System Effects of Interprocessor
Communication Latency in
Multicomputers

Xiaodong Zhang

University of Texas
at San Antonio

12 IEEE Micro

An important factor in the efficiency of a distributed-memory multicomputer is the effective-
ness with which data can be exchanged among its many nodes. A series of experiments and
analyses on five types of hypercube and grid-topology multicomputers helped to evaluate
interprocessor communication performance. Examination and comparison of system com-
munication speed, message routing, interprocessor connectivity, and software/hardware
protocols for passing messages among the five multicomputers enhanced the analysis.

arallel processing applies a simple
idea: A computing job can be divided
into several tasks that may be executed
in parallel. Over the last 10 years
designers implemented this concept using
distributed-memory multicomputers in a variety
of forms in different applications. This experi-
ence shows that parallel processing does not reach
its anticipated speed when a large number of
processors are used in solving problems.? The
communications of common-state information
among processors cause a major degradation of
the performance (speed).

The literature®> records efforts to measure and
evaluate the interprocessor communication per-
formance on the Intel hypercube and the Ncube
multicomputers. In addition, Saad and Schultz®
present several efficient algorithms for data com-
munication on a hypercube multicomputer.

This article takes a wider view, studying vari-
ous system effects of interprocessor performance,
including communication speed, message rout-
ing, interprocessor connectivity, and message-
passing software/hardware protocols. Both
analytical and experimental results offer a clear
and comprehensive understanding of the various
effects, which is important for the effective use
of a distributed-memory multicomputer.

Five multicomputer architectures

In a distributed-memory multiprocessor system,
or multicomputer,” each processor has its own
local memory, and tasks on separate processors
coordinate their activities by sending messages
through an interconnection network. However,
many recent commercial distributed-memory
systems vary in computing power, number of
processors, type of processors, and network inter-
connection topology, as well as communication
hardware and software.

The hypercube is one example of a distributed-
memory, message-passing multicomputer. In a
hypercube network 2" processors are consecu-
tively numbered 0 through 2" — 1. Each processor
connects to all of the other processors, whose bi-
nary representation differs from its own by ex-
actly one bit. This arrangement results in a
network that is connected densely enough to
support efficient communication between arbi-
trary processors. Another virtue of the hypercube
network is its flexibility: Many other interconnec-
tion topologies, such as rings and trees, can be
embedded in the hypercube. The dimension 7 of
a hypercube with 2" nodes determines the maxi-
mum number of hops needed to send messages
between two nodes. Some system parameters of
the five studied multicomputers are:

0272-1732/91/0400-0012$01.00 © 1991 IEEE

* Intel iPSC/1. The iPSC/1, one of the first commercially
available hypercube computers, may support up to 128
nodes. Each node includes an 8-MHz Intel 80286 pro-
cessor and 512 Kbytes of local memory. The node oper-
ating system supports message-routing asynchronous
communications and multitasking within each node.”

¢ Intel iPSC/2. This second-generation hypercube features
a 4-million-instructions-per-second Intel 80386 node
processor, which is four times faster than the 286. Each
node can access up to 16 Mbytes of local memory,
whereas the iPSC/1 accesses 0.5 Mbytes. The NX/2 op-
erating system supports the new message-passing pro-
tocols in the iPSC/2 besides providing a normal system
environment in each node.”

¢ Ncube/10. This first-generation hypercube system sup-
ports up to 1,024 processors. The 32-bit, custom-chip
node processor operates at a 7-MHz clock rate and con-
tains 128 Kbytes of local memory. Since the processor
includes communication channels, the number of chips
per node on the Ncube is relatively low. The Axis oper-
ating system supports the transmission of messages be-
tween arbitrary nodes of the Ncube/10.*1

+ Ametek 2010. The Ametek 2010 multicomputer system
is based on a 2D grid topology. Each node includes a
25-MHz Motorola 68020 processor and up to 8 Mbytes
of local memory.

¢ Topology 1000. This paralle] system is a transputer-
based variable topology board. The interprocessor net-
work of this Topologix system can be reconfigured. The
processor in each node of the network uses the 32-bit,
20-MHz Inmos T800 transputer and up to 16 Mbytes of
local memory per processor node.'"** The transputer’s
links are based upon point-to-point interprocessor com-
munication, which eliminates bus contention when
messages are transferred. Logix OS is the distributed Unix-
compatible operating system supported on the Topol-
ogy 1000. The Trollius operating system developed at
the Cornell Theory Center forms the basis of the Logix
OS.

Table 1 summarizes the five types of architectures.

Interprocessor communication

Communication efficiency, one of the most important fac-
tors to be considered when designing a multicomputer archi-
tecture, often becomes one of the main obstacles to increased
performance of parallel algorithms on distributed systems.
When a message passes between a pair of nodes in a net-
work, it may be routed through a connected circuit in a num-
ber of hops. In addition, intermediate processors may be
interrupted to store and then forward the message, or the
message may be directly transferred by communication-
processing data links through a connected circuit. Thus, the
communication speed of the interprocessor network depends
on the communication-routing protocols, processor speed,
data link speed, and topology of the network.

A comparison of the various effects of different routing
models, different interprocessor connections, and other fac-
tors to the performance of interprocessor communication on
the five types of distributed memory architectures follows.

Communication models. Consider the store-and-forward
mechanism' used as a typical communication model for first-
generation multicomputers such as the iPSC/1, Ncube/10,
and Ametek/14. In this communication model, messages pass
indirectly between a pair of nodes that are not directly con-
nected via other connected nodes. Each node in the commu-
nication path temporarily stores the message in its memory.
The processor on each node in that path interrupts work on
a task to forward the stored message either to its neighbor or
the destination node. Thus, while messages move between a
pair of nodes across the network, memory bandwidth and
computing cycles in the intermediate nodes are consumed.

The communication latency of this model is also very sen-
sitive to the distance a message must be passed, or it is lin-
early proportional to the number of hops of the
communication. We can express the communication latency
of the store-and-forward model as:

Tan =T H @
where T, = K/B,, which is the time for a message of size K

(bytes) to pass through the channel of bandwidth B, (bytes/
s) in one hop. H equals the distance in the number of hops,

Table 1. Architecture overviews.

Features iPSC/1 iPSC/2 Ncube/10 Ametek 2010 Topology 1000
Node CPU intel 286 Intel 386 Custom 32-bit Motorola 68020 Inmos T800
Clock rate (MHz) 8 16 7 25 20

Node operating system Axis 3.0 NX/2 Axis 2.3 R Kernel Logix OS
Node memory (bytes) 512K Up to 16M 128K 8M Up to 16M
Data rate (Mbytes/s) 1.25 4 0.875 20 5

April 1991 13

Communication latency

and we can view T}, as the routing delay of each node.

Kermani and Kleinrock' and Athas and Seitz"® called the
basic routing model used in second-generation multicomputers
(for example, the iPSC/2 and Ametek 2010) wormhole rout-
ing. Instead of storing a packet completely in a node and
then transmitting it to the next node, wormhole routing op-
erates by advancing the head of a packet directly from in-
coming to outgoing channels. Only a few flow-control digits
are buffered at each node. These digits, or flits, are the smallest
units of information that a queue or channel can accept or
refuse. A message consists of a sequence of flits, in which
the flit at the head of the message governs the route, and the
remaining flits follow in pipeline fashion. Besides avoiding
the use of storage bandwidth in the nodes through which
messages are routed, wormhole routing and its flow control
also reduce the message latency caused by distance in the
network. Therefore, the data transfer rate becomes the limiting
factor for message-passing speed.

We can express the communication latency of the worm-
hole model as:

Tz = TjH + (K/B) @

where 7, = K,/B, is the routing delay in each node for
sending the packet head in K, (bytes) to pass through the
channels of bandwidth B (bytes/s). K/B, is the time required
to transmit the whole packet K (bytes) continuously through
the wormhole channels of bandwidth B, (bytes/s), and H is
the communication distance. The ratio between Equations 1
and 2 is a quantitative comparison of the two models:

T _ (B KH
7 =B R =

The size of the packet head X, is trivial in comparison with
the size of the whole packet K. For example, the packet head
size in the Ametek 2010 is only 2 bytes. Therefore the ratio R
in Equation 3 may be expressed as:

R=(B/B)H @

This equation indicates that the wormhole model reduces
the communication latency up to B,/B, x H times over the
store-and-forward model. In this case, we assumed the mes-
sage size Kand the communication distance Hto be the same
in both communication architectures, and the bandwidth of
the second-generation multicomputer B, to be higher than
the one of the first-generation B,.

Even if the data bandwidth of the two models were the
same, B, = B,, the communication latency would be reduced
to H times in the wormhole model. For example, the first-
generation hypercube Intel iPSC/1 uses the store-and-forward

14 IEEE Micro

model; its data bandwidth is 1.25 Mbytes/s. The second-
generation hypercube Intel iPSC/2 uses the wormhole model;
its data bandwidth is 4 Mbytes/s. If we substitute B, = 1.25,
B, = 4,and H = 5 for a 32-node hypercube in Equation 4, we
obtain R = 16. This ratio indicates that a 32-node iPSC/2
hypercube may reduce the communication latency time up
to 16 times over a 32-node iPSC/1 hypercube.

Hardware implementation. The communication
mechanisms based on the store-and-forward technique used
in the Intel iPSC/1 and Ncube/10 are typical first-generation
message-passing protocols on a distributed-memory multi-
processing system. The processor on each node in that path
participates in handling communications, stopping other
processing tasks during message-passing periods.

The iPSC/1 and the Ncube/10 consume the local memory
bandwidth and computing cycles in the routing nodes while
accumulating a latency of several hundred microseconds per
hop. Thus, the computing speed and bandwidth in each pro-
cessor mainly determine the store-and-forward communica-
tion speed. The higher the clock rate of each processor, the
lower the latency in communication will be, since the pro-
cessor more speedily accomplishes the store-and-forward
operation. The experiment’s results discussed in the next
section show the low efficiency of the store-and-forward
techniques on the Intel iPSC/1 and Ncube/10.

We can implement the wormhole model differently on a
multicomputer. The hardware structures on the iPSC/2 and
Ametek 2010 are two typical implementations for the worm-
hole routing model on a interconnecting network.

The wormhole routing
model greatly reduces

communication latency.

The direct-connect router, a hardware-controlled message-
passing system in the Intel iPSC/2, forms the basis of the
communication system. Think of the router as a switching
network. When one node wants to communicate with an-
other, the sending node closes a series of switches and es-
tablishes the communication path. Then, messages proceed
at the full hardware speed of 4 Mbytes/s. Only the sending
and destination processors participate in the communication;
the other processors in the routing path continue with their
normal activities. Since it takes only a few microseconds
per node to build the path, the additional overhead for
multihop communications is insignificant. In addition, the
hardware routes messages independently, and the iPSC/2
communication latency is significantly reduced over that in
the iPSC/1.

The Ametek 2010 communication network is the most ef-
ficient one among the five multiprocessing architectures. The
message network consists of a 2D grid of custom mesh rout-
ing chips. Message packets advance directly from one of these
chips to another in a blocking variant of cut-through routing
of the wormbhole routing. At the 20-MHz rate, the 8-bit-wide
channels yield a communication bandwidth of 20 Mbytes/s
per channel. Thus, the network quickly establishes a con-
nection circuit between two remote nodes, and the mesh
routing chips transfer messages in a byte-serial fashion in
one operation.

The Topology 1000 implements the store-and-forward
technique differently. The communication system is tied into
each transputer at a very low level. The transputer employs a
hardware scheduler to schedule the communication of mes-
sages. Therefore, setting up a communication takes just a
few microseconds.

On the other hand, the transputer implements synchro-
nized message passing. Both sender and receiver must be
ready before a communication can take place. This coordi-
nation occurs at the lowest level of the communication pro-
tocol and results in the absence of problems with data overruns
or buffer overflows. In addition, the store operation acts the
same as it does in the iPSC/1 and Ncube/10, storing the mes-
sage in the local memory of the routing node. However,
each processor is only responsible for initiating the forward
operation. Then the DMA data link carries out the message
transfer without further interruption of the processor.

The DMA data links on the Topology 1000 operate at a
maximum unidirectional rate of 1.75 Mbytes/s or a bidirec-
tional rate of 2.5 Mbytes/s. Four links per transputer produce a
10-Mbyte/s rate. The basic idea of this model is to use excess
parallelism to hide the latency in the data transfer. For very
short messages, a low transfer rate is possible because most of
the time spent in the communication occurs in the processor
cycles upon initializing a data transfer. However, the commu-
nication can take advantage of a large message transfer when
the processor’s initialization time is trivial (compared with the
data transfer time used by the DMA data links).

Experimental results on a Topology 1000 with the DMA
data links show improvement in communication efficiency.
The communication speed of the Topology 1000 is much
higher than on the Intel iPSC/1 and Ncube/10, although all
three multiprocessing systems use general store-and-forward
techniques.

Comparing the two topologies. The Ncube and both iPSC
systems use the hypercube interconnection topology. The
Ametek 2010 uses a 2D grid as the interprocessor connecting
topology. We can compare these two network topologies in
terms of the communication efficiency.

We can make a hypercube of arbitrary dimension by using
a linear arrangement with connecting wires. We obtain the
cube of each dimension by replicating the one in the next-

n —a
0 0 1
110 111
10 11 011
010
100 101
00 01
000 001

@

il Dals

[|
000 001 010 011 100 101 110 111
(b)

Figure 1. Construction of a hypercube.

lower dimension and then connecting corresponding nodes.
For example, directly connecting two nodes labeled 0 and 1
between the two nodes gives us a one-dimensional hypercube
(2"). We make a 2D hypercube by duplicating the bisection,
or the 1D hypercube, by directly connecting the correspond-
ing node of each bisection together. Adding a high-order bit
to the node number sets it to 0 for the lower order bisection
and 1 for the other. We construct the higher dimensional
hypercube by further connecting the bisections of the
hypercube. As Figure 1a shows, each processor in a hypercube
connects to all other processors whose binary tags differ by
exactly one bit. We can make a hypercube of arbitrary di-
mension by using a linear arrangement with connecting wires,
as shown in Figure 1b.

We can make a channel that physically links two directly
connected nodes from a bundle of wires consisting of data
bits and any necessary control bits. We need N/2 channels
across the bisection to construct a hypercube, where N is
number of nodes in the hypercube. However, using the same
method to construct a 2D grid requires OV N channels across
the bisection, where Nis the number of nodes in the 2D grid.
We can determine the maximum distance between a pair of

continued on p. 52

April 1991 15

Oct. 1984, pp. 1733-1749.

33. P.Corsini, B. Lazzerini,and C.A. Prete, “ AKernel foraMultiprocessor
System with Anonymous Processes,” Proc. Int'l Conf. Paralle!
Processing and Applications, North-Holland, Amsterdam, Sept.
1987, pp. 71-78.

34. Q.Yang, L.N. Bhuyan, and B.-C. Liu, “Analysis and Comparison
of Cache Coherence Protocols for a Packet-Switched
Multiprocessor,” IEEE Trans. Computers, Vol. 38, No. 8, Aug.
1989, pp. 1143-1153.

35. B. Lazzerini, L. Lopriore, and C.A. Prete, “A Programmable
Debugging Aid for Real-Time Software Development, ” IEEE Mlicro,
Vol. 6, No. 3, June 1986, pp. 34-42.

36. P. Corsini and C.A. Prete, “Multibug: Interactive Debugging in
Distributing Systems,” IEEE Micro, Vol. 6, No. 3, June 1986, pp.
26-33.

37. B.Lazzeriniand C.A. Prete, “Event-Driven Debugging for Distributed
Software,” Microprocessors and Microsystems, Vol. 12, No. 1,
Jan./Feb. 1988, pp. 33-39.

38. PAL Device Data Book, Advanced Micro Devices, Inc., 1988.

39. CMOS Data Book, Cypress Semiconductor Corp., San Jose, Calif.,
Jan. 1986.

Cosimo A. Prete is a research fellow at
the Institute of Electronics and Telecom-
munications of the University of Pisa. He
is involved in the Italian National Research
Council’'s Nonconventional Parallel Sys-
tems project, which is conducting com-
parative analysis and performance
evaluation of operating systems and programming environ-
ments for nonconventional parallel systems. His main inter-
ests include multiprocessor organization, cache memories,
and software development methodologies.

Prete holds a degree in electronic engineering and a PhD
(Dottore di Ricerca) from the University of Pisa, Italy.

Address questions concerning this article to Cosimo A. Prete,
Universita di Pisa, Dipartimento di Ingegneria dell’
Informazione: Elettronica, Informatica e Telecommunicazioni,
56126 Pisa, Via Diotisalvi, 2, Italy; e-mail: prete@
mv3500.eit.unipi.it.

Reader Interest Survey

Indicate your interest in this article by circling the appropri-
ate numbers on the Reader Service Card.

Low 153

Medium 154 High 155

52 IEEE Micro

Communication latency
continued from p. 15

nodes in a hypercube if we know the dimension of the
hypercube, or log,(\). The same factor in a 2D grid is ON M),
which increases faster than log,(N).

Recall that the communication latency is dependent on the
channel width, distance (number of hops), and size of the
message. The network latency in the wormhole mode] pre-
cisely equals the time it takes the head of a message to enter
the network at the source and the tail to emerge at the
destination:

Tu=t,H+ (KB G

Here, T, is the delay of the individual routing nodes encoun-
tered on the path, H is the number of hops needed in pass-
ing messages, and K/B is the time required for a message of
size Kto pass through the channels of bandwidth B.

In lower dimensional hypercube topology, the number of
hops increases, but so does the channel width. The optimi-
zation to minimize latency simply minimizes Equation 5. In
this equation, higher dimensional networks reduce the first
term at the expense of the second, while lower dimensional
networks reduce the second term at the expense of the first.
The 2D grid has (Y N) times more wires per channel for a
fixed number N of nodes than an equivalent Mnode topol-
ogy. The following numerical comparisons indicate the ad-
vantage of lower latency in the 2D grid network. Assume the
routing delay 7, in both the hypercube and 2D grid networks
is identical. We can express the time needed to send a mes-
sage with K bytes between a pair of nodes in the maximum
distance log,(N) in the hypercube with N nodes as:

T = T, log (V) + (K/B) ()

We express the same timing factor in the 2D grid network
of N nodes to send a K-size message differently, since the
bandwidth in each channel is O(V N) times wider, and the
maximum distance (Y V) is also a faster-increasing function:

- K
Ta = TOGN) + SANB o

We derive the ratio of T,,./T,,, by

TJog(\N) + T,

R=O0N) “ ®

where 7, = K/B.

The second term K/ B of Equation 5 dominates the network
latency for all but very short messages in the second-genera-
tion multicomputers. For example, in one implementation
conducted by the California Institute of Technology,' the
routing delay in one node 7, was 80 nanoseconds. Even the
fast bandwidth of the Ametek 2010—B = 20 Mbytes/s
needed to transfer a 160-byte message—would take 8 micro-
seconds, which is 100 times longer than 7, When K is rea-
sonably large, T, may be ignored, and the ratio R of Equation
8 is O(VN). That is, the communication latency in a 2D grid
network may be reduced up to XV N) times over a hypercube
network.

In summary, given a constant bisection width, the 2D grid
network produces lower latency and higher throughput than
a higher dimensional hypercube. Mainly, fewer channels
contribute to the bisection, which permits each channel to be
made wider. On the other hand, the throughput is bounded
by allowing more channels crossing the bisection in a higher
dimensional hypercube.

A transputer is a good
candidate for constructing

a 2D grid network.

The Topology 1000 provides hardware reconfigurability of
the network topology under software control through the
use of the Inmos C004 link crossbar adapter. Thus, a user can
define an interprocessor communication topology, and the
hardware and software can implement it. Since each transputer
has four links to connect with other transputers in the net-
work, a transputer becomes a good candidate for construct-
ing a 2D grid network. We can achieve full connectivity or
high connectivity in a lower dimensional topology with a
small number of nodes and construct a 4D hypercube by
connecting 16 transputers properly.

However, we cannot build higher dimensional hypercubes
out of transputers exclusively since they are limited to four
links per node, and hypercubes of five or more dimensions
require five or more links per node. Such topologies are pos-
sible with the addition of hardware link switches such as the
Inmos C004 crossbar adapter used in the Topologix system.
Performance losses occur with the use of such switches,
however.

The experiment

A distributed-memory multicomputer is a collection of pro-
cessors or nodes connected by a communication network.
Thus, the basic communication timing test for distributed-
memory multicomputers requires measurement of the time

Table 2. Alphas and betas (in microseconds/byte)
for one-hop communication.

Multiprocessor o B

iPSC/1 893 1.51
iPSC/2 349 2.30 x107"
Ncube/10 447 2.40
Ametek 2010 168 1.01 x 10"
Topology 1000 215 1.02 x 10~

required to transmit a message packet from one node to its
nearest neighbor. This test, also known as an echo test, directs
a test node to send a message to an echo node that is directly
connected to the test node. The echo node receives the mes-
sage and sends it back to the test node. We can express the
interprocessor communication time required to transmit a
message between two directly connected nodes as:

7;{)"1"1 = a + BK

where K is the number of bytes contained in the message.
Here, o equals the overhead or the start-up time for sending
a packet in microseconds, and B equals the bandwidth of the
communication channel (microseconds/byte). The experiment
used different sizes of message packets and a least square fit
to approximate o and P. Table 2 reproduced from Zhang and
Beguelin'? lists the os and Bs of the five types of
multicomputers.

Since multiple-hop communications occur more often in
most applications on a multiprocessor system, the one-hop
communication measurements do not let us sufficiently
evaluate the performance of the interprocessor communi-
cation. For this reason, we' constructed a comprehensive
experiment to measure the overall communication perfor-
mance on a multiprocessor system for a given topology
network.

In the experiment, a test node sent # messages to and re-
ceived n messages from all nodes in the network. We mea-
sured the time it took for a test node to send a message to
every node in the network and return. We repeated this pro-
cess m times and continued the whole process until every
node had become the test node. We obtained the average
communication time in the network from the p timing mea-
sures, where p is number of processors in the network. We
chose the message size from a minimum of 1 byte to a maxi-
mum of 8 Kbytes. The communication distances in this ex-
periment range from a minimum zero hop (a node to itself)
to a maximum H,,, hops. H,, = n, for an n-dimensional
hypercube topology, and H,,, = O(V N, for an N-node 2D grid
topology.

April 1991 53

Communication latency

Figure 2 charts the average communication time for differ-
ent message sizes on different types of multiprocessors. The
iPSC/1, iPSC/2, and Topology 1000 have a hypercube topol-
ogy, and the Ametek 2010 has 2D grid topology. The results
of the experiment showed that communication timing differ-
ences are very close to the results predicted earlier by the
latency models. For example, Equation 4 predicted the iPSC/
1 and iPSC/2 communication latency ratio for a 16-node sys-
tem to be 12.8. The experiment's results in Figure 2 also
show that the timing ratio was more than 10.

To show that the communication latency of the wormhole
model exhibits little sensitivity to message distance, we con-
ducted another experiment on the five types of
multicomputers. In this experiment we fixed the message
size, let the communication time become the function of the
distance, and set the number of hops as H. We ran this ex-
periment with message-packet sizes of 1 Kbytes to 8 Kbytes
and used the average timing value from eight runs as the

— iPSC/N
—o— i PSC/2
—— Topology 1000
Ametek 2010

Tcomm (p's)

24
22
20
18
16
14
12
10

8

NN)
\ ! !

1 2 3 4 5 6 7 -8
Message size (Kbytes)

Figure 2. Average multihop communication time on the
Intel, Topologix, and Ametek multiprocessors.

A
— iPSC/

10r|— Topology 1000 /
—o— Ametek 2010 :

Tcomm (us) 8

1 2 3 4 5 6
Number of hops

Figure 3. Average communication time with different
hops on the same multiprocessors.

54 IEEE Micro

measure to cover a wide range of message sizes. Figure 3
describes this timing function based on the experimental data.

The experiment’s results clearly show the performance
difference of the interprocessor communication between the
first-generation multicomputer systems and the second-
generation distributed multiprocessor systems. The traditional
store-and-forward technique for interprocessor communi-
cation greatly limits the communication speed among the
processors. In addition, the processors of the first-genera-
tion multiprocessing systems are not very powerful, which
is another major reason communication proceeds slowly in
these systems.

To transfer a message in a store-and-forward network,
such as the iPSC/1 or the Ncube/10, the processor must
move each byte of data through its own memory, thus con-
suming both storage bandwidth and computing cycles in
the routing nodes. The Intel iPSC/2 uses more powerful
processors and, more importantly, uses direct switches as
the interprocessor connections. Thus, the communication
performance is greatly improved over that of the iPSC/1
and the Ncube/10.

The Topology 1000’s high-performance interprocessor
communication occurs especially when the number of pro-
cessors in the network is not very large and the message
size is not too small. The four links of each transputer, which
may create more hops and a low number of direct connec-
tions for a large number of transputer networks, limit the
inter-transputer connectivity. The DMA data links in the
multiple-transputer system play an important role in trans-
ferring data at high speeds. However, as the graph in Figure
3 shows, the communication latency of the Topology 1000
is more sensitive than are the iPSC/2 and Ametek 2010 when
the number of hops increases. The Topology 1000 uses the
store-and-forward model, after all. We obtained the timing
results from a 16-node hypercube network on both the iPSC
system and the Topology 1000. Finally, the point-to-point
communication established on the Ametek 2010, which
contains a powerful mesh routing chip on each node, pro-
duces the best interprocessor communication performance
among the five multiprocessor architectures.

THE WORMHOLE ROUTING MODEL greatly reduces
communication latency and is no longer sensitive to the dis-
tance involved in passing messages. In addition, the high-
data bandwidth and high-speed nodes of the
second-generation multicomputers such as the iPSC/2 and
Ametek 2010 increase communication speed. The Topology
1000 interprocessor communication may perform at a rate
similar to that of the iPSC/2 and Ametek 2010 on a medium-

size network since the system takes advantage of the high-
speed transputer data links. The 2D grid topology is a more
efficient structure than a higher dimensional hypercube to-
pology in terms of reducing communication latency, as long
as the routing delay in each node is small, such as the one in
the second-generation multicomputers. [@

Acknowledgments
The National Science Foundation under grants CCR-9008991
and CCR-9047481 partially supported this research.

References

1. C. Moler, "Matrix Computation on Distributed-Memory
Multiprocessors,” SIAM Proc. Hypercube Multiprocessors, Soc.
Industrial and Applied Mathematics, Philadelphia, 1986, pp. 181-
195.

2. X.Zhang, R. Byrd, and R. Schnabel, “Solving Nonlinear Block-
Bordered Circuit Equations on Hypercube Multicomputers,” Proc.
Fourth Conf. Hypercubes, Concurrent Computers, and Applications,
Vol. I, 1989, pp. 701-707.

3. A.Beguelin and D. Vasicek, “Communication Between Nodes of
a Hypercube,” SIAM Proc. Hypercube Multiprocessors, 1987, pp.
162-168.

4. D.A.Reedand R.M. Fujimoto, Multicomputer Network: Message-
Based Parallel Processing, MIT Press, Cambridge, Mass., 1987.

5. D.C. Grunwald and D.A. Reed, “Benchmarking Hypercube
Hardware and Software,” SIAM Proc. Hypercube Multiprocessors,
1987, pp. 169-175.

6. Y.SaadandM.H. Schultz, “DataCommunicationin Hypercubes, ”
J. Parallel Distributed Computing, Vol. 6, 1989, pp. 115-135.

7. C.L Seitz, "The Cosmic Cube,” Comm. ACM, Vol. 28, No. 1,
1985, pp. 22-33.

8. iPSCUser’s Guide, No. 17455-3, Intel Corp., Portland, Ore., 1985.

9. P. Pierce, “The NX/2 Operating System,” Proc. Third Conf.
Hypercube Concurrent Computers and Applications, ACM Press,
1988, pp. 384-390.

10. Ncube Handbook, Version 1.1, Ncube Corp., Beaverton, Ore.,
1986.

11. The Transputer Data Book, Inmos Corp., Bristol, UK, 1989.

12. TheTransputer Application’s Notebook: Architecture and Software,
Inmos Corp., 1989.

13. The Transputer Application’s Notebook: Systemsand Performance,
inmos Corp., 1989.

14, A.S. Tanenbaum, Computer Network, Prentice-Hall, Inc.,
Englewood Cliffs, N.J., 1981.

15. P. Kermani and L. Kleinrock, “Virtual Cut-Through: A New
Computer Communication Switching Technique,” Computer
Networks, Vol. 13, 1979, pp. 267-286.

16. W.C. Athas and C.L. Seitz, “Multicomputers: Message-Passing
Concurrent Computers,” Computer, Vol. 21, No. 8, 1988,
pp. 9-24.

17. X. Zhang and A. Beguelin, “Interprocessor Communication
Performance on Different Types of Multicomputers,” Intelligent
Distributed Processing, R. Ammar, ed., ACTA Press, Anaheim,
Calif., 1989, pp. 73-76.

Xiaodong Zhang is an assistant profes-
sor of computer science at the University
of Texas at San Antonio and holds a visiting
faculty position at the Center for Research
on Parallel Computation at Rice Univer-
sity. Earlier, he had worked as a member
of the technical staff for Topologix Inc.,
Denver. His research interests lie primarily in the areas of
paralle] and distributed computation, parallel system perfor-
mance evaluation and VLSI simulation, and numerical analy-
sis of nonlinear equations and optimization problems.

Zhang received the BS degree in electrical engineering from
Beijing Polytechnic University and the MS and PhD degrees
in computer science from the University of Colorado at Boul-
der. He is a member of the IEEE Computer Society, the Asso-
ciation of Computing Machinery, and the Society for Industrial
and Applied Mathematics.

Address questions concerning this article to the author at
the Division of Mathematics and Computer Science, Univer-
sity of Texas at San Antonio, San Antonio, TX 78285-0664; or
via Internet at zhang@ringer.cs.utsa.edu.

Reader Interest Survey

Indicate your interest in the article by circling the appropriate
number on the Reader Service Card.

Low 150

Medium 151 High 152

April 1991 55

