Microprocessor Architecture

FROM SIMPLE PIPELINES TO CHIP
MULTIPROCESSORS

Jean-Loup Baer
University of Washington, Seattle

CAMBRIDGE

%559 UNIVERSITY PRESS

248

The Cache Hierarchy

on the device to proceed simultaneously with the access of a cached row. Finally, by
transferring data on both edges of the clock, the data rate can be doubled, yielding |
the DDR SDRAMs (DDR stands for double data rate).

6.4.2 Improving Memory Bandwidth :

Improving memory bandwidth means that we want to transfer as much information
per (bus) cycle as possible. With a given memory data bus width, the DRAM chips
should be organized optimally to provide a bus width of data per request. Witk
current bus widths of 64 or 128 bits, the DRAM organization shown in Figure 6115,
whereby a chip yields one bit of output per request, needs to be revisited so that 2
yields a larger number of bits per request. Indeed, expansion is needed also so that
the number of chips does not increase unduly and to ease the modularity of capaciz
expansion.

A first improvement is to allow more than one data output pin per chip, so that
consecutive bits in a row can be delivered at each cycle from a single chip. Chips = |
organized into circuit board modules called dual inline memory modules (DIMMs
an improvement over SIMMs, where S stands for single, by doubling the number <=
connections on using the two edges of the physical connectors. As an example, a 257
Mbit SDRAM found in the marketplace could consist of four chips of 64 Mbit each
The 64 Mbit chips can be either (i) 8 K rows and 2 K columns of 4 bits (dubbed ==
x 4 in the commercial literature), or (ii) 8 K rows of 1 K columns of 8 bits (8 = 7%
or (iii) 8 K rows of 512 columns of 16 bits (4 x 16). Generally, the cost of the m<
ule increases with the width it can deliver because of the larger number of d=
lines needed. Ideally, the number of bits that can be read on a read request shoe
be equal to the number of bits that can be transmitted on the memory data =
If the width is too narrow, a reassembling buffer must be included in the mem-=
controller to concatenate the results of consecutive requests. :

The number of chips that can be included on a DIMM is limited by phys
constraints; 4 to 16 chips is a good order of magnitude. Because main memoz; -
a resource that users will often want to expand, having very large capacity DIMM:
means that jumping from one configuration to the next will involve large increments
in capacity, and hence cost, thus also placing a user-motivated limit on the overal
capacity of DIMMs. .

Main memory is further divided into banks that can receive independent com-
mands from the memory controller. Banks can be interleaved in several ways
depending on the mapping of memory addresses to banks. A popular mapping £
to have banks interleaved by units of bus width. For example, if a memory has two
banks and the data bus is 64 bits (8 bytes) wide, bank 0 stores all double words
(8 bytes) at addresses 0, 16, 32, ..., while bank 1 stores those at addresses 8, 24,....
If the cache line size of the higher-level cache is greater than 8 bytes, then both banis
can proceed in parallel to fulfill the request (except of course for the serialization oz
the bus). Alternatively, a bank can serve the whole request for a cache line, and the

o

6.4 Main Memory 249

A
X
v

(a)

Figure 6.12. Interleaving of external
banks: (a) address as seen from the >
cache, with d the line offset, i the set -
index, and ¢ the tag; (b) line inter- \ ®)
leaving, with po the page offset, pi
the page index, and k the bank index;
(c) page interleaving.

pi po e

A
v
A

! d
13
b2 po

&
A4

e

(e}

next bank will then serve the next (addresswise) line. In the first case, because the
bus is in general faster than the DRAM even in page mode, the number of banks
should be larger than the number of cycles it takes to deliver data to the bus. Banks
are also interesting for writes, for they allow writes in independent banks to proceed
in parallel.

Banks can be grouped in banks of banks, or external banks. Within an external
bank, the internal banks are interleaved so that they can deliver a request to the ’
cache as fast as possible. The interleaving of the external banks is not as crucial,
but some mappings are better than others. In Figure 6.12, we show how the address
is seen from the cache’s viewpoint and with two different natural interleavings of
external memory banks.

As can be seen, in both types of interleaving the bank index overlaps with the
cache set index. This will happen for all reasonable higher-level cache and DRAM
page sizes. The consequence is that in case of cache conflict misses, the missing line
will have the same bank number as the replaced line, and therefore the same bank
will be accessed if there is line writeback (although this might be alleviated by the
presence of write buffers) and also if the conflicting misses are occurring in a Ping-
Pong fashion. In both cases, a full penalty of precharge and row and column access
is likely, because the high-order bits in the addresses of the conflicting lines (those
called pi at the left of the page offset) are likely to be different. A possible solution
is to have the bank index be the result of a hashing (a single XOR operation is suf-
ficient) of k bits in the tag field with the original k bifs at the left of the page offset
(those indicated in Figure 6.13). The advantage is that the cache conflicting misses
will in all likelihood map to different banks and the contents of the pages remain
the same (only the bank index changes). Moreover, because the original bank
index is used in the hashing function, there is a uniform distribution of addresses
in banks.

We have centered our discussion within the context of a single request from
the processor, or rather the higher-level cache, to main memory. However, several

250 The Cache Hierarchy

e
i d
X 2 > i e
k k
< S
Lo Figure 6.13. Interleaving scheme to
XOR reduce bank conflicts (adapted from
Zhang et al. [ZZZ00])
< A< -
<
pi ; po
1k
1
i
New page
index

requests could be pending, for the caches can be lockup-free. Moreover, I/O should
be done concurrently, and main memory can also be shared by several processors.
Holding the processor-memory bus busy during the whole latency of a request is
not efficient in these conditions. Waiting times for the bus can be reduced by using
a split-transaction bus. As its name indicates, with a split-transaction bus a request,
for example a read transaction, can be decomposed into sending the address on the
bus, releasing the bus while the DRAM reads the data, requesting the bus when the
data are ready in the DRAM buffer, and, when this last request is satisfied, send-
ing the data on the bus. While the data are read from the DRAM, other requests
can be sent on the bus and queued at the memory controller, or data read from
another transaction can be sent on the bus. If address lines and data lines of the bus
are distinct, then two transactions can be in progress concurrently. The address for
transaction A can be sent at the same time as the data for transaction B.

The presence of a split-transaction bus complicates the design of the memory
controller. Buffering is needed for incoming transactions and possibly for read—write
data. Of course, with this complication comes an advantage, namely, transactions do
not have to be processed in order. An intelligent controller could, for example, delay
prefetching transactions in favor of processing a real read miss as soon as possible.
The controller could also take advantage of hits in row buffers, delaying temporarily
arequest that would destroy the locality of other transactions. However, because the
read requests are processed out of order, they must be tagged so that the recipients
can know when their requests are fulfilled.

Although interleaving and split-transaction buses improve the occupancy of the
bus, they do not reduce the latency of single requests. Latency speedup requires
faster devices and faster buses.

