
SIAM J. ScI. STAT. COMPUT.
Vol. 13, No. 4, pp. 841-859, July 1992

(C) 1992 Society for Industrial and Applied Mathematics

001

PARALLEL METHODS FOR SOLVING NONLINEAR BLOCK BORDERED
SYSTEMS OF EQUATIONS*

XIAODONG ZHANG], RICHARD H. BYRD$, AND ROBERT B. SCHNABEL$

Abstract. A group of parallel algorithms, and their implementation for solving a special class ofnonlinear
equations, are discussed. The type of sparsity occurring in these problems, which arise in VLSI design,
structural engineering, and many other areas, is called a block bordered structure. The explicit method and
several implicit methods are described, and the new corrected implicit method for solving block bordered
nonlinear problems is presented. The relationship between the two types of methods is analyzed, and some
computational comparisons are performed. Several variations and globally convergent modifications of the
implicit method are also described. Parallel implementations of these algorithms for solving block bordered
nonlinear equations are described, and experimental results on the Intel hypercube that show the effectiveness
of the parallel implicit algorithms are presented. These experiments include a fairly large circuit simulation
that leads to a multilevel block bordered system of nonlinear equations.

Key words systems of nonlinear equations, parallel computation

AMS(MOS) subject classifications. 65H10, 65W05

1. Introduction.
1.1. Definition of block bordered nonlinear problems. In this paper we present a

group of parallel algorithms and their implementations for solving a special class of
nonlinear equations, instances of which occur in VLSI design, structural engineering,
and many other areas. The class of sparsity occurring in these problems is called a
block bordered structure. In such a problem the general system of n nonlinear equations
in n unknowns may be grouped into q + 1 subvectors xl,’’’, Xq+l and fl,""" ,fq+l
such that the nonlinear system of equations has the form

(1.1)

where

fi(xi, Xq+l)--0, i= 1,""", q

fq+l(Xl, ,Xq+l)--O

X E R hi,

fiE R ni i=1,’’’ q+l

q+l

i=1

The block bordered Jacobian matrix of (1.1) is

A1
A2

(1.2) ".

aq
C C C

nl

Received by the editors January 16, 1990; accepted for publication (in revised form) May 14, 1991.
This research was partially supported by Air Force Office of Scientific Research grant AFOSR-85-0251.

? Division of Mathematics and Computer Science, University of Texas, San Antonio, Texas 78285-0664
(zhang@ringer,cs.utsa.edu).

S Department of Computer Science, University of Colorado, Boulder, Colorado 80309-0430
(richard@cs.colorado.edu and bobby@cs.colorado.edu).

841

842 X. ZHANG, R. H. BYRD, AND R. B. SCHNABEL

where

Ai=0fR"n",, i=l,...,q,

B=Rn’xnq+’ 1
OXq+

Ci
Ofq+l

G Rnq+lXn., 1
Ox

q,

q,

p Ofq+l Rnq+,Xn+,
OXq+

Newton’s method is the fundamental approach for solving a general nonlinear
system of equations. Several parallel algorithms for solving general systems of nonlinear
equations that are based upon Newton’s method have been developed and implemented
on various parallel computers. These parallel algorithms consist mainly of solving the
linear Jacobian system in parallel. Many parallel algorithms have been developed for
solving linear systems, such as as parallel factorizations, parallel SOR methods, parallel
red-black methods, parallel multicolor, and others (see e.g., Ortega and Voigt [1985],
O’Leary and White [1985], White [1986], Fontecilla [1987], and Coleman and Li
[1990]).

In the case of very large nonlinear problems we cannot expect a single parallel
algorithm to efficiently handle all the instances of the system of nonlinear equations
problem, but rather the algorithm must take into account the sparsity structure and
other special characteristics of the problem. In fact, many nonlinear problems arising
in applications have their own special sparsity structure. Parallel algorithms taking
advantage of this special structure may be much more efficient than the algorithms
ignoring the special structure. This paper is an instance of developing special algorithms
for a special, important structure.

1.2. Background on block bordered problems. Block bordered problems of the
form (1.1) arise in many areas of science and engineering, and a few algorithms have
been developed to efficiently solve linear block bordered systems of equations. In
applications such as structural engineering, large spatial models may be divided into
q regions such that each region only interacts directly with neighboring regions. The
variables x for each region are chosen so that the model can determine their values,
given the values of the linking variables (the xq/l) at the boundaries of the regions.
The linking variables are tied together by a (q + 1)st set of equations representing the
interactions between the regions. Thus the equilibrium equations for such a model will
be of the form (1.1). In addition, the Jacobian matrix is symmetric. These problems,
and parallel algorithms for solving the linear block bordered systems that arise from
them, are discussed in Farhat and Wilson [1986] and Nour-Omid and Park [1986].

Mu and Rice [1989] study parallel Gaussian elimination for the block bordered
matrices arising from the discretization of partial differential equations (PDEs).
Christara and Houstis 1988], 1989] implement a domain decomposition spline collo-
cation method and a preconditioned conjugate gradient (PCG) method for this linear
block bordered system on both NCUBE/7 and Sequent multiprocessors.

All the work described above concerns parallel methods for solving linear block
bordered equations. Our research is to develop, implement, and analyze parallel
methods for solving nonlinear block bordered problems. To our knowledge, no one
has done similar work.

PARALLEL METHODS FOR BLOCK BORDERED EQUATIONS 843

Block bordered equations also arise in VLSI circuit design, where parts of the
circuits may be divided into regions. The concept of macromodeling the circuit is to
decompose the circuit into subcircuits and to analyze the subcircuits separately (see
Rabbat, Sangiovanni-Vincentelli, and Hsieh [1979] and Rabbat and Sangiovanni-
Vincentelli [1980]). Macromodeling of the circuit results in a system of nonlinear
equations of form (1.1). Ai and Bi (i 1,..., q) in the Jacobian matrix are usually
used to represent internal and input-output variables in each of the q independent
subcircuits. The variables represent voltages and currents. The bottom block fq+l
represents the voltages or currents between subcircuits. Since each voltage or current
is used only in one block of equations f plus possibly the bottom block fq+l, the
nonzero columns of the Bi’s (and A) are disjoint, meaning that the matrices Bi, Bq
in (1.2) also follow a block diagonal pattern. In addition, since fq/l describes the
point-to-point connections of voltage and current, it is a linear function. The size of
the function fq+ depends on the number of connections among the subcircuits.

We have studied parallel methods for solving block bordered nonlinear equations
extensively from both theoretical and practical viewpoints. Section 2 considers the
explicit method and several implicit methods for solving block bordered nonlinear
equations, and presents a new implicit approach--the corrected implicit method. A
mathematical analysis of the two types of methods and a computational comparison
in a sequential context is made. Section 3 briefly discusses techniques used to make
these methods globally convergent. In 4, we give a group of parallel algorithms for
solving block bordered nonlinear systems of form (1.1), which may be implemented
and distributed on both shared and distributed memory multiprocessors. The
implementations and experimental results of these algorithms on the Intel hypercube,
a distributed memory multiprocessor, are presented in 5. Finally, our conclusions
and some future research directions are summarized in 6,

2. Explicit and implicit methods.
2.1. Introduction. There are two basic ways in which Newton’s method can be

applied to the nonlinear block bordered system of equations (1.1), which we refer to
as the explicit and implicit approaches. The explicit approach is to simply apply
Newton’s method to (1.1). This involves iteratively solving the linear system

(2.1) (X)AX:-(X), =0, 1,...

for AX k, where J(X ’) is the Jacobian of F, which has the block bordered structure
(1.2), and X (x,. ., xo, x0+).

The pure implicit approach is to use each of the q systems of nonlinear equations

(2.2) f(xi, Xq+l)--0, i= 1,’’’, q

to solve for x, given a fixed value of Xq/ This means that each of the x is implicitly
given by a function of Xq/. The whole problem (2.2) is then equivalent to solving

(2.3) fq+,(Xl(Xq+),’’’, Xq(Xq+l) Xq+l) O.

The Jacobian of this system is given by

(2.4) .= Ofq+
OXq+l

or

(2.5)

Ofq+l(Of
-1 of

i=1 Oil IkOXi] OXq+l

q. P CiA7 1Bi
i--1

844 X. ZHANG, R. H. BYRD, AND R. B. SCHNABEL

and we may solve (2.3) by Newton’s method. We will be considering practical variants
of the implicit method that do not calculate xi(xq+,) exactly. We assume here and for
the rest of 2 that the matrices Ai and J are nonsingular. The situation where this
does not hold will be discussed in 3.

In this section we describe the explicit and implicit methods and their relations
to each other, introduce the new corrected implicit method, and give some simple
experimental results using these methods on a sequential computer.

2.2. Algorithms and analysis for the explicit and implicit methods. Newton’s method
applied to (1.1) in the explicit method consists of solving the following linear equations
at iteration k (k=0, 1,...)" from f(x)=0, i= 1,..., q,

(2.6) AAxki + BiAxk k++f,(x,, x+) 0,
kand from fq+,(xk, Xq, Xq+,) O,

q

(2.7) q+l
i=1

(For simplicity, we omit superscripts k on Ai, B, C, and P, but note that at least the
Ai’s and Bi’s can change at each iteration.) Solving for Ax/k in (2.6) and substituting
into (2.7), we obtain

q

(2.8) YAxg --fq+,(xk, g g g
q+l "’’, Xq, Xq+l)’+- Z CiAT’f(xki, Xq+l)

i=1

where J is given by (2.5). So
k+ k qk(2.9) Xq+ll Xq+ "]- AX +1

can be determined from (2.8), and

(2.10) x/k+’= x/k+Ax/k, i= 1,..-, q

can be determined from (2.6).
In the pure implicit method, Newton’s method is applied to (2.3) and gives

(2.11) a?AXqk+, +fq+,(X,(X g g g+,), x(x+,), x+,) o,
where x(xq+,) (i 1,. ., q) is implicitly determined by solving the nonlinear system

(2.12) f(x,, gXq+l) --’0

for xi. To turn this into a practical computational procedure, we use a second (or
inner) Newton process on (2.12) to calculate xi(Xq+,), which solves (2.12) approxi-
mately. For each 1,-.., q, this yields the inner iteration

(2.13) iAxki,J-1.3vfi(xki,J-1 kx+,)=0, i= l, q, j= l,2, Ii,,.

Here x/’= Xk, Ii,, is the number of inner iterations, and i Ai if it is only evaluated
once at the beginning of each outer iteration; or, it may be evaluated up to Ii times.
At the end of each inner iteration, we set

(2.14) x/k’j= x/kd-’ + Ax/kd-’, i= 1, q.

When we exit the inner iterations, we set
k /k+l ".(2.15) xi(xq+,) x xki ’2

Then Xq+l is determined from (2.11) and
k+ k AXqk+l.(2.16)

PARALLEL METHODS FOR BLOCK BORDERED EQUATIONS 845

The implicit Newton iteration (2.11) is also considered by Rabbat, Sangiovanni-
Vincentelli, and Hsieh 1979], but instead of focusing on the number of inner iterations,
they assume that (2.12) is solved to some tolerance. By considering a method with a
fixed number of inner iterations, we are led to the following theorems, which show a
close relationship between the explicit method and the implicit methods just described.
We are also led to a new method--the corrected implicit method.

THEOREM 1. Iffq+l is linear, the matrices Ai and J are nonsingular, and only one
inner Newton iteration is applied to solve for xi ’j (i= 1,..., q) in the implicit method,
i.e., I, 1, then for a fixed k, the steps Axq+l are identical in both methods.

k k+l k+l kProof In this case xi +1 =x-AC, lf(x, xq+l) and fq+l(xl ,’" ", xq xq+l)
k k ciaYlfi(xk xkfq+,(x,..., Xq,Xq+l)-Yqi=l -, q+l). Substituting this into (2.11) gives

(2.17)
q

1, ,xq, xq+l)+ E cia:, lf(xi, k
Xq+ll,]

i=0

which is identical to the explicit formula (2.8).
The corrected implicit method. In the implicit method described above, the steps

Axi for < q do not involve any information about fq+l or Axq+l, and are not the same
as in the explicit method. If the value of xi+l(i <= q) calculated by the implicit method
is corrected after each iteration to account for the change in Xq+l, however, the implicit
method can be made closer to the explicit method and quadratically convergent. The
problem may be defined to find a correction term 6 such that

k+l(2.18.) f(X/k+l+ 8, Xq+l)0
or

(2.19) fi(xi+ + 6, xq+ 1-11- Ax 0q+l

Making a linear approximation to f/ in (2.19) yields the condition

(2.20) Xq+l) +A+ BAxk
q+l 0.

The correction term 6 obtained from (2.20) would then be

(2.21) 8 _A/l[f(xi+l k k
Xq+l -[- BiAx].q+l

However, after I, inner iterations of solving for xk+1 f(xk+1 k
Xq/l) O. Thus we make

a further approximation giving the correction term

(2.22) i -A71BiAxkq+l
We call the new implicit method with this correction the corrected implicit method. The
cost of the correction term (2.22) is small since the matrices AC, Bi (i 1,..., q) have
been calculated already and in a parallel implementation, the matrix-vector products
can be parallelized fully.

We can now see that when fq+ is linear, the explicit method is a special case of
the corrected implicit method.

THEOREM 2. Iffq+ is linear, the matrices Ai and J are nonsingular, and only one
Newton iteration is applied to solve for xki " (i 1,’’’, q) in the implicit method, i.e.,
In 1, and the system is corrected by adding -A,IBAxq+I to xgi+l(i<=q) after each
iteration, then the explicit method and implicit method are identical.

k is identical for the two methods Combining (2.14)Proof From Theorem 1, AXq+l
with j 1 and (2.22) gives

(2.23) k kXi +1 Xi A;l[fi(xki,, Xq+l) BiAxq+
which is identical to (2.6) in the explicit method.

846 X. ZHANG, R. H. BYRD, AND R. B. SCHNABEL

This equivalence, together with the standard convergence analysis for Newton’s
method, gives the following convergence result.

COROLLARY. Suppose J(X) is continuously differentiable near a solution X*, the
matrices Ai(x*) and J(X*) are nonsingular, andfq+l is linear. Then the corrected implicit
method with Iin 1 inner iterations per outer iteration is locally quadratically convergent
to the solution.

Quadratic convergence can also be shown for Ln > 1 and when fq+l is nonlinear.
The proof is given in Zhang [1989], and is based on the fact that the extra inner
iterations tend to move X closer to the solution, and the nonlinearity in fq+l at most
adds a term of order IIx-x*ll= to the error at X k+l.

2.3. Some experiments on a sequential processor. The previous subsection shows
that a variant of the implicit method is equivalent to the explicit method, but does not
indicate why the implicit method might be preferred. The main reason is that, by using
more than one inner iteration per outer iteration in the implicit method, the number
of outer iterations can be reduced substantially, which is advantageous, especially for
parallel computation. In this subsection we give a first indication of the sort of
computational behavior that we have found.

We initially tested the methods discussed in this section on several artificial
problems. Here we report results on a simple 20 20 nonlinear block bordered system
of quadratic equations that has four 4 4 blocks, A1, , A4, and a 4 4 bottom block
P, with fq+l linear. In all cases, the starting value of x was close to the solution, and
no global strategy (e.g., line search) was used. All these experiments were run on a
Pyramid P90 computer.

First we compare the performance of the three methods when only one inner
iteration (Iin 1) is used in the uncorrected implicit and corrected implicit methods
(Table 2.1). The explicit method and the corrected implicit method with I 1 are
identical in this case (see Theorem 2). Thus the same number of iterations is required
to converge to the solutions. The computing times are slightly different since the
implementations of the two methods are different. The uncorrected implicit method
converges more slowly than the other two methods, which is reasonable since the
correction step is needed to make it quadratically convergent.

TABLE 2.1
Experiments with the three methods.

(Ii, 1) Outer iterations (seconds)

Explicit Implicit Corrected implicit

13 (0.44) 14 (0.40) 13 (0.40)

Next we increased the number of inner iterations in the uncorrected and corrected
implicit methods. The experimental results (Tables 2.2 and 2.3) show that the number
of outer iterations is sharply decreased when the number of inner iterations is two.
However, the number of outer iterations decreases more slowly as Ii, increases further.
There exists an optimal value Iin for computing time in both the methods, but it is
problem dependent. Our experiments also show that the corrected implicit method
converges a little bit faster than the uncorrected implicit method when I, > 1, which
is consistent with our convergence analysis. In 5 we will see that for larger problems,

PARALLEL METHODS FOR BLOCK BORDERED EQUATIONS 847

TABLE 2.2
Experiments with the (uncorrected) implicit method.

(/n > 1) Outer iterations (seconds)

Ii.=l I,, 2 I.,=3 I.,=4 I,, 5

14 (0.40) 8 (0.34) 7 (0.40) 6 (0.44) 6 (0.54)

TABLE 2.3
Experiments with the corrected implicit method.

(Ii > 1) Outer iterations (seconds)

I.,=1 I.,=2 1.,=3 I,, 4 I,, 5

13 (0.40) 8 (0.38) 6 (0.36) 6 (0.50) 5 (0.54)

the improvements in time for the corrected implicit method with L > 1 can be consider-
ably larger than t’hose seen here. Also, we will see in 4 and 5 that the decrease in
iterations is advantageous for parallel computation.

3. Globally convergent modifications of the explicit and implicit methods. The expli-
cit method and corrected implicit method are locally quadratically convergent to the
solution. In other words, when the initial solution approximation is good enough,
those methods are guaranteed to converge rapidly to a solution. However, it is often
hard to find a good initial approximation for nonlinear problems in practice. In addition,
many practical problems, such as the circuit equations, are highly nonlinear, and if
the current solution approximation is not close enough, a Newton step may easily
result in an increase in the function norm. For example, a small change in some voltage
difference in a nonlinear circuit equation may result in a great change in an exponential
term in a diode or transistor’s function evaluation. Also, many block bordered equations
result in nearly singular or singular Jacobians in the process of the iterations, for
example, because a transistor with an exponential model is turned on at a nearly fiat
function curve (see Zhang, Byrd, and Schnabel 1989]). For these reasons, the methods
need to be modified to handle unacceptable steps and singular Jacobian matrices in
order to converge to a solution. In this section, we briefly describe the modifications
we have used, which are motivated in part by their appropriateness for parallel
distributed computation. They are described in more detail in Zhang [1989]. A global
convergence analysis will be given in a forthcoming paper.

We achieve convergence from poor starting points by using a line search. The
explicit method is just a standard Newton’s method, so we can use a standard line
search. That is, we calculate the overall step direction d k --(AXlk’’" Axq, AXqk+l) as
described in 2.2, and then set

xk+I Xk -- Akd k,
where the steplength parameter A k > 0 is chosen by a line search procedure that assures
sufficient descent on [IF(X)II2. Our line search is based upon Algorithm A6.3.1 in
Dennis and Schnabel [1983].

The implicit method is more complicated since we have both inner and outer
iterations. We need to choose the steps Axk3= (xk3+l- xk3) in the inner iterations so

848 X. ZHANG, R. H. BYRD, AND R. B. SCHNABEL

that the overall step direction

(3 a 2 q+l
X j=0 j=0

where) is the correction step (2.22), is a descent direction on IIF(x)ll=, In addition,
we would like the calculation of the steps Ax’j for different values of to be
independent, so that the calculations of the inner iterations can be parallelized easily
and eciently.

Zhang [1989] shows that if each Ax"j is calculated by

(3.2) Ax’=-A’jA(x"j Xq+), i= 1,..., q

(i.e., the step discussed in 2.2 multiplied by a line search parameter I’J>0), the
correction steps are calculated by (2.22), Ax+ is calculated by (2.11) as before,
and fq+ is linear, then d given by (3.1) satisfies

J(X)d

j ,jXq+l), 2 Xq Xq+l),fq+l(X1,’’’ Xq, Xq+l)
j =o =o

Since the derivative of I[F(X)ll in the direction d is equal to

q Iin
F(X) J(X)d 2 (X

=o j=o

it is clear that a sucient condition for d given by (3.1) to be a descent direction on

Ilf(x)l is that for each i= 1,..., q,

Iin
(3.3) 2 A’J(x"j, Xq+)> 0.

j=0

Note that (3.3) always holds for Ii 1 (since each ’ >0), and that it is true for

I 2 if ll(x)’ ,Xq+)ll < ll(x’,Xq+)ll (which any line search will enforce) and
.o Thus we expect to get a descent direction most of the time. However, since

(3.3) can be monitored independently for each i, the following parallel procedure
could be used to guarantee that a descent direction is generated. For each j, the
procedure calculates each Ax"j by (3.2) using a standard line search as mentioned
above, and then checks whether the corresponding paffial sum of (3.3) is satisfied. If
it is not, it sets Ax’ =0 for =j,..., I- 1 and exits the inner iteration for xi. The
outer line search can be performed as in the explicit method.

Our approach for dealing with (nearly) singular Jacobians is based upon the
Levenberg-Marquardt approach as described in Dennis and Schnabel [1983]. For a
general system of nonlinear equations, if the current Jacobian matrix J is (nearly)
singular, this approach modifies the search direction to be _(jrj + I)-jTF, where
F is the current function value, and is a small positive number. This direction is a
descent direction on [[F(x)lle and is the solution to the trust region problem

minimized F+ Jd [12 subject to d 112 <- A

for some A> O. In the limit as /x-O, this direction equals -J+F, where J+ is the
pseudoinverse of J.

PARALLEL METHODS FOR BLOCK BORDERED EQUATIONS 849

In the explicit and implicit methods described in 2, we need to solve systems of
linear equations using the matrices A,..., Aq and the matrix . P-Y CiAT,Bi.
If any of these matrices, say, M, is nearly singular (i.e., either the factorization detects
numerical singularity or the estimated condition number of M is greater than
macheps-1/2) we simply replace M- by (MTM+ txI)-IM T in the formulas of 2,
where /z is chosen by the trust region strategy described by Dennis and Schnabel
[1983], and is thus a function of M and the trust region size. These perturbations
again have interpretations in terms of trust regions. Note also that the algorithms for
deciding whether to perturb each A,..., Aq, and for perturbing them if necessary,
are totally independent so that they can be performed in parallel.

Combining these perturbation techniques with the inner line searches to assure
descent at the outer iteration and global convergence is somewhat more complex, and
will be addressed in a future paper. In our implementations, we have simply taken Ii,
inner iterations for each block i, i= 1,. ., q. We have used a standard line search to
choose each A’ (requiring sufficient descent on.f) but have not checked a condition
like (3.3) that assures global descent, as this condition is more restrictive than necessary.
To our knowledge, the algorithm has still always produced a descent direction.

The algorithm we implement is summarized below. If J or any Ai below is (nearly)
singular,)-1 or A-1 is replaced by (.T.+ tzI)-IjT or (AfAi+ tziI)-lATi for a small
positive/x or/xi, respectively. When fq+ is linear, the explicit method is just a special
case with In 1 and each A’1= 1.

IMPLICIT METHOD WITH GLOBAL MODIFICATION
k1. For j 0,..., Ii, 1, calculate x"+1 x)d- A’aT,lf(xd x,+l) where)’-> 0,

i=l,...,q.
2. Form and factor .= P-q CAB
3 Calculate x _-lf+(. ,,.,X1, m, Xq q+q+l X 1)"
4. Calculate the corrections =-A’BAx+, and set ff+’= x’z’-+6, i= 1,..., q.
5. CalculateX+=X-Adkwhere d=(ff+-x,...,q+-xq, Axq+).

4. Parallel explicit and implicit algorithms.
4.1. Motivation--LU factorization of block bordered linear equations. Note that

the LU factorization of the block bordered Jacobian matrix

A1 B1
A2 B2

o
Aq Bq

C C2 Cq P

\Cl2"’’qLq+l
where for i- 1,.--, q,

U1

Ai LiUi

i L1Bi

850 X. ZHANG, R. H. BYRD, AND R. B. SCHNABEL

and

q q

Lq+l Uq+l . P E C,AT, B, P ., (?i,,
i=1 i=1

provided that the matrices AX are non,singular. (This is the same matrix J as in 2.)
The calculations of Li, Ui, B, and C for each are independent, and thus can be
parallelized very efficiently. The factorization of must follow these calculations and
will not parallelize as efficiently, especially on distributed memory multiprocessors,
because it will require considerable communication.

A parallel version of the explicit method essentially consists of performing the
above factorization in parallel at each iteration. The parallel version of the implicit
method that we discuss next will be seen to perform closely related operations. The
major difference will be that, by performing more than one inner iteration per outer
iteration, it will spend a larger portion of its time on the calculations that parallelize
very efficiently (those for blocks 1,..., q) and a smaller portion of its time on the
calculations that parallelize less wellmthe formation and factorization of J and the
outer line search. Thus the implicit method can be expected to parallelize more
effectively than the explicit method, especially on distributed memory computers. If
the two methods require similar amounts of time on sequential computers, as indicated
in 2, then the implicit method can be expected to be faster on parallel computers.

4.2. Parallel algorithms. Below we give a general description of a parallel corrected
implicit method that is based upon the sequential method presented in 2 and 3. The
parallelism comes mainly from executing all the operations on blocks 1 through q,
which have been designed to be independent, concurrently. The parallel explicit method
is just the special case with//n 1 and no inner line search.

INNER ITERATIONS
1. For i= 1, q, Do in parallel:

1.1. Factor Ai and estimate its condition number Cond (A).
1.2. If Cond (A) <- Tol then set M A, N =/.

Else choose/x > 0, form and factor Mi AfAi + I, set Ni Ai.
1.3. For j 0, /, 1, Do:

Solve MiAxki "j Nif(xki,J kXq+l) for Ax/k’j.
Inner line search" x/k’j+l x/k + A/k"JAXk’j for some hk’ > 0.

1.4. Solve MiW NB for W.
1.5. Calculate T/= CW.

OUTER ITERATION
2. Form = P-/q= T/.
3. Factor J and estimate its condition number Cond (.).
4. If Cond (.) -_< Tol then set M], N-- L

Else choose/x > 0, form and factor M ?r. +/z/, set N= jr.
5. Solve k k I. k,I. kMaXo/l Sf/(,x , /.Xl’ ,n, Xq+l) for AXq
6. For 1, q, Do in parallel:

Calculate corrections 8 W/Axq+l and set
7. Outer line search: xk+l X k +/k(lk+l _Xk -k+l k AXk

Xq Xq, q+l) for some

The steps marked with stars require synchronization (on a shared memory multi-
processor) or communication (on a distributed memory multiprocessor). Step 2 requires
synchronization if the matrices Ti are full. In the VLSI problems, however, the nonzero

PARALLEL METHODS FOR BLOCK BORDERED EQUATIONS 851

columns of Bi, and hence T, are disjoint (see 1.2) and hence step 2 can be performed
in parallel.

On shared memory machines, steps 3-5 can be performed in parallel using standard
parallel methods for solving linear equations. On a distributed memory machine, it
will only be efficient to perform steps 3-5 in parallel if the dimension of J is rather
large. In our test problems, J was fairly small, so we performed steps 3-5 on one
processor, on which we kept P, J, and xq/l. The remaining data was distributed in the
obvious way: Ai, Bi, Ci, and x were stored together on one processor that handled
block i. Step 7 includes two main operations, the calculation of trial points :k+l and
the evaluations of F at the points, which are performed in parallel on a shared memory
machine, and may be performed in parallel on a distributed memory machine depending
on their costs relative to the cost of communication.

5. Experimental results on a hypercube multiprocessor.
5.1. The test problem: A nonlinear block bordered circuit equation. The nonlinear

block bordered application we consider for testing is the VLSI circuit simulation
problem. Standard circuit simulation methods consist of stiffly stable implicit integra-
tion formulae to discretize the differential equations, Newton’s method to solve the
resulting nonlinear algebraic equations

(.) F(X) =0,

and sparse LU decomposition to solve the linear equations that arise at each iteration

(5.2) JaX -F(X),

where J R is the Jacobian matrix of (5.1). Typically, less than 2 percent of the
entries of J are nonzero for n > 500 (see, e.g., Sangiovanni-Vincentelli and Webber
[1986]). The Newton iteration is repeated until the solution converges or the upper
bound on the number of iterations is reached. The program then decides whether to
accept the solution, based on its estimate of local truncation error and the number of
iterations required.

As mentioned in 1.2, partitioning the circuit leads to a block bordered system
of nonlinear equations of the form (1.1) (see, e.g., Rabbat, Sangiovanni-Vincentelli,
and Hsieh [1979]). Given a circuit network F, a group of partitioned subnetworks %,

1,..., q, and the connecting current and voltage equations, the block bordered
nonlinear system of equations is defined as follows. Currents between two subnetworks
and voltages at the boundary are each represented by two variables, one in each
subnetwork, which are set equal to each other by equations of fq+l. Variables x
(i= 1,. ., q) are used to represent internal voltages and current variables in each of
the q independent subnetworks. Some of these are the current connecting variables
among the q subnetworks. The variables Xq+ are used to represent the voltage connect-
ing variables among the q subnetworks. Here the equations for voltages and currents
are standard current equations involving resistors, transistors, diodes, voltage sources,
and other elements. Since the connecting equationfq+ is linear, the coefficient matrices
C, i-- 1,. ., q for the current connecting functions are constant, and the coefficient
matrix P for the voltage connecting function is also constant.

For a very large circuit, the network F may be divided into subnetworks recursively,
which leads to a multilevel block bordered system of nonlinear equations. In such a
case, the diagonal blocks A (i 1,..., q) are themselves block bordered matrices.
The border elements of the multilevel system represent the connections of the highest
level.

852 X. ZHANG, R. H. BYRD, AND R. B. SCHNABEL

We applied our algorithm to a simulation of the 741 op-amp circuit (see, e.g.,
Sedra and Smith [1982]), which was introduced in 1966 and is currently produced by
almost every analog semiconductor manufacturer. The circuit is partitioned into four
parts with roughly equal nodes in each subcircuit. A transistor is viewed as a nonlinear
three-terminal device in the circuit. Thus, applying the Ebers-Moll transistor model
(see Ebers and Moll [1954]), 24, 27, 23, and 27 KCL functions are defined in the first,
second, third, and fourth block, respectively. The seven connections among the four
blocks result in 14 linear current and voltage connecting functions. The total number
of variables is 24 + 27 + 23 + 27 + 14 115.

We also used a large analog filter composed of three 741 op-amp circuits (see,
e.g., Smith [1971] and Valkenburg [1982]) to construct a two-level block bordered
nonlinear system. The analog filter is first partitioned into three parts, each of which
contains one 741 op-amp circuit. The first-level block bordered structure is thus formed
with three diagonal blocks and one connecting block. Each of the diagonal blocks is
a 741 op-amp circuit that is partitioned into the second-level block bordered structure.

5.2. The 741 op-amp circuit simulation on the Intel Hyperculae. The nonlinear block
bordered equations of the 741 op-amp circuit were solved in parallel on an Intel iPSC1
hypercube using the algorithm of 4.2. The four blocks of the circuit were distributed
among four nodes ofthe hypercube. For convenience, the steps involving the connection
function fq/ (steps 3-5 of the parallel algorithm) were performed on a different node
which plays the control role. They could just as well have been done on one of the
four nodes. Identical initial values were used as the inputs for all the above experiments,
and the convergence tolerances were also the same for those experiments. The solutions
of the experiments were verified by comparing them to the solutions computed by the
program SPICE, which is a general-purpose circuit simulation program for nonlinear
dc, nonlinear transient, and linear ac analysis (see Newton, Pederson, and Sangiovanni-
Vincentelli 1988]).

Tables 5.1 and 5.2 show the experimental results for the explicit method. Tables
5.3 and 5.4 list the experimental results for the corrected implicit method with one or
more than one inner iterations per outer iteration and with inner line searches. Note
that as long as the inner line search is applied, the corrected implicit method even
with one inner iteration per outer iteration is not the same as the explicit method.

In Tables 5.1 and 5.3, Ti (i 1, , 4) is the total computing time for all computa-
tions for solving the ith diagonal block on node i, Tb is the total computing time for
all computations for solving the bottom block on the control node, Tc is the total

TABLE 5.1
The explicit method times for the op-amp 741 circuit.

12.81 14.20 13.45 14.58 3.42 0.43 20

TABLE 5.2
The explicit method parallel performance for the op-

amp 741 circuit.

L Tp sp eff

58.46 18.43 3.14 78.5%

PARALLEL METHODS FOR BLOCK BORDERED EQUATIONS 853

TABLE 5.3
The corrected implicit method times for the op-amp 741 circuit.

11.81 13.06 11.96 13.28 2.84 0.38
2 12.60 14.01 12.83 14.45 1.65 0.32
3 11.28 12.84 11.46 13.01 1.38 0.25
4 18.48 20.57 18.81 21.34 1.32 0.25
5 29.04 32.12 29.92 32.89 1.34 0.24

18
15
12
11
11

TABLE 5.4
The corrected implicit method parallel performance for the op-amp

741 circuit.

Ii,, L Tp sp eff

52.95 16.5 3.21 80.25%
2 55.54 16.42 3.38 84.50%
3 49.97 14.64 3.43 85.75%
4 80.52 22.91 3.50 87.500/0

5 125.31 34.47 3.60 90.0%

communication time for the computation, No,.,t is the total number of outer iterations
required to converge to the solution, and Iin in Table 5.3 is the number of inner
iterations used in the corrected implicit method. In the performance Tables 5.2 and
5.4, Ts is the computing time for solving the same problem on one node"

4

L ., Ti + Tb,
i----1

Tp is the parallel computing time;

Tp =max (Ti, , T4)+ Tb + T,

sp is the speedup of the parallel computation:

sP re
and elf is the parallel efficiency defined by

eff=
sp

number of processors"
Our experiments show that the inner line search and inner iterations indeed speed

up the convergence to the solution. For example, the experiment with one inner iteration
with inner line search used 18 iterations to converge to the solution. The same
experiment without inner line search (explicit method) used 20 iterations. As the
number of inner iterations In is increased, the total number of outer iterations Nou,
decreases from 18 to 11, and the speedup increases because the bottom block computa-
tions constitute a smaller percentage of the overall computation. However, the sequen-
tial computing time only decreases by a small amount for Ln 3, and then increases
dramatically because the cost of the extra inner iterations swamps the smafi s:vings
from the further decrease in the number of outer iterations. Both the sequential and

854 X. ZHANG, R. H. BYRD, AND R. B. SCHNABEL

parallel computing times are minimized when the number of inner iterations is L, 3,
and the speedup in this case, 3.43, is good.

Our experiments also show that the bottleneck computing time Tb of the corrected
implicit method is more than 50 percent lower than in the explicit method if more
than one inner iteration is applied. The communication time is also lower since the
total number of iterations, and hence the time to send the updated variables among
the nodes, is less than for the explicit method. Consequently, the advantage of the
implicit method over the explicit method should be greater in larger problems where
the amount of communication and cost of solving the bottom block are larger.

5.3. Experiments for two-level block bordered circuit equations. We also solved in
parallel the two-level system of nonlinear block bordered equations for an analog filter
formed by connecting together three blocks of the 741 op-amp circuit. We again used
the Intel iPSC1 hypercube multiprocessor. The linearization of these equations at each
iteration has the form

(.3) Jax -F,

where J is the two-level block bordered matrix

n

p1Cq

Bq

A3 B

U

A B

and

F (fll, ., fq, fq+l, fl, ", fq, fqZ+,, f3,.. ", fq3, f3,, f+,) T

The system (5.3) could be solved by applying the block bordered solver to each
of the three block bordered submatrices, and then solving the whole system by applying

PARALLEL METHODS FOR BLOCK BORDERED EQUATIONS 855

the block bordered solver again. Alternatively, the block bordered Jacobian matrix
may be reordered to

A B

Ao Ba

p1

C1 C q

with AX reordered to

c
C2 C3

p2

AX AX2 Ax2 Ax31 AX 2 3qmx (mxl, q, 1, q +1, q+lXq+l Xq+l x
and F reordered to

F (f, .,f,f,...,f,f,...,f,f+,fq+l,fq+,2 fq+ 1) T.
In solving this block bordered system, two levels of parallelism can be exploited. Let
m be the number of amplifiers in the analog filter and q the number of subcircuits
inside each amplifier; here m 3 and q 4. First the m x q independent operations
for solving the diagonal blocks can be performed in parallel. Second, the m independent
operations for transforming the matrices pS, j 1,. ., m, and solving the resultant
systems of eguations can be performed in parallel. Finally, the very bottom block, with
the matrix P, must be transformed and solved.

In our test program, the 12 diagonal block equations of the analog filter were
distributed among 12 nodes of the Intel hypercube. The first level of internal connection
functions in each amplifier,f+ (j 1, , 3), was distributed to three of the 12 nodes,
and the second level connection function among the three amplifiers in the analog
filter, fq+, was handled sequentially by one of the 12 nodes.

Tables 5.5 and 5.6 give the experimental results and the performance of the explicit
method for solving the two-level analog filter equation. Tables 5.7-5.11 show the

TABLE 5.5
The explicit method times for the analog filter.

13.49 14.93 14.21 15.34 13.44 14.85 14.16 15.46 13.36

To T T12 T T T T T Nou

14.76 14.25 15.63 3.01 3.12 3.17 0.58 1.31 21

856 X. ZHANG, R. H. BYRD, AND R. B. SCHNABEL

TABLE 5.6
The explicit method parallel performance for the analog

filter.

183.76 20.69 8.88 74.00%

TABLE 5.7
Corrected implicit method times for the analog filter, Ii, 1.

11.54 12.78 12.13 13.13 11.52 12.69 12.10 13.21 11.42

Lo T TI T T T Tb T No,

12.61 12.20 13.40 2.56 2.67 2.73 0.5 1.12 18

TABLE 5.8
Corrected implicit method times for the analog filter, Ii, 2.

11.83 11.93 11.84 12.09 11.91 12.01 11.89 12.12 11.84

T T TT, T, T r T No.

12.05 11.94 12.13 1.65 1.65 1.64 0.36 0.73 12

TABLE 5.9
Corrected implicit method times for the analog filter, Ii, 3.

21.25 23.67 23.25 24.51 21.67 23.29 24.21 24.35 21.22

Tlo Tll T12 T T T T Tc Nou,

23.56 23.21 24.75 1.52 1.51 1.53 0.34 0.69 11

TABLE 5.10
Corrected implicit method times for the analog filter, I, 4.

29.03 32.24 29.98 32.75 29.11 32.04 29.87 32.71 29.40

Tlo 7"11 T2 T T T r rc Nout

32.21 31.05 32.34 1.50 1.51 1.50 0.35 0.69 11

PARALLEL METHODS FOR BLOCK BORDERED EQUATIONS 857

TABLE 5.11
Parallelperformance ofthe corrected implicit methodfor the analogfilter.

Iin T Tp sp eff

157.19 17.19 8.86 73.83%
2 148.68 14.86 10.01 83.40%
3 283.84 27.31 10.39 86.58%
4 373.08 34.89 10.69 89.08%

experimental results and performance of the corrected implicit method for solving the
two-level block bordered analog filter equations with one to four inner iterations. The
symbols in the tables have the same meanings as in Tables 5.1-5.4, with the following
exception: T, 1,..., 12, is the total time for the 12 first-level blocks, while T,
j 1, 2, 3, is the time for the three second-level blocks.

Our experimental results show that the corrected implicit method is also more
efficient than the explicit method on this larger block bordered system of equations.
The total number of iterations No,t decreases from 18 to 11 as the number of inner
iterations Iin is increased from 1 to 4, but the sequential computing time Tb only
decreases from 157.19 to 148.68 for Iin 2, then increases again. The high speedups
for I, 3 and 4 in comparison to the same sequential method are not significant since
the large number of inner iterations makes the algorithm inefficient, and the sequential
time is suboptimal. For the optimal number of inner iterations, Ii, 2, the speedup is
10.01 out of 12 processors and the efficiency is 83.40 percent. The computation time
improvement over the parallel explicit method is 28 percent, as compared to 19 percent
in the sequential case. Our parallel analog filter simulation experiment indicates that
applying the implicit method to solving large block bordered circuit equations on a
distributed memory multiprocessor can result in high efficiency.

6. Summary and future research. We have introduced a corrected implicit method
for solving block bordered systems of nonlinear equations. It allows multiple "inner"
iterations, iterations on the variables, and equations of the q diagonal blocks, to be
performed per each "outer" iteration, which involves all the variables and equations
including the connecting bottom block. If only one inner iteration is performed per
outer iteration, no line search is used, and the bottom connecting equations are linear,
then the corrected implicit method is identical to the explicit method (Newton’s
method). When more than one inner iteration is performed per outer iteration, however,
the methods are different, and in our experiments the corrected implicit method solves
problems in somewhat less time than the explicit method on sequential computers. On
parallel computers, the corrected implicit method has a larger advantage over the
explicit method because it parallelizes more effectively, since the inner iterations
constitute a larger percentage of the total computation and parallelize far better than
the outer iterations. On one- and two-level block bordered problems from VLSI circuit
design that we tested, the parallel efficiency of the fastest (sequential and parallel)
corrected implicit method on an Intel iPSC1 hypercube was about 85 percent.

The methods presented in this paper all assume that the Jacobian matrix is available
at each iteration, either analytically or by finite differences, and that it is not too
expensive to evaluate. In some applications, however, the nonlinear equations are
given by an expensive computational procedure, and analytic or finite difference
Jacobians are very expensive to obtain. In such cases, for general systems of nonlinear

858 X. ZHANG, R. H. BYRD, AND R. B. SCHNABEL

equations, secant approximations to the Jacobian are used that are based entirely on
function values at the iterates (see, e.g., Dennis and Schnabel 1983]). The development
ofrelated secant approximations to the Jacobian for block bordered nonlinear equations
seems to be an attractive research topic, since it appears possible to construct approxi-
mations that retain the block bordered sparsity pattern of the Jacobian, and also allow
the factorization of the Jacobian approximation to be updated efficiently.

REFERENCES

C. CHRISTARA 1988], Spline collocation methods, software and architectures for linear elliptic boundary value
problems, Ph.D. thesis, Computer Science Department, Purdue University, West Lafayette, IN, August,
1988.

C. CHRISTARA AND E. HOUSTIS 1989], A domain decomposition spline collocation methodfor elliptic partial
differential equations, in Proc. 4th Conf. Hypercube Concurrent Computers and Applications, Monterey,
CA, March 6-8, 1989.

L. CHUA AND P. LIN [1975], Computer-Aided Analysis of Electronic Circuits: Algorithms and Computational
Techniques, Prentice-Hall, Englewood Cliffs, NJ.

T. COLEMAN AND G. LI [1990], Solving systems of nonlinear equations on a message-passing multiprocessor,
SIAM J. Sci. Statist. Comput., 11, pp. 1116-1135.

J. DENNIS AND R. SCHNABEL [1983], Numerical Methods for Unconstrained Optimization and Nonlinear
Equations, Prentice-Hall, Englewood Cliffs, NJ.

J. EBERS AND J. MOLL [1954], Large-signal behavior ofjunction transistors, Proc. IRE, 42, pp. 1761-1772.
Co FARHAT AND E. WILSON [1986], Concurrent iterative solution of large finite element systems, Tech.

Report, Civil Engineering Department, University of California, Berkeley, CA.
R. FONTECILLA [1987], A parallel nonlinear Jacobi algorithm for solving nonlinear equations, Tech. Report,

Computer Science Department, University of Maryland, College Park, MD, May.
M. R. GAREY AND D. S. JOHNSON [1979], Computers and Intractability, A Guide to the Theory of

NP-Completeness, W. H. Freeman, San Francisco, CA.
P. GILL, W. MURRAY, AND M. WRIGHT [1981], Practical Optimization, Academic Press, New York.
M. Mu AND J. RICE [1989], Solving linear systems with sparse matrices on hypercubes, Tech. Report

CSD-TR-870, Computer Science Department, Purdue University, West Lafayette, IN, February.
A. NEWTON, D. PEDERSON, AND A. SANGIOVANNI-VINCENTELLI [1988], SPICE 3B1 user’s guide,

Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA.
B. NOUR-OMID AND K. C. PARK [1986], Solving structural mechanics problems on a Caltech hypercube

machine, Tech. Report, Mechanical Engineering Department, University of Colorado, Boulder, CO.
J. M. ORTEGA AND R. G. VOIGT [1985], Solution of partial differential equations on vector and parallel

computers, SIAM Rev., 27, pp. 149-240.
D. P. O’LEARY AND R. E. WHITE 1985], Multi-splittings of matrices and parallel solution of linear systems,

SIAM J. Algebraic Discrete Meth., 4, pp. 137-149.
N. RABBAT AND H. HSIEH [1976], A latent macromodular approach to large-scale sparse networks, IEEE

Trans. Circuits and Systems, CAS-23, pp. 745-752.
N. RABBAT, A. SANGIOVANNI-VINCENTELLI AND H. HSIEH [1979], A multilevel Newton algorithm with

macromodeling and latency for the analysis of large-scale nonlinear circuits in the time domain, IEEE
Trans. Circuits and Systems, CAS-26, pp. 733-741.

N. RABBAT AND A. SANGIOVANNI-VINCENTELLI [1980], Techniques of time-domain analysis of LSI
circuits, Tech. Report RC 8351 (#36320), IBM T. J. Watson Research Center, Yorktown Heights, NY,
July.

C. ROMINE AND J. ORTEGA 1986], Parallel solution oftriangular systems ofequations, ICASE Tech. Report,
National Aeronautics and Space Administration, Hampton, VA.

A. SANGIOVANNI-VINCENTELLI, L. CHEN, AND L. CHUA [1977], An efficient heuristic cluster algorithm

for tearing large-scale networks, IEEE Trans. Circuits and Systems, CAS-24, pp. 709-717.
m. SANGIOVANNI-VINCENTELLI AND D. WEBBER [1986], Computer architecture issues in circuit simulation,

in High Speed Computing, R. Wilhelmson, ed., University of Illinois Press, Chicago, IL.
A. SEDRA AND K. SMITH [1982], Microelectronic Circuits, CBS College Publishing, New York.
J. SMITH [1971], Modern Operational Circuit Design, John Wiley, New York.
M. VALKENURG [1982], Analog Filter Design, CBS College Publishing, New York.
R. S. VARGA [1973], Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ.

PARALLEL METHODS FOR BLOCK BORDERED EQUATIONS 859

R. E. WHITE [1986], Parallel algorithms for nonlinear problems, SIAM J. Algebraic Discrete Meth., 7,
pp. 137-149.

X. ZHANG [1989], Parallel computation for the solution of nonlinear block bordered equations and their
applications, Ph.D. thesis, Department of Computer Science, University of Colorado, Boulder, CO, July.

X. ZHANG, R. BYRD, AND R. SCHNABEL [1989], Solving nonlinear block bordered circuit equations on

hypercube multiprocessors, in Proc. 4th Conf. Hypercube Concurrent Computers and Applications,
Monterey, CA, March 6-8.

