Memory Systems

Cache, DRAM, Disk

Bruce Jacob
University of Maryland at College Park

Spencer W. Ng
Hitachi Global Storage Technologies

David T. Wang
MetaRAM

With Contributions By

Samuel Rodriguez
Advanced Micro Devices

AMSTERDAM ® BOSTON ® HEIDELBERG LONDON
NEW YORK ® OXFORD * PARIS ® SAN DIEGO ®
SAN FRANCISCO ® SINGAPORE ® SYDNEY ® TOKYO M {‘
Morgan Kaufmann is an imprint of Elsevier MORGAN KAUFMANN PUBLISHERS

510 Memory Systems: Cache, DRAM, Disk

open-page-optimal address mapping schemes. For
example, Figure 13.4 shows that in the single/asym-
metric channel mode, the address mapping scheme
in the 82955X MCH can be represented as k:l:r:b:n:z,
and in the symmetric dual channel mode, the address
mapping scheme can be represented as l:r:b:n:k:z. In
both cases, the column address fields are mapped
to the low address ranges so that spatially adjacent
memory address locations can be directed to the same
open page. Similarly, in the various address mapping
schemes illustrated in Figure 13.4, the 82955X MCH
shows that the side effect of granting the end-users
the ability to configure the memory system with dif-
ferently organized memory modules is that rank par-
allelism to spatially adjacent memory accesses is lost.
Although the rank address field is not explicitly illus-
trated in Figure 13.4, the use of the address bound-
ary registers and per-rank address mapping schemes
means that the rank address field is mapped to the
high address ranges above the row address field.

Figure 13.4 shows that the 82955X MCH has been
cleverly designed so that most of the bit positions are
directed to the same address fields regardless of the
organization of the memory modules in the memory
system. For example, Figure 13.4 shows that physi-
cal address bits 16 through 26 are used to denote
row addresses 0 through 10 in the single/asymmetric
channel mode, regardless of the number and type of
memory modules placed in the memory system. In
this manner, only a few bit positions will have to be
dynamically adjusted depending on the organiza-
tion of the memory system, and bit positions shown
with the grey background in Figure 13.4 are always
directed to the same address fields.

Finally, the address mapping scheme in the 82955X
MCH means that single threaded streaming applica-
tions often cannot take advantage of the parallelism
afforded by multiple ranks and the two channels
in asymmetric channel mode. Fortunately, multi-
processor and multi-threaded processor systems
with concurrently executing contexts can access dif-
ferent regions of memory and may be able to take
advantage of the parallelism afforded by the multiple

ranks and multiple channels in asymmetric channel
mode. However, the amount of achievable parallel-
ism depends on the specific access request sequences
and the locations of the data structures accessed by
the concurrently executing process contexts.

13.3.6 Bank Address Aliasing (Stride Collision)

One additional issue in the consideration of an
address mapping scheme is the problem of bank
address aliasing. The problem of bank address alias-
ing occurs when arrays whose respective sizes are rel-
atively large powers-of-two are accessed concurrently
with strided accesses to the same bank. Figure 13.4
shows that in a system that uses 1-GB DDR2 SDRAM
memory modules with the 82955X MCH in dual chan-
nel mode, the bank address for each access is obtained
from physical address bit positions 14 through 16.
That is, in this system configuration, all contiguously
allocated arrays that are aligned on address boundar-
ies that are integer multiples of 217 bytes from each
other would have array elements that map to identi-
cal banks for all corresponding array elements.

For example, the task of array summation, where
the array elements of arrays A and B are added
together and then stored into array C, requires that
the corresponding elements of A, B, and Cbe accessed
concurrently. In the case where arrays A, B, and C are
contiguously allocated by the system and mapped to
integer multiples of 128-kB address boundaries from
each other, then array elements Ali], B[i], and C[i],
would be mapped to different rows within the same
bank for all valid array indices i, resulting in multiple
bank conflicts for each step of the array summation
process in the system described above.

Ingeneral, thebankaddressaliasingproblem canbe
alleviated by several different methods. One method
that can alleviate the bank address aliasing problem
is the conscientious application of padding or offsets
to large arrays so that bank conflicts are not generated
throughout concurrent array accesses to those large
arrays.!? A second method that can alleviate the bank
address aliasing problem is the conscientious design

194 simple offset insertion increased STREAM Triad bandwidth by 25% in a test system with an Intel i875P system controller

: “ — I—' . .

s Wk

N

T R e | LR A R TNy I

g e

Chapter 13 DRAM MEMORY CONTROLLER 511

of a memory management unit that can purposefully
allocate large arrays to non-contiguous pages in the
physical address space. In this manner, the chance of
a bank conflict changes from a guaranteed event that
occurs for every single access to the array to a proba-
bilistic event that depends on the number of banks
and ranks in the memory system. Finally, improved
address mapping schemes have been proposed to
alleviate the bank address aliasing problem, and they
are described in the following section.

Hardware Solution to the Address Aliasing Problem

The bank address aliasing problem has been inves-
tigated by Lin et al. [2001] and Zhang et al. [2000].
The schemes proposed by Lin and Zhang are simi-
lar to schemes applied to different memory systems.
The basic idea of taking the row address and bit-
wise XOR'ed with the bank address to generate new
bank addresses that are not aligned for concurrent
accesses to large arrays is common to both designs.
However, the generous rank and bank parallelism in
the fully configured Direct RDRAM memory system
allowed Lin to create a 1:1 mapping that permutes
the available number of banks through the entire
address space in the system configuration exam-
ined. In contrast, Zhang illustrated a more modest
memory system where the page index was larger
than the bank index. The mapping scheme described
by Zhang is shown in Figure 13.5. Figure 13.5 shows
that the problem for the scheme described by Zhang
is that there are relatively few banks in contemporary
SDRAM and DDRx SDRAM memory systems, and

for a DRAM memory system with 2P banks, there are
only 2P possible permutations in a 1:1 mapping that
maps a physical address to the memory address. In
the bank address permutation scheme for the con-
ventional SDRAM-type memory system proposed by
Zhang, the address aliasing problem is simply shifted
to a larger granularity. That is, without the bank per-
mutation scheme illustrated in Figure 13.5, arrays
aligned on address boundaries of 2 +P) bytes would
suffera bank conflict on every pair of concurrent array
accesses. The implementation of the bank permuta-
tion scheme means that arrays aligned on address
boundaries of 2(0*+P) bytes no longer suffer from the
same address aliasing problem, but arrays that are
aligned on address boundaries of 2 *P*b) bytes con-
tinue to suffer a bank conflict on every pair of concur-
rent array accesses. Essentially, there are not enough
banks to rotate through the entire address space in
a contemporary memory system to completely avoid
the memory address aliasing problem.

13.4 Performance Optimization

The performance characteristic of a modern DRAM
memory controller depends on implementation-
specific DRAM command and memory transaction
ordering policies. A DRAM controller can be designed
to minimize complexity without regard to perfor-
mance or designed to extract the maximum perfor-
mance from the memory system by implementing
aggressive DRAM command and memory transaction
ordering policies. DRAM command and transaction

L page index bank index

page offset }

E page index

new bank index

I page offset —|

FIGURE 13.5: Address mapping scheme proposed by Zhang et al. [2000].

512 Memory Systems: Cache, DRAM, Disk

ordering policies have been studied by Briggs et al.
[2002], Cuppu et al. [1999], Hur and Lin [2004], McKee
etal. [1996], Lin et al. [2001], and Rixner et al. [2000]. In
studies performed by Briggs et al., Cuppu et al., McKee
etal, Lin et al,, and Rixner et al., various DRAM-cen-
tric scheduling schemes are examined. In the study
performed by Hur et al., the observation is noted that
the ideal DRAM scheduling algorithm depends not
only on the optimality of scheduling to the DRAM
memory system, but also on the requirement of the
application. In particular, the integration of DRAM
memory controllers with the processor core onto the
same silicon die means that the processor core can
interact directly with the memory controller and pro-
vide direct feedback to select the optimal DRAM com-
mand scheduling algorithm.

The design of a high-performance DRAM memory
controller is further complicated by the emergence
of modern, high-performance, multi-threaded pro-
cessors and multi-core processors. While the use of
multi-threading has been promoted as a way to hide
the effects of memory-access latency in modern com-
puter systems, the net effect of multi-threaded and
multi-core processors on a DRAM memory system
is that the intermixed memory request stream from
the multiple threaded contexts to the DRAM memory
system disrupts the row locality of the request pat-
tern and increases bank conflicts [Lin et al. 2001]. As
a result, an optimal DRAM controller design not only
has to account for the idiosyncrasies of specific DRAM
memory systems, application-specific requirements,
but also the type and number of processing elements
in the system.

fcwp+ 'BUW' femp

The large number of design factors that a design
engineer must consider underlines the complexity
of a high-performance DRAM memory controller.
Fortunately, some basic strategies exist in common
for the design of high-performance DRAM mem-
ory controllers. Specifically, the strategies of bank-
centric organization, write caching, and seniors
first are common to many high-performance DRAM
controllers, while specific adaptive arbitration algo-
rithms are unique to specific DRAM controllers and
systems.

13.4.1 Write Caching

One strategy deployed in many modern DRAM
controllers is the strategy of write caching, The basic
idea for write caching is that write requests are typi-
cally non-critical in terms of latency, but read requests
are typically critical in terms of latency. As a result, it
is typically desirable to defer write requests and allow
read requests to proceed ahead of write requests, as
long as the memory ordering model of the system
supports this optimization and the functional cor-
rectness of programs is not violated. Furthermore,
DRAM devices are typically poorly designed to sup-
portback-to-back read and write requests. In particu-
lar, a column read command that occurs immediately
after a column write command typically incurs a large
penalty in the data bus turnaround time in conven-
tional DDRx SDRAM devices due to the fact that the
column read command must await the availability
of the internal datapath of the DRAM device that is
shared between read and write commands,

femp

emdaddr - - { WA 0} -~~~ 1 readd

time

bank “i" of rank “m” -—-—---—~——————___[Gatarestore |
bank “j” of rank “m” —] !

row x open

rank “m” utilization -------——-————— 4

| VO gating E

databus -- - - ———————__ data burst

tcwp

tBurst twtr

———————— 1 databurst |

FIGURE 13.6: Write command following read command to open banks.

|

7 fp—

S pp——" TSSO ——— —e o

