� > ��D2� > ��D4� > ��D5�;

Radix : ��D7� > ��D6� > ��D8� > ��D10� > ��D9�;

EDGE : ��D3� > ��D1� > ��D4� � ��D5� > ��D2�:
Platform D7 yields the best performance for applications

FFT and Radix. Platform D3 provides the best performance
for LU and EDGE. For a budget of $5,000, if the application
is of the type of FFT and Radix (having similar �, �, and 
),
we will select the platform which consists of two work-
stations, each of which has 256KB cache and 64MB main
memory, connected by a switch-based ATM network. For
the LU and EDGE type applications, a nearly optimal
platform would be a 100M bus-based network cluster
composed of three computers with 256KB cache and with
64MB of memory.

In order to match the same performance with a single

processor system to what the best $5,000 cluster can offer,

we use the same model to make predictions. For program

FFT, the single processor system should have a 1100 MHz

CPU, for program LU, the CPU speed should be 670 MHz,

for program Radix, 530 MHz, and for program EDGE,

510 MHz. We assume that the speeds of all other devices in

the system increase accordingly so that the numbers of

cycles they use are the same as those listed in Table 2.
For all four applications, increasing only the sizes of

cache and memory cannot reach the performance of the

best cluster. A large cache or memory can only reduce

the memory or disk access times, but cannot decrease the

time spent in the CPU execution. In contrast, parallel

execution of an application reduces the execution time

spent in each CPU.

6.2 Case Study 2: $20,000 Budget

The possible cluster computing platforms meeting the

budget requirements can be classified into two major

classes: workstation clusters and an SMP cluster. For the

same set of applications, they yield completely different

performances, as shown below (see Table 17 and Table 18):

FFT : ��D18� > ��D16� > ��D17� > ��D15�;

LU : ��D14� > ��D11� > ��D13� > ��D12�;

Radix : ��D18� > ��D16� > ��D15� > ��D17�;

EDGE : ��D13� > ��D11� > ��D12� > ��D14�:

An SMP cluster does not always offer the best perfor-

mance. It is suitable for FFT, LU, and Radix, but, for EDGE,

it is the worst option. An appropriately configured work-

station cluster (D11) yields the best performance for EDGE.
From the above discussions, it is clear that, for a given

budget, it is hard to predict which kind of cluster

computing platform is good for one specific application.

Our cost model gives a quantitative and easy way to

determine the optimal or nearly optimal choices for the

designer.
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TABLE 12
Workstation (Pentium-Based PCs without Monitors) Prices

TABLE 13
SMP (Pentium-Based Compaq Proliant 5000) Prices

TABLE 14
Network (ATM: FORE FORERunner LE155) Prices



6.3 Case Study 3: $5,000 Budget Increase

We assume that the original parallel computing platform

consists of four WS1 workstations connected by 100M fast

Ethernet. The $5,000 budget increase may be used in

1. increasing the number of nodes,
2. increasing the memory size of each node,
3. replacing 100M Ethernet with a 155M ATM network,

and
4. the combination of 1, 2, and 3.

Our model currently only covers homogeneous parallel

platforms. This imposes some limits on how to expand the

system.
Table 19 and Table 20 list three ways to expand the

system for LU/EDGE and FFT/Radix, respectively. The

performance of the four applications on the new platform is

also given in the tables. For all applications, D20 and D23
(which simply add another four workstations of the same

type) give the best performance. Comparing the upgraded
configuration of D19 with the original platform, we find

that, even though we only increase the number of nodes by
one, the combined effect of increasing the memory sizes and

reducing the remote memory access latency (through a fast

network) makes the performance of application LU increase
almost 50 percent. But, the effect on EDGE is not so

significant. This is because the locality of EDGE is better
than LU. For FFT and Radix, because of their number of

processors requirements, we could only increase the size of
memory and replace the network (D22). The improvement

is not so significant as that of increasing the number of
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TABLE 17
Possible Configurations of Clusters with a Budget of $20,000 for LU and EDGE and Their Modeling E�Instr� in Nanoseconds

TABLE 18
Possible Configurations of Clusters with a Budget of $20,000 for FFT and Radix and Their Modeling E�Instr� in Nanoseconds

TABLE 15
Possible Configurations of Clusters of Workstations with a Budget of $5,000 for LU and EDGE and Their Modeling E�Instr�

in Nanoseconds

TABLE 16
Possible Configurations of Clusters of Workstations with a Budget of $5,000 for FFT and Radix and Their Modeling E�Instr�

in Nanoseconds



nodes only (D23). The comparison between D20 and D21

indicates that, for LU and EDGE, and for the given remote

memory access latencies, the number of nodes affects the

performance more significantly than the size of memory.
For the $5,000 budget increase, the best way to upgrade

the system is to add four new identical nodes to the original

system if the applications are of the types we discuss here.

7 CONCLUSIONS

A major objective of this paper is to find a nearly optimal

cluster computing platform for a given budget and for

certain types of workloads in a timely and cost-effective

manner. We address the problem by proposing a perfor-

mance model to quantitatively predict the average execu-

tion time per instruction based on the locality parameter

values obtained by program memory access pattern

analysis. By comparing the average execution time per

instruction for an application on different cluster computing

platforms, we determine an optimal configuration for that

specific application. How to upgrade an existing cluster

platform in a cost-effective way for a given budget increase

can be addressed in the same model. Our analytical model

is verified by simulations and measurements. We also

present two case studies that use the model to effectively

build a cluster for different parallel computing applications

and a case study to upgrade an existing system.
Regarding the system upgrading, we have the following

recommendations: First, if the applications are CPU-bound

and budget is limited, money should be spent on increasing

the number of nodes, which will increase the aggregate

memory space and the total processing power. Second, if
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TABLE 21
Recommendations of Cost-Effective Cluster Configurations Based on Workload Characteristizations

TABLE 19
Increased Budget Platforms and Their Performance for LU and EDGE

TABLE 20
Increased Budget Platforms and Their Performance for FFT and Radix



applications are memory bound with poor locality, money
should be first spent on increasing cache/memory capacity
to reduce the network usage. If the network activities are
more or less independent of the cache/memory capacity,
upgrading the cluster network bandwidth should be the
first priority.

7.1 Recommendations for Cluster Configurations

Our study shows that the depth of the memory hierarchy is
the most sensitive factor for minimizing the execution time
for many applications. This factor is playing a more
important role as the speed gap between processors and
memory hierarchy access continues to widen and as the
memory hierarchy depth continues to increase. However,
the interconnection network cost of a tightly coupled
system with fewer levels of memory hierarchy, such as an
SMP, is significantly higher than a normal cluster network
connecting independent computer nodes. The essential
issue to be considered is the trade-off between the distance
of memory hierarchy and system cost. Table 21 gives
principles we obtained from the study and recommenda-
tions in building a cost-effective cluster system.

7.2 Limitations of This Study

Modern processors exploit instruction level parallelism
(ILP) by performing out-of-order executions of instructions.
With the ILP processor technology, CPU executions and
memory references can be overlapped. The overlapping
degree depends on the length of the processor pipeline and
other architectural designs, and instruction dependencies of
application programs. The average execution time model
for an instruction, (3.4), still holds in principle for ILP
processors. However, the memory access rate increases for a
given application program on an ILP processor and
memory reference times can be partially overlapped with
CPU operations. Thus, (3.5) should be adjusted to reflect the
overlapping, as we did in the TPC-C case study. The
formula used for calculating the access rate, �, (for example,
those in (3.16)) also need some revisions to reflect
concurrent executions of instructions.

Modeling ILP processor behavior is much more complex
than modeling processors with in-order executions. One
way to characterize the dynamic ILP behavior using our
model is to introduce a new set of weight parameters,
which quantifies the ratio between the number of con-
current instructions and the total number of instructions in
a workload and quantifies the overlapping between CPU
operations and memory accesses. Our model needs some
revisions to use these parameters. The accuracy of the
revised model is determined by the accuracy of weight
parameters which are ILP processor architecture- and
application workload-dependent.

7.3 Future Work

We are currently working on four supporting tools and
integrating them together:

1. an efficient tool to collect application program
memory access traces,

2. a trace analysis tool to compute the application
parameters �, �, and 
,

3. a trace tool to measure and quantify ILP overlapping
parameters, and

4. a tool to support the generation of all possible cluster
configurations meeting the budget requirements.

We believe software that integrates these tools will provide

a timely and effective vehicle to support the design of cost

effective parallel cluster computing.
Our model currently only covers homogeneous cluster

platforms. The model can be extended to evaluate hetero-

geneous platforms by making variables associate with each

individual node. The memory access rate in each node is no

longer a constant, which makes the modeling work more

complex. We will address this difficult issue by developing

approximation methods and by collecting more dynamic

data in experiments.
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